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Abstract: Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic compounds coming from
natural or anthropogenic activities. Tree organs such as leaves and barks have been used to monitor
urban air quality and have achieved remarkable ecological importance. However, the potential of
many tree species as biomonitors is still unknown and efforts should be focused on conducting
studies that analyze their capabilities with a viable analytical method. In this work, an analytical
method for quantification of the 16 EPA priority PAHs from the leaves and bark of Sambucus nigra was
validated. In general, the method showed good linearity, detection limits, precision, and recoveries,
demonstrating that it is suitable for analyzing PAHs in both the leaves and bark of the Sambucus nigra
species for which no analytical method for PAHs is yet available. The high prevalence of fluoranthene
in the samples, which is a PAH related to coal combustion and biomass burning, and benzo[a]pyrene,
which has a carcinogenic effect, was identified.
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1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a series of organic compounds con-
taining two or more fused benzene rings that form during the incomplete combustion of
organic matter [1,2]. Their emissions may be due to natural or anthropogenic activities [3].
Approximately 500 different PAHs have been detected in the air [4]. However, only 16 PAHs
have been classified by the United States Environmental Protection Agency (U.S. EPA) as
priority pollutants due to their high carcinogenic and mutagenic potential [5]. These are:
naphthalene (Naph), acenaphthylene (Acy), acenaphthene (Ace), fluorene (Fluo), phenan-
threne (Phen), anthracene (Ant), fluoranthene (Flt), pyrene (Pyr), benzo[a]anthracene (BaA),
chrysene (Chry), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene
(BaP), dibenzo[a,h]anthracene (DahA), benzo[g,h,i]perylene (BghiP), and indeno [1,2,3-
cd]pyrene (IcdP).

PAHs exist in the atmosphere in the vapor and/or in particle-bound phase, and a
large portion of them are scavenged by vegetation via dry and wet deposition [6]. In
this sense, the use of vegetation, especially trees, in the assessment of atmospheric PAHs’
concentrations has gained great interest due to its low cost. Moreover, due to their high
spatial and temporal distribution, the use of trees provides the possibility of building high-
resolution maps of air pollution to detect risk areas in urban areas. However, differences in
the ability to accumulate PAHs between tree species have been identified [7–9].

The interception of pollutants by trees take place mainly in the upper portion of the
tree, such as leaves, stems, and barks. In this sense, different works have addressed the
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use of leaves/needles from different tree species to assess the presence of PAHs in urban
environments [7–9]. Stomata and outer cuticular lamellae are main vias for the uptake
of PAHs in the vapor phase, whereas particle-bound PAHs are accumulated on the leaf
surface [9,10]. Other vegetative parts of the tree, such as bark, have been less studied,
although some works have shown its good capacity to accumulate PAHs due to its high
lipid content, and porous and almost inert surface [11–13].

The evaluation of the atmospheric PAH concentrations using the leaves and barks of
different tree species is possible due to the development and application, in recent years,
of some analytical procedures. The processes proposed in the literature vary, due to the
complexity of the sample matrix. However, some steps in those protocols are similar,
including sample pre-treatment, extraction, clean-up, pre-concentration, and chemical
analysis. Furthermore, the ways of carrying out these processes are diverse.

Considering the sample pre-treatment, some studies include the use of drying tech-
niques such as freeze drying [14], stoves [15], and ovens [16]. Moreover, crushing techniques
using mortars [17], high-speed grinders [18], or liquid nitrogen [19] can also be used. How-
ever, there are many works where the intact samples are used, without any prior drying or
crushing treatment [11,20–22]. The pre-treatment step has been shown to be a bottleneck in
achieving adequate recoveries. Hence, it is important to pay attention to how the samples
are prepared, as using severe methods can greatly reduce these recoveries [14].

Regarding PAHs extraction, ultrasonic extraction [11,18,20], Soxhlet extraction [18,21,23],
accelerated solvent extraction [18,22,24], and microwave-assisted extraction [11,25] are the
most used techniques, which involve the use of different organic solvents for better yields.

Extract clean-up, which is a step that is often necessary to remove some matrix co-
extractant compounds, such as lipidic compounds and chlorophylls, which could cause
interference and introduce errors in the analysis [26,27], is usually performed by column
chromatography or solid-phase extraction (SPE) cartridges with different sorbents such
as florisil [7,28], silica gel [13,21,29], or alumina [30,31]. Regarding pre-concentration, the
rotary evaporator [17] and the nitrogen stream [32] are the common techniques used. For
instrumental analysis, gas chromatography coupled to mass spectrometry (GC-MS) is the
most widely used equipment for the detection and quantification of PAHs [14,22–25,33].
High-performance liquid chromatography with diode array (HPLC-DAD) and/or fluo-
rescence detectors (HPLC-Fl) is another technique used, although to a lesser extent than
GC-MS [20,21,32].

Although several analytical methods for the identification and quantification of PAHs
have been developed in recent years, a method developed for one tree species may not
be suitable for other ones. It may not even be suitable for another vegetative part of the
same tree. Therefore, the development of accurate and sensitive analytical methods is
necessary for the determination of PAHs in different tree species and their vegetative
parts. To the best of our knowledge, no study has been carried out for the leaves and
bark of Sambucus nigra. This is a deciduous multi-stemmed small tree native to Europe,
southwestern Asia, and northern Africa, and introduced and widely dispersed in Ecuador
and South America in general. This tree species has different medicinal and food uses. On
the one hand, their flowers and fruits have flavonoids, organic acids, essential oils, phenolic
acids, and anthocyanins showing an antiviral effect, strengthening the immune system and
providing inmuno-protection [34]. Moreover, their leaves, berries, and flowers seem to act
as antioxidants by neutralizing free radicals [35]. On the other hand, the fruit provides
flavor and color to certain foods, and it is used to prepare preserves, wines [36], sponge
cakes [37], among other foods.

Sambucus nigra can be found in pedestrian areas, parks, and main streets in urban and
sub-urban areas, being useful for extensive spatio–temporal sampling; thus, its study as a
biomonitor is interesting and necessary. Therefore, the aim of this work was to present an
analytical method for the quantitative extraction and determination of 16 US-EPA PAHs
in leaf and bark samples of Sambucus nigra. The analytical procedure includes the use of
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an ultrasonic bath for extraction, concentration, an SPE clean-up procedure, and the final
concentration before analysis by high-performance liquid chromatography (HPLC).

2. Materials and Methods
2.1. Sample Collection

Leaf and bark samples of Sambucus nigra were collected in a residential area (0◦10′38.5′′ S
78◦21′51.1′′ W) in the city of Quito, Ecuador. Sampling was performed from all directions
of the tree at a specific height and using a new pair of powder-free vinyl gloves for each
sample to avoid cross contamination. Specifically, eight branches were collected from the
outer part of the tree by using a pruning shear and at a height of approximately 2 m above
the ground. On the other hand, the bark was carefully removed from the boles of the tree
at a height of approximately 1.5 m above the ground using a steel knife. Between each
sampling, the pruning shear and the steel knife were cleaned with alcohol.

All the collected branches and barks were packed together in a single Ziplock bag,
respectively. The bags were then labeled on site with the name of the species tree, sample
type (leaf or bark), the date of collection, and GPS coordinates. To avoid photochemical
degradation and volatilization of PAHs, bags were wrapped in aluminum to protect them
from light and placed in cooler containing ice packs. Finally, samples were transported to
the laboratory and stored at −20 ◦C for four days, for subsequent sample treatment and
chemical analysis.

2.2. Sample Treatment

Prior to extraction, the samples were defrosted in a desiccator. Then, 2 g of leaves, of
identical length and with no evidence of chlorosis or necrosis, were randomly taken by
hand from the branches, taking care to minimize contact with the leaf surface, and weighed
in six 250 mL beakers. Likewise, 2 g of bark, without the presence of mold, fungi, lichens,
or foreign material such as spider webs, was weighed in six 250 mL beakers. Powder-free
vinyl gloves were used to avoid cross contamination (a new pair between each weighing).

To evaluate the performance of the method (%Recovery (%R)), 0.3 mL of a 10 µg mL−1

certified standard mixture of 16 EPA PAHs in acetonitrile (SigmaAldrich, purchased from
Supelco, Ecuador) was added into three of the six beakers with leaves and barks, respec-
tively (final concentration of 1.5 µg g−1). This allows determining the recoveries by the
matrix spike method in triplicate, which is a widely used procedure for evaluating the
performance of a method in the absence of a reference material [38–40].

2.3. PAH Extraction

For the extraction procedure to recover the target analytes, an ultrasonic bath was
used. This equipment is normally available in laboratories and has been used in different
research works to extract PAHs from plant material [11,18,20].

An amount of 20 mL of a dichloromethane/hexane (1:1 v/v) mixture was added to
each of the beakers (with the spiked and non-spiked sample) prepared in the previous
step. The tops of the beakers were covered with aluminum foil and immersed in a 420-W
ultrasonic bath for 10 min. This procedure was repeated two more times, using the fresh
solvent mixture, for a total of 30 min of extraction and 60 mL of dichloromethane/hexane
mixture for each sample. The three extracts of each sample were combined in a round
bottom flask (100 mL) and evaporated on a Buchi rotary evaporator at 30 ◦C, with a pressure
between 550 mbar and 170 mbar, to approximately 1 mL, and further cleaned-up.

2.4. Clean-Up and Final Concentration

Sep-Pak Alumina cartridges (6 cc, 1 g. Waters) were used for cleaning-up. Firstly, the
cartridges were placed in a Waters SPE Vacuum Manifold and conditioned by passing 10 mL
of the dichloromethane/hexane mixture through the bed with a flow rate of approximately
1.4 drops per second obtained by adjusting the vacuum. The mixture was collected in a test
tube and was discarded. Then, the column was loaded with the extract and 10 mL more
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of the dichloromethane/hexane mixture was added to allow the elution of the analytes
with the same flow rate of 1.4 drops per second, which were collected in a clean test tube.
Finally, 5 mL of dichloromethane was added. The eluted extract was transferred to a
round bottom flask (100 mL) to evaporate it again to approximately 1 mL under the same
conditions indicated above. After that, the extract was transferred to 2 mL Eppendorf
and concentrated to dryness using a Genevac miVac centrifugal concentrator at 40 ◦C for
30 min. Finally, the samples were reconstituted in 1 mL of acetonitrile, shaken, filtered
using a PVDF syringe filter (32 mm, 0.22 µm) attached to a syringe of 3 mL, and transferred
to 2 mL amber glass vial. This final filtration is carried out before the chemical analysis to
avoid the obstruction of the HPLC column due to the presence of any particle.

2.5. PAH Analysis

The samples were analyzed by a HPLC (Agilent 1260 system) using a ZORBAX
Eclipse PAH column (4.6 × 50 nm, 3.5 µm) and a UV detector (Agilent 1260 DAD G4212B)
operating with wavelengths (λ) of 220 nm, 230 nm, and 254 nm. The column temperature
was maintained at 25 ◦C, the injection volume was set to 20 µL, and the flow rate was
1.4 mL/min. The elution program was defined as follows (with acetonitrile (A) and water
(B) as mobile phases): 0–6 min isocratic 40:60 (v/v) A:B; 6–9.5 min linear gradient from 40 to
100% of A and 9.5–12 min isocratic 40:60 (v/v) A:B. The peak intensity of each PAH changes
depending on the UV wavelength; thus, the PAHs were calibrated at the wavelength where
the intensity was greatest for that PAH. Table 1 shows the retention time and the UV
wavelength at which the peak of each PAH was most intense. The PAH peaks in the sample
chromatograms were identified by a retention time matching between standard and sample
chromatograms. Quantification was performed by the peak area of each PAH using the
ChemStation software (Agilent Technologies, Santa Clara, CA, USA).

Table 1. Retention time and the UV wavelength (λ) at which the peak of each PAH is most intense.

Retention Time (min) λ (nm)

Naphthalene (Naph) 3.0 220.0
Acenaphthylene (Acy) 3.4 230.0
Acenaphthene (Ace) 3.8 220.0

Fluorene (FLuo) 4.0 254.0
Phenanthrene (Phen) 4.3 254.0

Anthracene (Ant) 4.7 254.0
Fluoranthene (Flt) 5.0 230.0

Pyrene (Pyr) 5.2 230.0
Benzo[a]anthracene (BaA) 6.1 220.0

Chrysene (Chry) 6.3 254.0
Benzo[b]fluoranthene (BbF) 6.9 254.0
Benzo[k]fluoranthene (BkF) 7.3 230.0

Benzo[a]pyrene (BaP) 7.5 254.0
Dibenzo[a,h]anthracene (DahA) 8.2 220.0

Benzo[g,h,i]perylene (BghiP) 8.5 220.0
Indeno [1,2,3-cd]pyrene (IcdP) 9.1 230.0

2.6. Method Validation

Linearity, limit of detection (LOD), limit of quantification (LOQ), repeatability, and
recovery were determined for validation of the HPLC method.

External standard calibration curves were obtained using the certified standard at
eleven different levels in the concentration range of 2.5–2500 µg L−1. The linearity of each
PAH was evaluated as the coefficients of determination (R2) by regression analysis.

Instrumental LOD and LOQ were calculated according to Equations (1) and (2), re-
spectively [14,41,42]:

LOD =
3.3σ

IC
(1)
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LOQ =
10σ
IC

(2)

where IC is the calibration curve inclination and σ is the standard deviation of the intercept
of the calibration curve with the y-axis.

Instrumental repeatability (precision) was studied as percent relative standard devia-
tion (%RSDinst) of three consecutive injections of the standard solution at 100 µg L−1, while
method repeatability was expressed as %RSDmethod of the concentrations determined in
duplicate spiked samples.

The recovery values (%R) were determined according to Equation (3) [43]:

%R =
PAH concentration in the spiked sample− PAH concentration in the non− spiked sample

known added PAH concentration in spiked sample
× 100 (3)

3. Results and Discussion
3.1. Method Validation

The concentration range of calibration and linearity for each PAH, the instrumental
limit of detection (LOD) and quantification (LOQ), instrumental and method repeatability
expressed in terms of percent relative standard deviation (%RSD), and recovery values are
reported in Tables 2 and 3. Moreover, as an example, Figures 1–3 show the chromatogram
of the certified standard at 1000 µg L−1, the spiked bark sample at 1.5 µg g−1, and the
non-spiked bark sample.

Table 2. Linear range, regression equation, coefficient of determination (R2), instrumental repeatabil-
ity expressed in terms of percent relative standard deviation (%RSDinst), and instrumental limit of
detection (LOD) and quantification (LOQ).

PAH

Linearity %RSDinst
LOD

(µg L−1)
LOQ

(µg L−1)

Concentration Range of
Calibration (µg L−1) Regression Equation a R2

Naphthalene (Naph) 7.5–2500 y = 2.4 ± 0.02x − 35.9 ± 21.53 0.9998 0.3 0.2 0.6
Acenaphthylene (Acy) 5.0–2500 y = 1.1 ± 0.008x − 8.2 ± 9.0 0.9997 1.7 0.8 2.5
Acenaphthene (Ace) 10–2500 y = 0.8 ± 0.008x − 6.8 ± 9.6 0.9996 0.2 2.6 7.8

Fluorene (FLuo) 10–2500 y = 0.2 ± 0.004x − 3.7 ± 4.63 0.9993 0.006 5.5 16.8
Phenanthrene (Phen) 5.0–2500 y = 0.9 ± 0.007x − 8.2 ± 7.14 0.9998 0.1 0.8 2.6

Anthracene (Ant) 2.5–2500 y = 1.9 ± 0.02x + 1.3 ± 9.0 0.9996 3.8 0.7 2.2
Fluoranthene (Flt) 5.0–2500 y = 0.6 ± 0.006x − 9.9 ± 6.4 0.9996 1.1 6.3 19.0

Pyrene (Pyr) 5.0–2500 y = 0.7 ± 0.005x − 7.6 ± 5.6 0.9997 0.3 7.8 23.8
Benzo[a]anthracene (BaA) 10–2500 y = 0.6 ± 0.006x + 0.4 ± 7.1 0.9996 1.0 1.6 4.9

Chrysene (Chry) 7.5–2500 y = 1.2 ± 0.01x − 14.5 ± 11.1 0.9997 0.5 1.4 4.2
Benzo[b]fluoranthene (BbF) 7.5–2500 y = 0.6 ± 0.006x − 5.3 ± 5.1 0.9996 4.6 4.8 14.7
Benzo[k]fluoranthene (BkF) 7.5–2500 y = 0.5 ± 0.004x − 6.8 ± 5.2 0.9996 0.4 6.3 19.0

Benzo[a]pyrene (BaP) 7.5–2500 y = 0.4 ± 0.004x − 1.4 ± 4.8 0.9995 4.3 1.2 3.7
Dibenzo[a,h]anthracene (DahA) 7.5–2500 y = 0.6 ± 0.005x − 6.4 ± 5.8 0.9997 0.9 6.1 18.4

Benzo[g,h,i]perylene (BghiP) 25.0–2500 y = 0.7 ± 0.008x − 14.4 ± 9.3 0.9997 1.2 6.5 19.6
Indeno[1,2,3-cd]pyrene (IcdP) 25.0–2500 y = 0.4 ± 0.003x − 9.2 ± 3.8 0.9997 0.4 13.7 41.5

a Calibration curves constructed by linear regression of the peak area (y) of each PAH against their respective
concentrations (x) (µg L−1).

Table 3. Percentage recoveries (%R) and method repeatability expressed in terms of percent relative
standard deviation (%RSDmethod).

PAH
Leaves Bark

%R %RSDmethod %R %RSDmethod

Naphthalene (Naph) 74.8 3.7 56.7 6.3
Acenaphthylene (Acy) 64.8 1.3 58.6 5.5
Acenaphthene (Ace) 67.9 3.9 55.2 12.8

Fluorene (FLuo) 75.1 1.9 72.1 13.8
Phenanthrene (Phen) 106.4 2.3 100.6 4.5



Methods Protoc. 2023, 6, 17 6 of 12

Table 3. Cont.

PAH
Leaves Bark

%R %RSDmethod %R %RSDmethod

Anthracene (Ant) 88.9 1.7 92.4 3.1
Fluoranthene (Flt) 90.2 3.3 79.9 1.0

Pyrene (Pyr) 77.4 1.7 69.8 3.2
Benzo[a]anthracene (BaA) 85.1 1.2 86.7 2.9

Chrysene (Chry) 95.7 2.7 82.1 5.0
Benzo[b]fluoranthene (BbF) 72.1 3.1 75.7 1.6
Benzo[k]fluoranthene (BkF) 70.0 7.6 73.2 5.8

Benzo[a]pyrene (BaP) 91.2 16.9 69.3 11.0
Dibenzo[a,h]anthracene (DahA) 83.9 5.1 74.7 10.1

Benzo[g,h,i]perylene (BghiP) 76.4 24.0 82.8 10.5
Indeno [1,2,3-cd]pyrene (IcdP) 75.7 32.8 64.3 45.8
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All calibration curves show good linearity with R2 values ranging between 0.9993
and 0.9998 (Table 2). Instrumental LOD and LOQ ranged from 0.2 µg L−1 for Naph to
13.7 µg L−1 for IcdP, while LOQ values ranged from 0.6 µg L−1 for Naph to 41.5 µg L−1 for
IcdP (Table 2). The instrumental repeatability values (%RSDinst) ranged between 0.006% and
4.6% (see Table 2), being within the interval values found in the literature (1–47.3%) [44,45]
and indicating good instrumental precision.

In general, the method repeatability (%RSDmethod) was below 17% for the leaf and
bark samples (Table 3), which is acceptable at such low concentration levels. An exception
is observed for IcdP in both sample types and for BghiP in leaf samples. The high variability
of high-molecular-weight PAHs has also been shown in previous works [46] and could
be due to the remaining co-extracted interferences from leaves and bark. Moreover, the
%RSDmethod values were similar to those reported in the literature (up to 18.8% [8] and
31.4% [44]).

Regarding recovery, the lowest values were found for the lighter PAHs, mainly Naph,
Acy, and Ace (Table 3). The low recovery of the lighter PAHs could be due to the fact
that they are more likely to be lost during sample handling and treatment, mainly in the
evaporation/concentration step, and because lighter PAHs can penetrate further into the
leaf tissues [47], making their extraction more complex. However, most %R values are
within the 60−120% range, which is accepted as valid [48].

3.2. Real Contaminated Samples

Figure 4 shows the experimental data for the non-spiked leaf and bark samples,
specifically: (a) the distribution of PAHs according to the molecular weight classification
(light-molecular-weight PAHs (LMW: 2 and 3 rings PAHs), medium-molecular-height
PAHs (MMW: 4 rings) and high-molecular-weight PAHs (HMW: 5 and 6 rings)); and (b) the
individual PAH concentration. The concentration of each PAH was corrected based on the
subtraction of the values of procedural blanks (extraction and clean-up of reagents without
vegetative material) and the recoveries obtained in Table 3.
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It is observed in Figure 4a that there is a greater predominance of HMW PAHs,
followed by MMW, and finally LMW PAHs. The high incidence of HMW PAHs is due to
the high concentrations of BaP (Figure 4b), which could indicate a high human exposure
risk, as this PAH is the usual marker of carcinogenic levels of PAHs in environmental
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studies [49]. BaP is mainly attributed to gasoline exhaust emissions that are known to
contribute to more BaP emissions than diesel engines [50]. Moreover, in a recent work [51],
it was found that BaP is associated with acceleration and braking activities, i.e., with the
presence of speed-modifying devices, such as traffic lights, roundabouts, intersections,
curves, and speed bumps. On the other hand, the high incidence of MMW is attributed to
the high concentrations of Flt (Figure 4b), which is associated with coal combustion and
biomass burning [52]. The incidence of LMW PAHs was not as high and could be related
to their high vapor pressures (higher volatility) which causes them to be resuspended into
the atmosphere [8,30].

4. Conclusions

An analytical method for the detection and quantification of the 16 EPA priority PAH
in leaf and bark samples of Sambucus nigra was validated. The methodology combines
ultrasonic extraction, subsequent concentration and clean-up, final concentration, and
the chemical analysis by high-performance liquid chromatography (HPLC). Linearity of
the calibration curve, instrumental LOD and LOQ, instrumental and method repeatability
(precision) (%RSDinst and %RSDmethod), and recovery experiments were used to validate the
method. Good precision was observed, obtaining instrumental repeatability in the interval
of 0.006–4.6%, while most of the method repeatability was below 17%, with exception of
IcdP in both sample types (32.8% for leaf and 45.8% for bark) and BghiP in leaf samples
(24.0%). Most recovery values were within the accepted range of 60−120%. However,
lower values were obtained for Naph, Acy, and Ace, indicating that there has been a loss of
these analytes during sample handling and treatment, which probably occurred during
the concentration stage. Results from the actual contaminated samples indicated a high
incidence in the air of fluoranthene, which is associated with coal combustion and biomass
burning, and of BaP, which is a PAH highly associated with gasoline exhaust emissions
and has a carcinogenic effect.
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