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Abstract: Understanding the mechanisms and kinetics of membrane damage is of interest to re-
searchers in several overlapping fields of biology. In this study, we describe the development and
validation of a simple 32PO3−

4 release radioassay used to track nanometer-scale damage to the bac-
terial cell membrane. Nanoscale membrane damage will result in the release of small cytoplasmic
molecules, such as amino acids, sugars, and osmolytes. Our radioassay tracks the release of these
molecules using the release of cytoplasmic 32PO3−

4 as a proxy. Our assay can both detect 32PO3−
4

release and track release kinetics in the order of minutes. We demonstrate the use of our radioassay
using A. baumannii treated with colistin and Ω76: two agents known to cause membrane damage.
Our assay tracks greater membrane damage in A. baumannii treated with both these agents, compared
to an untreated control. Our assay fills a niche that is not covered by traditional 51Cr release radioas-
says and fluorescent staining techniques. Furthermore, our assay can potentially be used to track
membrane damage in other membrane systems such as lipid vesicles, animal cells, and organelles.

Keywords: radioassay; membrane damage; antimicrobial peptides; colistin; antibiotics

1. Introduction

The cell membrane is a prerequisite for life [1]. Life exists because the cell membrane
concentrates biomolecules and separates them from the outside environment. Life ceases to
exist when the cell membrane is irreparably damaged. Understanding the cell membrane
and the mechanisms of its disruption is therefore a topic of interest across several fields,
including immunology, apoptosis biology, cancer biology, and antibiotic discovery. Several
methods for detecting membrane damage have been developed, but they can be classified
into three major categories: radiometry, fluorometry, and microscopy.

The 51Cr release radioassay is used to detect membrane damage via a simple procedure:
target cells are labeled with 51Cr; cytolysis of the target cells results in membrane damage,
releasing 51Cr; the degree of cytolysis can then be quantified by measuring the radioactivity
of the medium [2]. 51Cr release radioassays are considered to be the gold standard for
measuring the cell-mediated cytotoxicity of T-cells and natural killer (NK) cells co-cultured
with target cells [3]. 51Cr assays have been used to detect cytotoxic reactions to rat Schwann
cells [4], the recognition of influenza-infected cells by T-cells [5], and the phagocytic killing
of Candida albicans [6].

However, the 51Cr release radioassay has three major limitations. Firstly, it can only
produce one reading at the end of the assay and therefore cannot measure kinetics [2,3].
Secondly, 51Cr is a γ-emitter [7].Working with 51Cr requires lead shielding and careful dose
monitoring [8]. This has lead to the gradual phasing out of 51Cr release radioassays in
favor of newer fluorescence and bioluminescence techniques [9]. Thirdly, 51CrO2−

4 binds
to bacterial lipopolysaccharides on the outer membrane of bacteria [10]. While useful for
assaying cell death, 51Cr cannot be used to assay damage to the inner membrane.
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The propidium iodide fluorescence assay has emerged as a popular alternative to the
51Cr release radioassay [11–13]. The principle of fluorescence assays is simple: propiduim
iodide present in the media will only enter dead cells via large perforations in the cell
membrane. Once inside, the dye intercalates with DNA and fluoresces [14]. This dye will
not enter and stain living cells. Intracellular propidum iodide can then be tracked using
flow cytometry [15] or fluorescence microscopy [16]. The fluorescent dyes annexin-V [17]
and 7-amino-actinomcin D [18] may be used as alternatives to propidium iodide.

Large-scale membrane damage can directly be observed using scanning electron mi-
croscopy (SEM) [19–21], transmission electron microscopy (TEM) [22], cryo-electron mi-
croscopy (cryo-EM) [23], or atomic force microsopy (AFM) [24–26]. However, such micro-
scopic techniques are qualitative in nature and require sophisticated instruments to perform.

In this work, we describe a simple radioassay to detect membrane disruption via
the formation of nanometer-scale pores using 32PO3−

4 as a tracer. We had previously used
this assay to characterize Ω76 [27], an antimicrobial peptide. We have now described the
detailed protocol for use by the scientific community. Here, 32PO3−

4 is introduced into the
bacterial cytoplasm via passive diffusion and is released upon the action of membrane
disrupting agents. Unlike 51Cr, 32P is a β-emitter. Working with 32PO3−

4 only requires acrylic
shielding. Further, our radioassay is capable of tracking 32PO3−

4 release kinetics in the order
of minutes, and if required, seconds. We believe the assay described here will be of use to
bacteriologists studying membrane disruption kinetics and can potentially be applied to
any other membrane system as well.

2. Experimental Design
2.1. Materials

2.1.1. Radiolabeled Phosphate (32PO3−
4 )

This item can be purchased from any vendor. However this study used 25 µCi/µL
32PO3−

4 purchased from BRIT India (catalogue number: LCP-32).

2.1.2. Membrane-Disrupting Agents

This study used Colistin sulfate salt (Sigma C4461-100MG, lot no. SLBT0851, St. Louis,
MO, USA) and Ω76 (synthesized by Genscript Inc., Hong Kong, China) to disrupt bacterial
cell membranes; Ω76 may also be purchased from NovoPro Bioscience Inc. (catalogue
number: 318759) or requested from the authors. You may test any known or putative
membrane disrupting agent using this protocol. However, we recommend using Ω76 as a
positive control.

2.1.3. Bacterial Culture

This study tested membrane disrupting agents against A. baumannii (P1270). This
culture can be purchased from the Microbial Type Culture Collection (MTCC), Chandigarh
(MTCC culture number: 12889). You may test a known membrane disrupting agent against
any bacterial or eukaryotic cell culture.

2.1.4. Culture Media

Mueller Hinton broth was purchased from Sigma/Merck (catalogue number: 70192-
100G). We prepared 0.8% physiological saline using NaCl (generic) and Milli-Q water.

2.1.5. Glassware and Plasticware

A 100 mL glass/plastic conical flask, 1.5 mL microcentrifuge tubes (Eppendorfs), 5 mL
microcentrifuge tubes (Eppendorfs), 10 mL or 50 mL centrifuge tubes (Falcons), 20 mL
syringes with needles, 0.2 µm syringe filters, micropipettes, and tips of all appropriate
volumes are required.
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2.2. Equipment
2.2.1. Scintillation Counter

This study used a Perkin-Elmer MicroBeta 2 2450 Microplate counter.

2.2.2. Radiation Protection

An acrylic radiation shield, appropriate personal protective equipment (PPE), and a
Geiger–Müller counter are needed while handling 32PO3−

4 . Store, handle, and discard
radioisotopes as per your institutional guidelines. The Practical Radiation Technical Manual
(IAEA) [28] provides detailed instructions on precautions needed while handling radioiso-
topes. In the event of a radiation spill, stop work immediately, notify personnel in the area
of the spill, clean the spill with absorbent paper while wearing disposable gloves, dispose
of your gloves and absorbent paper into the radioisotope waste container, survey yourself
and the area to ensure that radiation levels have dropped to background levels, and inform
your radiation safety officer (RSO) before resuming work.

2.2.3. Cold Room (4 ◦C)

All steps in this protocol need to be performed in a cold room to keep the cells being
assayed metabolically inactive. Alternatively, an ice bath may be used for all steps following
32PO3−

4 uptake.

2.2.4. Incubator-Shaker

Our incubator-shaker was set at 37 ◦C/180 rpm.

2.2.5. Centrifuge

The centrifuge must be capable of reaching speeds of at least 12,000 rpm and with
rotors to accommodate 1.5 mL and 5 mL microcentrifuge tubes. Note that 5 mL microcen-
trifuge tubes may be substituted with 10 or 50 mL centifuge tubes if the appropriate rotor
is unavailable.

2.2.6. Gel-Rocker

A gel-rocker is required for the gentle rocking of cells to aid the passive diffusion
of 32PO3−

4 .

2.2.7. Aseptic Environment

A laminar flow hood or bunsen burner is required to create an aseptic environment
while inoculating your culture. An aseptic environment is not required for further steps in
this protocol.

3. Protocol
3.1. Radiolabeled Phosphate Uptake

Note that 32PO3−
4 is very easily introduced into the bacterial cytoplasm via passive

diffusion after incubation for 24 h. Care must be taken to incubate your culture at 4 ◦C to sus-
pend bacterial metabolism and prevent the incorporation of phosphate into biomolecules.

1. Inoculate your culture in 10 mL of Muller Hinton broth. Incubate at 37 ◦C/24 h, on a
shaker incubator at 180 rpm.

2. Pipette 2 mL of this culture into a suitable container (preferably a 5 mL microcen-
trifuge tube) and centrifuge at 10,000 rpm for 10 min. Collect the pellet and discard
the supernatant.

3. Resuspend the pellet with 2 mL fresh Muller Hinton broth (tube A1). "NOTE : Fresh
broth is essential for 32PO3−

4 uptake.
4. Add 100 µCi 32PO3−

4 to tube A1. "CAUTION: Place an acrylic radiation shield be-
tween you and the radiation source whenever handling radioisotopes. Wear appropri-
ate PPE.
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5. Incubate tube A1 on a gel rocker at 4 ◦C for 24 h. The 32PO3−
4 uptake occurs via passive

diffusion across the cell membrane in metabolically inactive cells.

All the steps described above are illustrated in Figure 1.
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Figure 1. All the steps required to allow a bacterial culture to passively uptake 32PO3−
4 .

3.2. Radiolabeled Phosphate Retention Check

After incubation, it is essential to verify that 32PO3−
4 entered, and is firmly retained

within, the bacterial cytoplasm. This can be confirmed using a series of washing and
pelleting steps.

1. Pipette 500µL of the incubated culture in tube A1 into an empty centrifuge tube (tube A2).
The remaining culture in tube A1 can be refrigerated and used for further experiments.

2. Centrifuge tube A2 at 12,000 rpm for 5 min at 4 ◦C. Separate the pellet (tube P1) and
supernatant (tube S1).

3. Resuspend P1 in 500 µL physiological saline. "NOTE: Do not use phosphate-buffered
saline at any step in this protocol. Unlabeled phosphate may compete with radiola-
beled phosphate.

4–9. Repeat Steps 2–3 three more times. Over the course of this protocol, your pellet should
be resuspended in physiological saline four times (P1→P4), resulting in four centrifuge
tubes containing different supernatants at every step of the washing process (S1→S4).

10. Use a scintillation counter to enumerate the disintegration rates of tubes S1→S4
and P4.

• Disintegration rates are expected to fall approximately 10→100-fold from tubes
S1→S3. This indicates that excess 32PO3−

4 is being washed out from the media.
• Disintegration rates are expected to remain within the same order of magnitude

between tubes S3 and S4. This indicates that all the excess 32PO3−
4 has been

washed out.
• Finally, the ratio of disintegration rates for P4:S4 is expected to be approximately

100:1. This ratio indicates the proportion of 32PO3−
4 firmly retained within the

cytoplasm vs. the proportion of 32PO3−
4 released from the cytoplasm upon

resuspension and centrifugation.

All the steps described above are illustrated in Figure 2. Table 1 contains experimental
values for all the variables discussed in this section.
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Table 1. Raw data for the results of the 32PO3−
4 release radioassay illustrated in Figure 5. Three

replicates per condition were performed, and the data for each replicate is provided in the columns
rep-1�rep-3. All values are in disintegrations/min.

Tube Untreated Control Colistin Ω76

Rep-1 Rep-2 Rep-3 Rep-1 Rep-2 Rep-3 Rep-1 Rep-2 Rep-3

S1 1.25 × 107 1.18 × 107 8.56 × 106 1.30 × 107 5.49 × 106 4.20 × 106 1.34 × 107 2.29 × 107 7.00 × 106

S2 4.88 × 106 3.17 × 105 3.44 × 105 4.30 × 106 6.80 × 105 9.51 × 104 3.27 × 105 5.32 × 105 4.57 × 105

S3 1.92 × 104 6.73 × 103 1.05 × 104 1.90 × 104 6.55 × 104 1.15 × 104 4.74 × 104 2.12 × 104 2.53 × 104

S4 1.05 × 104 4.38 × 103 4.05 × 103 1.03 × 104 9.79 × 103 4.08 × 103 1.51 × 104 1.10 × 104 1.15 × 104

P4 1.78 × 106 5.32 × 105 6.67 × 105 1.55 × 106 2.00 × 106 3.46 × 105 1.77 × 106 5.96 × 105 1.87 × 106

C 3.23 × 104 1.05 × 104 1.21 × 104 3.35 × 104 5.85 × 104 1.70 × 104 3.33 × 104 1.16 × 104 5.80 × 104

0 m T0 4.65 × 102 3.26 × 102 2.71 × 102 6.39 × 102 1.05 × 103 1.78 × 102 1.30 × 103 4.96 × 102 1.58 × 103

2 m T1 1.07 × 103 1.27 × 103 9.63 × 102 7.31 × 103 1.72 × 103 4.09 × 103

4 m T2 1.67 × 103 1.29 × 103 3.05 × 103 8.91 × 103 2.49 × 103 6.00 × 103

6 m T3 1.86 × 103 1.36 × 103 3.75 × 103 1.15 × 104 2.54 × 103 7.73 × 103

8 m T4 2.16 × 103 1.37 × 103 4.23 × 103 1.51 × 104 3.27 × 103 8.72 × 103

10 m T5 1.48 × 103 4.58 × 102 5.94 × 102 2.31 × 103 1.59 × 103 4.27 × 103 1.82 × 104 3.60 × 103 1.10 × 104

20 m T6 1.93 × 103 6.18 × 102 6.76 × 102 3.69 × 103 2.07 × 103 5.31 × 103 1.69 × 104 3.90 × 103 1.13 × 104

30 m T7 2.78 × 103 7.17 × 102 9.38 × 102 5.55 × 103 3.04 × 103 5.23 × 103 2.08 × 104 4.95 × 103 1.74 × 104

40 m T8 3.60 × 103 8.37 × 102 8.96 × 102 7.32 × 103 4.85 × 103 5.98 × 103 2.38 × 104 5.45 × 103 2.02 × 104

50 m T9 5.48 × 103 9.51 × 102 1.17 × 103 8.81 × 103 7.51 × 103 6.35 × 103 2.12 × 104 6.17 × 103 2.11 × 104

60 m T10 5.71 × 103 1.09 × 103 1.16 × 103 8.83 × 103 1.04 × 104 5.96 × 103 2.42 × 104 6.54 × 103 2.74 × 104

3.3. Radiolabeled Phosphate Release

1. Transfer 333 µL of the suspension from tube P4 to a 50 mL centrifuge tube containing
9.667 mL saline, bringing the total volume to 10 mL.

2. Draw the entire contents (10 mL) into a 20 mL syringe.
3. Release 250 µL of the contents in the syringe into an empty microcentrifuge tube (Tube

C). This tube serves as the pre-reaction total radiation check. The disintegration rate
of this tube represents the total disintegration rate from 32PO3−

4 in both the cells and
the saline medium.

4. Carefully remove and discard the needle. Attach a 0.2 µm syringe filter to the syringe.
Attach a new needle to the syringe filter. The filter will separate the saline filtrate from
cells, allowing for the measurement of 32PO3−

4 released from the cells while ignoring
32PO3−

4 still present within the cells.
5. Release 250 µL of the contents in the syringe into an empty microcentrifuge tube (tube

T0). This tube’s baseline disintegration rate indicates the amount of 32PO3−
4 present

in the saline medium (the filtrate) before the addition of your membrane disrupting
agent (at time = 0).
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6. Draw 250 µL of a pre-made stock solution of your membrane disrupting agent into the
syringe. Note your stock solution will be diluted 40-fold within the syringe. Prepare
your stock concentration accordingly. Replace your stock solution with saline for your
negative control condition. Start timing your experiment from this point onwards.

7. At predetermined timepoints, release 250 µL of the contents in the syringe into
microcentrifuge tubes (tubes T1→Tn).

8. Use a scintillation counter to enumerate the disintegration rates of tubes C, T0, T1→Tn.
The percentage of 32PO3−

4 released at any timepoint (tube Tx) can be calculated using
Equation (1).

Tx(%32PO3−
4 release) =

Tx(dis/min)− T0(dis/min)
C(dis/min)− T0(dis/min)

× 100 (1)

All the steps described above are illustrated in Figure 3. Table 1 contains experimental
values for all the variables discussed in this section.
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4. Expected Results

4.1. Rationale for the Development of the 32PO3−
4 Release Radioassay

We had previously developed the 32PO3−
4 release radioassay to understand the nature

and kinetics of membrane disruption caused by Ω76, an antimicrobial peptide, against the
cell membranes of E. coli (K-12 MG1655) and A. baumannii (P1270) [27]. The motivation for
developing this radioassay arose from MBC assays, time-kill curves, mouse models, scan-
ning electron microscopic experiments, and fluorescent confocal microscopic experiments
performed on these organisms.

We noted that Ω76 possessed an MBC50 of 4 µg/mL against both E. coli and A.
baumannii [27]; Ω76 is rapidly bactericidal, causing a ≥105-fold reduction in A. baumannii
c.f.u. counts over the course of 10 min [27]. Moreover, Ω76 displayed efficacy against
A. baumannii in a mouse peritoneal model of infection, improving survival outcomes
compared to controls [27]. Fluorescent, FITC-labeled Ω76 is incorporated into the cell
membranes of both E. coli and A. baumannii (Figure 4A). However, upon treating E. coli
and A. baumannii with Ω76, only E. coli displayed large-scale membrane disruption and
the release of cytoplasmic contents (Figure 4B), while the cell membrane of A. baumannii
appeared intact.
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Figure 4. (A) Fluorescent confocal microscopy experiments for FITC-labeled Ω76 (8 µg/mL) against
E. coli (K-12 MG1655) and A. baumannii (P1270). FITC-labeled Ω76 (green channel) was observed colo-
calizing with Nile red (red channel), which stains the cell membrane for both E. coli and A. baumannii.
This was confirmed by Jaccard similarity coefficients of 0.64 and 0.74, respectively. FITC-labeled Ω76
(green channel) did not colocalize with DAPI (blue channel) that stains the bacterial chromosome for
both E. coli and A. baumannii. This was confirmed by Jaccard similarity coefficients of 0.27 and 0.30,
respectively. Therefore, Ω76 localizes within the cell membrane. Scale bar: 2 µm. The full method has
previously been described in [27]. Note that the all images have been digitally magnified 3× after
acquisition for clarity. (B) Scanning electron microscopy experiments for Ω76 (128 µg/mL) against
E. coli (K-12 MG1655) and A. baumannii (P1270); Ω76 causes large-scale membrane disruptions and
the release of cytoplasmic contents in E. coli. However, Ω76 causes no visible membrane disruptions
on A. baumannii. Scale bar: 2 µm. The full method has previously been described in [27].

Since Ω76 possesses in vitro and in vivo efficacy against A. baumannii, and since
Ω76 is incorporated into the bacterial cell membrane, we hypothesized that Ω76 may
cause nanoscale membrane disruptions (possibly with toroidal pore or barrel-stave architec-
tures [29]) that are too small to be visualized using scanning electron microscopy. The results
of the 32PO3−

4 release radioassay described below validated this hypothesis (Figure 5).

4.2. Expected Results for the 32PO3−
4 Release Radioassay

Nanoscale membrane disruptions are expected to cause the release of cytoplasmic
small molecules into solution. The larger or more numerous the disruptions, the greater will
be the release rate of these molecules. We had previously used 32PO3−

4 as a small molecule
tracer to assay membrane disruption in A. baumannii under three conditions: untreated
(negative control), colistin-treated (positive control), and Ω76 treated [19].

• The untreated condition displayed the least phosphate release. Only 10% of 32PO3−
4

was released after 60 min (Figure 5A). The rate of phosphate release remained fairly
constant throughout this period, ranging from 0.06–0.3%/min.

• Colistin interacts with lipopolysaccharides (LPS) on both the outer and inner mem-
branes, leading to membrane disruptions and the release of cytoplasmic contents [30].
A total of 25% of 32PO3−

4 was released after 60 min (Figure 5B). The rate of phosphate
release peaked at 2.4%/min at t = 4 min.
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• The Ω76 displayed the greatest phosphate release; 57% of 32PO3−
4 was released after

60 min. The rate of phosphate release peaked at 5.7%/min at t = 2 min. Therefore,
Ω76 causes the release of a greater percentage of cytoplasmic 32PO3−

4 , and at a higher
rate, compared to both the untreated and colistin-treated conditions.
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240

Since Ω76 possesses in vitro and in vivo efficacy against A. baumannii, and since Ω76 241

is incorporated into the bacterial cell membrane, we hypothesized that Ω76 may cause 242

nanoscale membrane disruptions (possibly with toroidal pore or barrel-stave architectures 243

[29]) that are too small be visualized using scanning electron microscopy. The results of the 244
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are calculated using a simple discrete first order differential of mean 32PO3−

4 release. A. baumannii
(P1270) was used for all assays. (A) 32PO3−

4 release in the untreated condition. (B) 32PO3−
4 release

from the colistin-treated condition (5 µg/mL). (C) 32PO3−
4 release from the Ω76-treated condition (32

µg/mL). Concentrations mimic those used in therapeutic doses. We reported the 32PO3−
4 release data

in a previous study [27]. They have been reproduced here to aid in the description of our protocol.

Nanoscale membrane disruptions are expected to cause the release of cytoplasmic 248

small molecules into solution. The larger or more numerous the disruptions, the greater 249

will be the release rate of these molecules. We had previously used 32PO3−
4 as a small 250

molecule tracer to assay membrane disruption in A. baumannii under three conditions: 251

untreated (negative control), colistin-treated (positive control), and Ω76 treated [19]. 252
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fairly constant throughout this period, ranging from 0.06-0.3 %/min. 255

256
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branes, leading to membrane disruptions and the release of cytoplasmic contents [30]. 258

25% of 32PO3−
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Figure 5. Results of the 32PO3−
4 release radioassay. Gray horizontal lines indicate mean 32PO3−

4 release
at a given time (3 replicates). Gray vertical lines and the grey shaded area indicate standard deviation.
Red lines (and red Y-axis) indicate the mean rate of 32PO3−

4 release per unit time (minute). Rates are
calculated using a simple discrete first order differential of mean 32PO3−

4 release. A. baumannii (P1270)
was used for all assays. (A) 32PO3−

4 release in the untreated condition; (B) 32PO3−
4 release from the

colistin-treated condition (5 µg/mL); (C) 32PO3−
4 release from the Ω76-treated condition (32 µg/mL).

Concentrations mimic those used in therapeutic doses. We reported the 32PO3−
4 release data in a

previous study [27]. They have been reproduced here to aid in the description of our protocol.

All the raw data for the experiments described above are provided in Table 1. It should
be noted that a large variation in the initial disintegration rates for supernatant S1 is ob-
served, with values ranging from 4.20 × 106 to 1.34 × 107. This occurs due to the short
half-life of 32P (343 h). The amount of 32PO3−

4 present in the stock solution (and conse-
quently supernatant S1) will rapidly decrease over time, which is especially noticeable for
experiments performed over multiple days. This variation should not impact the experi-
ment as the data is normalized later (Equation (1)).

These results, combined with our fluorescent microscopic and scanning electron
microscopic observations, indicate that Ω76 causes nanoscale membrane disruptions that
lead to the rapid loss of cytoplasmic contents and rapid bacterial death.

5. Discussion

The 32PO3−
4 release radioassay described here can provide information on both the

ability of an agent to disrupt the bacterial cell membrane, as well as its membrane disruption
kinetics. The motivation for developing this radioassay came from experiments performed
on Ω76, an antimicrobial peptide. In vitro and in vivo experiments confirmed the peptide’s
efficacy against A. baumannii (P1270) [27]. Fluorescent confocal microscopy experiments
performed with FITC-labeled Ω76 confirmed that the peptide binds to the cell membrane
of A. baumannii (Figure 4A). However, no membrane disruption was observed under
scanning electron microscopy (Figure 4B). This leads us to conclude that Ω76 may act via
the formation of nanometer-scale pores that cause the rapid exudation of small molecules
from the cytoplasm, leading to bacterial death. This hypothesis was validated by the
32PO3−

4 release radioassay developed specifically for the task.
We used our radioassay to test small molecule leakage through the cell membrane of

A. baumannii under three conditions: untreated, colistin-treated, and Ω76-treated. Untreated
A. baumannii displayed minimal 32PO3−

4 leakage: 10% after 60 min with a peak 32PO3−
4

release rate of 0.3%/min (Figure 5A). Colistin-treated A. baumannii displayed moderate
32PO3−

4 leakage: 25% after 60 min with a peak 32PO3−
4 release rate of 2.4%/min (Figure 5B).

Finally, Ω76-treated A. baumannii displayed extensive 32PO3−
4 leakage: 57% after 60 min

with a peak 32PO3−
4 release rate of 5.7%/min (Figure 5C).
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To the best of our knowledge, our protocol is the first to demonstrate the utility of
32PO3−

4 as a small molecule tracer to study membrane disruption. Conventionally, 51Cr is
the radioisotope of choice for performing such assays [3]. However, working with 51Cr is
less advantageous for several reasons: Firstly, 51Cr it is a γ-emitter [7]; γ-emitters present
a greater hazard than β emitters, such as 32P. Working with 51Cr requires lead shielding
and dose monitoring [8]. Secondly, 51Cr radioassays cannot measure kinetics, as they
are limited to a single end-of-assay timepoint [2,3]. Thirdly, 51CrO2−

4 binds to bacterial
lipopolysaccharides on the outer membrane, making it unsuitable for tracking the release
of cytoplasmic contents through disruptions in the cell membrane [10]. The 51Cr assays
are limited to measuring membrane disruption for eukaryotic cells, typically T-cells and
natural killer (NK) cells [3].

Another novel aspect of the 32PO3−
4 release radioassay is that it can measure small

molecule release kinetics in the order of minutes, and potentially seconds as well. In con-
trast, studies tracking membrane disruption kinetics using fluorescent dyes such as propid-
ium iodide report time-intervals between successive readings in the order of hours [12,31,32].
This is due to a fundamental limitation of fluorescence assays: dyes such as propidium
iodide and trypan blue cannot be used to track dying cells [33]. They interact with dead
cells at a point in time too late to capture real-time membrane disruptions.

Although only demonstrated on the cell membrane of bacteria, our radioassay in prin-
ciple can be adapted for use on any other membrane system. Leakage of small molecules
from large unilamellar lipid vesicles can be assayed simply and directly using the 32PO3−

4
release radioassay, in contrast to indirect and complicated methods such as fluorescent
correlation spectroscopy [34]. Our radioassay can be used to quantify changes in the mem-
brane permeability of animal cells that can occur during a viral infection [35,36], interaction
with pore-forming toxins [37,38], or during apoptosis [39,40]. Our radioassay can also be
used to easily study mitochondrial permeability transitions in isolated mitochondria [41,42],
which involve the sudden and rapid efflux of low molecular weight solutes.

It should be noted that radioassays have inherent drawbacks compared to fluorescent
assays. Working with radioactive material requires special handling facilities that may not
be available to all researchers. Handling radioisotopes requires appropriate PPE [28] and
safety precautions not associated with fluorescent assays. Although32PO3−

4 is affordable,
due to its low half-life (343 h), all experiments must be performed within a few weeks of
acquiring the material. Alternatively, 32PO3−

4 must be continuously ordered.
Despite these drawbacks, we expect the protocol described here to be of use to bac-

teriologists as well as researchers in any other field who study the mechanisms of mem-
brane disruption.
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