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Abstract: Molecular evolution analyses, such as detection of adaptive/purifying selection or ancestral
protein reconstruction, typically require three inputs for a target gene (or gene family) in a particular
group of organisms: sequence alignment, model of evolution, and phylogenetic tree. While modern
advances in high-throughput sequencing techniques have led to rapid accumulation of genomic-
scale data in public repositories and databases, mining such vast amount of information often
remains a challenging enterprise. Here, we describe a comprehensive, versatile workflow aimed
at the preparation of genome-extracted datasets readily available for molecular evolution research.
The workflow involves: (1) fishing (searching and capturing) specific gene sequences of interest
from taxonomically diverse genomic data available in databases at variable levels of annotation,
(2) processing and depuration of retrieved sequences, (3) production of a multiple sequence alignment,
(4) selection of best-fit model of evolution, and (5) solid reconstruction of a phylogenetic tree.

Keywords: genomics; high-throughput sequencing; data mining; gene family; blast search; sequence
alignment; phylogeny; molecular evolution

1. Introduction

The relatively low cost and increasing power of modern (high-throughput) sequencing
technologies have resulted in a massive increase of the number of genome projects on
non-model organisms [1,2]. This has prompted the development of numerous databases
to store all the generated data. As a logical consequence, figuring out how to extract
relevant information from such vast amounts of data becomes fundamental. In this context,
bioinformatics has emerged as a key tool for handling and processing sequence data derived
from genome-scale sequencing experiments. Proteomics, genomics, transcriptomics, and
other new disciplines have emerged as a result of the fusion of programming languages and
cutting-edge sequencing technologies. However, gene sequence retrieval and assessment
are still arduous and complex processes. High-throughput sequencing (HTS) platforms
based on DNA amplification, such as Illumina, typically yield short reads of around
100 base pairs [2,3]; hence, systematic assembly of the data (e.g., reads to contigs, contigs
to scaffolds, etc.) is mandatory to obtain final sequences of genes or genomic regions.
Molecule-sequencing platforms, such as PacBio or NanoPore, can yield much longer
reads, thus reducing the gap between sequencing output data and real gene or genomic
sequences [2,4]. In all cases, the identification and annotation of relevant and meaningful
genomic regions always remains a mandatory step, and the comparative analysis of genome
sequences is central to such an endeavour [5]. Basically, conserved functions between two
organisms are assumed to be encoded in DNA in a similar way. Therefore, similar DNA,
RNA, or protein sequences are likely involved in relatively similar functions and assumed
to be homologous (orthologues or paralogues). In this context, comparative genomics
can make use of sequence alignment and phylogenetic analysis as a framework to try to
understand the evolutionary processes that trigger sequence diversification. Knowing
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the pattern of historical relationships among groups (lineages) of elements (organisms,
sequences) allows for possible biases and dependencies derived from shared ancestry to be
amended when interpreting a function, structure, or any other pattern involving genes or
genomic regions [6].

Nevertheless, the pathway from raw reads to gene alignments and phylogenetic trees
is not necessarily straightforward but rather challenging and often very intense in terms
of both time and resources (e.g., computing power). In the last few years, a number
of programs and pipelines for relatively automated extraction of relevant information
from modern sequencing technology outputs have been developed. Of the several tools
available, software such as geneid [7], Prokka [8], or GenMark [9] allow for complete gene
mapping all across the genome. In a similar way, several platforms have appeared for
RNA-seq analysis, such as the TRUFA web server [10], eventually intended for sequence
assembly (either de novo or referenced) and gene annotation and alignment. In terms of
gene isolation, BLAST [11] is certainly the most broadly used tool, but other programs,
such as ORTHOSCOPE [12], make use of it for identification and isolation of groups of
related orthologs. In general, all these pipelines and web servers are intended for analysis
of genomic and/or HTS data oriented toward gene mapping and identification; however,
to our knowledge, direct processing and preparation of resulting outputs for molecular
evolution analysis are lacking.

In this study, we provide a protocol and pipeline for gene search and capture/isolation
(fishing) for particular sets of organisms (at any degree of taxonomic diversity) from
large-scale genomic data retrieved from publicly available databases. The isolated gene
sequences are subsequently aligned and submitted to robust phylogenetic reconstruction
using adequate modelling of the substitution process. Altogether, this constitutes baseline
data for conducting molecular evolution analyses, such as detection of adaptive/purifying
selection or ancestral protein reconstruction. The protocol described here is relatively
unique in its span: from genomic mining to phylogeny reconstruction in a comprehensive
step-by-step workflow.

Our protocol is intended to be a cross-platform workflow that can be executed on
Linux, macOS, and Windows machines. As mentioned above, programming languages are
very useful (often mandatory) when working with genomic-scale data. Therefore, working
with command-line interfaces on system terminals (such as those of Linux- and Unix-
based macOS) becomes a sensible choice in practice. In order to facilitate particular steps
of the process, we have developed a suite of small Python programs (GNFish package),
taking advantage of the free-access Biopython project environment [13]. We strongly
recommend using this package, especially for programming language beginners. As an
alternative itinerary for the protocol (e.g., for those preferring not to deal with command-
line procedures), we additionally describe most steps using windows-style interfaces with
local programs or remote/online web tools. The protocol presented here is perfectly
adequate for research studies on just one or multiple gene families alike. Theoretically,
it can also be used for complete gene mapping all across the genome, although there are
more specific tools and pipelines publicly available for this purpose (such as Prokka [8] or
geneid [7], as detailed above). A schematic flowchart of the main steps of the protocol is
shown in Figure 1.
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2. Experimental Design
2.1. Data Mining and Sequence Identification

Working with whole genome sequences is still an arduous task that is generally
not affordable for users not familiar with programming language. A single genome can
represent more than one gigabyte of data. Automated annotation programs have facilitated
the identification and extraction of protein-coding sequences by mapping potential open
reading frames in the genomes to place gene locations. However, the annotation process is
not evenly spread among all the available genome data. In some cases, only preliminary
rounds of assembly have been developed, resulting in records that contain multiple scaffold
entries. These scaffolds correspond to huge portions of the genome sequence in which gene
identification has not been fully accomplished yet. Even coding RNA or protein datasets
derived from genomic data can contain thousands of entries. Therefore, establishing a solid
protocol for specific gene identification is essential when working with genomic data. This
becomes of particular interest for research oriented toward molecular evolution insights
at any taxonomic level. The first step of such a protocol consists of retrieving the relevant
genomic data. This genomic data can be determined anew, although there is certainly a huge
amount of genomic data already available and stored in publicly available databases and
repositories (such as EukProt [14] or Ensembl [15]) that remains underused or at least not
fully exploited for its entire potential. The National Center for Biotechnology Information
(NCBI) comprises a comprehensive collection of connected databases, including gene,
protein, genomic, and transcriptomic data, among others [16]. Within all the diversity
covered by the different databases of the NCBI project, RefSeq emerges as a reliable choice
because it maintains and curates a publicly available database of annotated genomic
records [17]. Besides, the NCBI Entrez system provides an easy and powerful means to
retrieve data [18].

When genomes are stored without annotations, a basic, straightforward method for
gene identification can be implemented based on similarity searches of DNA and protein
sequences, such as those performed by the BLAST algorithm for local alignment [19].
Basically, this tool is able to find related sequences in a database. Each genome can be
treated as an independent database, and a list of query sequences of interest can be used as
template. Typically, this query dataset is made of protein sequences, although the target
corresponds to nucleotide sequences. Due to the degeneration of the genetic code, some
of the changes that occur at the nucleotide level have no impact on the protein primary
structure. Therefore, it is more plausible that the protein primary structure and sequence
remain more conserved, thus facilitating gene identification. The RefSeq database provides
reliable information for protein sequences, and the BLAST tool allows for a certain level of
custom parametrization [11]. Of these, we simply explore/manipulate two: (1) e-value, a
parameter that describes the number of hits that one can “expect” to see by chance when
searching a database of a particular size, and (2) outfmt, which sets the output format.

BLAST output files must be parsed to extract the relevant information, but the specific
procedure can vary depending on the type of data. For example, for protein and coding
RNA data, every BLAST hit generally corresponds to a unique sequence. Therefore, it is
enough to just extract the target-sequence match to obtain the gene sequence of interest.
Based on our personal experience, these sequences are usually well annotated. Nonetheless,
some hits can contain mismatched positions at the beginning or at the end of the sequences,
especially when working with coding RNA sequences because they can present untrans-
lated regions (UTR). On the other hand, working with whole genome sequences or big
genomic portions (such as scaffolds) often implies a considerable challenge because of the
huge amount of data to be handled and mined, as well as their intrinsically higher complex-
ity. Indeed, single scaffolds typically comprise more than one gene; hence, BLAST output
files must be thoroughly inspected to identify possible multiple-gene matches present in
each file. Moreover, genomic-level sequences typically include the intronic fractions that
must be removed to isolate coding and, ultimately, protein sequences. In this sense, a
relatively simple an effective method to identify coding regions in genomic portions is to



Methods Protoc. 2022, 5, 26 5 of 23

align these against some of the query sequences of interest as a template. There is a plethora
of programs and algorithms to compute multiple-sequence alignment [20], but among
them, MAFFT [21,22] stands among the most reliable and widely used, outperforming
more classical programs, such as CLUSTALW or T-COFFEE [23,24]. Among its strengths,
MAFFT implements several distinct algorithms, each adequate for different types of data
and situations [21]. One of these, the E-INS-i algorithm, performs well for aligning coding-
gene sequences that present intronic regions against closely related template sequences,
such as those resulting from BLAST searches. Once the alignment is completed, the next
step consists of cleaning up the (presumed) intronic portions (those mismatched by very
long gaps) from the alignment to just isolate the coding-sequence regions. This trimming
step can be conducted with general packages for sequence editing and manipulation, such
as MEGA, which is a desktop application designed for comparative analysis of homol-
ogous gene sequences that allows for alignment visualization and modification with a
user-friendly interface [25]. It may be the case that the process of alignment and trimming
needs to be iteratively repeated and refined (progressively cleaning up intronic portions)
until coding regions can be conclusively identified and isolated.

2.2. Phylogenetic Analysis

Studying the molecular evolution of genes (commonly across different organisms) is
important to understand the biological processes in which they are involved. For this aim,
first establishing a robust framework for the phylogenetic relationships of the different gene
sequences involved provides the necessary groundwork that precedes further evolutionary
analysis. In our particular context, the phylogenetic experimental design begins with
the gathering of all gene sequences of interest (typically from a particular organism or
group of organisms) into individual gene matrices (one for each gene of interest). At
this point, it may be relevant to also include some external sequences (outgroups) if
possible/available. These will provide information about ancestral states, serving as relative
indicators of the direction of evolutionary change (e.g., which nodes are the oldest in the
phylogenetic tree) [6]. The next step consists of aligning the sequences included in each of
the matrices, which is crucial because all subsequent phylogenetic inferences rely on these
alignments [26–28]. As mentioned above, MAFFT is our recommended choice for this task,
either running an automatic strategy (which selects the most adequate alignment algorithm
among those available depending on data size) or selecting a particular alignment algorithm
(in this case, the L-INS-i may be a good option for sequences from the same gene family).
Once the alignment is done, trimming ambiguously aligned positions can increase quality
and, consequently, the reliability and accuracy of subsequent analyses [29]. trimAl is a tool
for automated alignment trimming that is especially suited for large-scale phylogenetic
analyses [30]. It is free and portable to all platforms, and it can be used online through the
Phylemon web server [31]. trimAl implements modes for automated selection of trimming
parameters, although the use of some can be computationally demanding, especially when
working with very large datasets (a simpler option for genomic-scale data is the conservation
threshold parameter based on the percentage of gaps).

Apart from robust alignments, proper characterization of the process of sequence evo-
lution is essential in molecular phylogenetic inference [32] because phylogenetic methods
tend to be less accurate or inconsistent when an incorrect model of sequence evolution
is assumed [33,34]. Phylogenetic inference in a probabilistic framework, such as maxi-
mum likelihood (ML), allows for the estimation of complex substitution model parameters,
branch lengths, and tree topology using heuristic methods. In this sense, the IQ-TREE
software presents a set of fast and effective stochastic algorithms for ML phylogenetic
analysis, including automated assessment of the best-fit substitution model [35]. IQ-TREE
implements modern measures of branch support, such as the ultrafast bootstrap approxi-
mation approach (UFBoot) [36], which can reduce computing times compared to traditional
bootstrap. Phylogenetic inference can be conducted at the nucleotide (DNA) or amino
acid (protein) sequence level. In general, protein alignments (often obtained by conceptual
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translation of primary DNA records) are more adequate for inference of old relationships
because the higher character-state space (20) of amino acids (compared to 4 of nucleotides)
makes it less likely to observe homoplasy events due to sequence saturation [6]. The process
of nucleotide or amino acid substitution is further complicated by the fact that the evolution
of sites is often highly heterogeneous, with some sites changing rapidly, whereas others
are highly conserved. In general, this heterogeneity of evolutionary rates among sites is
modelled using specific parameters, such as a proportion of invariant sites or a discrete
approximation (usually with four categories) of the continuous gamma function [37]. Fur-
thermore, the substitution process can be affected by other factors, such as solvent exposure
and secondary structure [38–40]; therefore, more complex models can be devised to better
explain protein evolution [41]. Nevertheless, further discussion of these issues is outside
the scope of the present study.

Although we developed our protocol with a preferred list of software for each of
the different tasks of the process (retrieval of genomic data, gene sequence identification
and isolation, multiple alignment, model selection, and phylogenetic inference), there
are often alternatives that can do and perform equally well. We next discuss some of
these alternatives. In the case of genome retrieval, EukProt is a database of published and
publicly available predicted protein sets and unannotated genomes selected to represent
eukaryotic diversity, including species from all major supergroups, as well as orphan
taxa [14]. On the other hand, UniProt is a reference database for protein data that can
be used to obtain the query sequences necessary for similarity searches [42]. For this
purpose, HMMER can be used as an alternative to BLAST or even in combination with it.
HMMER is based on probabilistic models called profile hidden Markov models (profile
HMMs) [43], and it often works with protein profiles downloaded from Pfam [44] and
Interpro [45] databases. Like BLAST, HMMER can also work with query sequences. In the
case of multiple sequence alignments, CLUSTALW [23], T-COFFEE [24], and PRANK [46]
are good alternatives to MAFFT. For phylogenetic inference, IQ-TREE is comparable to
other ML programs, such as PhyML [47] and RAxML [48]. However, in these best-fit
substitution models, selection is not automated (only in the online version of PhyML), and
an external program is required for this task, such as ProtTest for protein alignments [49]
or jModelTest for nucleotide alignments [50]. It is often the case that applying different
best-fit models for distinct alignment sections that differ in rates of evolution (e.g., different
genes, codon positions, stems vs. loops) might be preferred over averaging a single model
for the entire set. Programs such as PartitionFinder [51] allow for simultaneous selection of
best-fit partitioning strategy and substitution models, and this information can be easily
implemented in RAxML and IQ-TREE. The latter implements an option for automated
selection of partitions and models (see http://www.iqtree.org/doc/Advanced-Tutorial#
partitioned-analysis-for-multi-gene-alignments, accessed on 27 January 2022).The MEGA
package can also be used for phylogenetic inference, as well as for alignment and selection
of best-fit model of substitution [25] but without taking into account partitioning schemes.
Finally, phylogenetic trees can be graphically inspected and enriched using several publicly
available programs, with FigTree [52] being our preferred choice because of its versatility
and ability to produce publication-ready figures. A good alternative for this task may be
Dendroscope [53].

3. Procedure
3.1. Data Mining and Sequence Identification
3.1.1. Retrieval of Source Data (Genomic, RNA, and Protein)

A. Locally Using Python

• Go to https://github.com/hectorloma/GNFish (accessed on 27 January 2022) to
obtain the GNFish package. The “README.md” file contains a detailed explanation
for the suite of Python programs used throughout this protocol, as well as some
running examples.

http://www.iqtree.org/doc/Advanced-Tutorial#partitioned-analysis-for-multi-gene-alignments
http://www.iqtree.org/doc/Advanced-Tutorial#partitioned-analysis-for-multi-gene-alignments
https://github.com/hectorloma/GNFish
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• The following protocol details how to run Python programs using the Anaconda
platform (See below). However, on the “README.md” file, you will find details on
how to run it directly on a Linux terminal. Functionality and output files are the same.

• Download the main directory containing the scripts and examples by clicking on Code
→ Download Zip and decompress the file (Figure 2).
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• Install Anaconda following the instructions at (https://conda.io/projects/conda/
en/latest/user-guide/install/index.html, accessed on 27 January 2022) and open the
Spyder program.

• Install Biophyton (if not installed yet). In the Spyder console (Figure 3), type pip
install biopython.

• Again, in the Spyder console, type cd and drag GNFish/Code directory (remove quotes
if you are a Windows user). Note that this step is mandatory every time you close the
Spyder program.

• Type run get_genomes.py -h in the Spyder console to display help information and read
the “README.md” file for further information and some running examples. This
applies to all the “.py” programs used throughout this pipeline.

https://conda.io/projects/conda/en/latest/user-guide/install/index.html
https://conda.io/projects/conda/en/latest/user-guide/install/index.html
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• Create a file with all your queries (usually species or higher taxon names). You can also
add specific field tags (e.g., organism, assembly level, etc.) and some filters (e.g., latest
[filter] or unambiguous [filter]).

• More information about how to concatenate specific field tags is found at https://www.
ncbi.nlm.nih.gov/books/NBK3837/-EntrezHelp.Entrez_Searching_Options, accessed
on 27 January 2022.

• For information about filters, check out https://www.ncbi.nlm.nih.gov/assembly/
help/, accessed on 27 January 2022.

• For both filters and field tags, you can obtain more information after conducting a
manual search. We recommend first trying a simple query with one taxa as an example
following Section 3.1.1 B.

• Run the program typing run get_genomes.py [e-mail address] [path to query file] [data-type]
on the Spyder console. Add any optional arguments after these mandatory ones.

• We recommend that you to use the –refine argument in order to refine your search. By
default, this will apply Latest, Representative, Not Anomalous but you can add your own
settings by typing them, enclosed by quotes, after the argument.

• Use the proper arguments according to your search. By default, the program will
download whole-genome data. If downloading protein or RNA data, and they are
not available, the program will try with the whole genome version. Stop that feature
using –exclusive argument.

• Downloaded sequences will be stored into Genomic, RNA and Protein directories
located at GNFish/Code/Data. Information about the downloaded genomes will be
stored at Data/downloaded_genomes_log.tsv as well.
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B. Through NCBI Website

• Go to https://www.ncbi.nlm.nih.gov/assembly/?term=, accessed on 27 January 2022.
• Type your query (usually species or higher taxon names) on the search box located at

the top of the web page (Figure 4).
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• By clicking the Advance button right below the search box (Figure 4), you can manually
add field tags (e.g., organism, assembly level, etc.).

• Filters Latest and Exclude anomalous are applied by default (Figure 4).
• After your search, you would find a side bar on the left with all the available filters

(Figure 4).
• In addition, you can find a text box named “Search details” on the right with the

specific command of your query (Figure 4).
• This text box can be useful for creating custom queries that can be used in the automatic

path (See Section 3.1.1 A).
• Note that when there are more than one field tag or filter, they appear enclosed in

parentheses (Figure 4).

https://www.ncbi.nlm.nih.gov/assembly/?term=
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• We recommend keeping the default filters and adding Representative or Reference
from RefSeq category by clicking on the left side panel (Figure 4) or by typing AND
representative genome [filter] OR reference genome [filter] within the filter parentheses in
the search box.

• Click on the Download Assemblies button to download the assembly (Figure 5).
• As mentioned above, genome assembly may not be evenly distributed. This can be a

problem when downloading.
• We recommend that you to choose RefSeq under “Source database” (Figure 5) and

either Protein FASTA (.faa) or RNA FASTA (.fna) under “File type”.
• After decompressing the downloaded file, you will find a directory tree similar to

genome_assemblies_genome_fasta/ncbi-genomes-date. Within this, you will find all the files
for every species.

• Then, repeat the search, but this time, when downloading, choose GenBank under
“Source database” (Figure 5) and Genomic FASTA (.faa) under “File type”. Right after
that, check what species were previously downloaded, and then check just the boxes
of the remaining species.

• Of course, these steps are not intended for downloading a large number of genomes;
for such purposes, we recommend following Section 3.1.1 A.

• If there is just one assembly for the selected taxa, you do not need to apply any filter.
The web will automatically redirect you to the assembly entry page (Figure 6).

• We recommend storing every “.gz” file in a separate folder according to its data type
(Genomic, RNA, Protein) first and then according to the species/organism.
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• Download the file by clicking on Download Assemblies (Figure 6) as detailed above.
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Figure 6. Example of an assembly entry. The NCBI web server will automatically redirect to a page
like this if there is only one assembly that matches your query parameters. The red arrow indicates
the Download Assembly button. Accessed on 27 January 2022.

3.1.2. Generation of Query Sequences

A. Locally Using Python

• Type run get_query_sequences.py [email address] [path to query file] –curated –refine. This
will download a protein dataset containing 200 sequences that includes the name in
“Protein Feature” (curated parameter) from “RefSeq” (refine parameter).

• The “query.txt” file can include several queries. The programs expect a gene name,
with fields and filters enclosed in parentheses right after it.

• You can type your own field tags and filters, typing them after –refine argument in a
similar way as when downloading genomes (See Section 3.1.1).

• In addition, you can restrict the number of downloaded sequences to a maximum
number using –retmax arguments. When using –curated arguments, the program
should curate sequences based upon this number; therefore, you may obtain a smaller
number of sequences than with –retmax.

• There is not a perfect number of query sequences. Ideally, the best number should
maximize the diversity of the studied gene family and minimize computing time. Our
approach (200) aims for a great coverage of this diversity.
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• BLAST can perform well with just a few sequences (around 10), reducing computing
time. Therefore, another strategy could be to manually select some key sequences
and download them one at a time. Of course, this requires a solid knowledge of the
studied gene family.

• All this is for protein downloading, recommend as query when using BLAST searches.
However, download of nucleotide sequences is also allowed (if needed for alignment;
see below). However, this is not refined, so we recommend using biomol_mrna[PROP]
to download just the transcripts.

• The database will be stored at Data/Query_seqs, and its name will be the name of the
gene you entered, followed by “query_sequences_data_type.fas”.

B. Through NCBI Website

• Go to https://www.ncbi.nlm.nih.gov/protein/?term=, accessed on 27 January 2022,
(Figure 7).
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indicate the “Send to” button and the “Create file” window for downloading, respectively. Accessed
on 27 January 2022.

• Type the name of your protein in the search box at the top (Figure 7).

https://www.ncbi.nlm.nih.gov/protein/?term=
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• In a similar way as explained for downloading genomes (see above), you can manually
add field tags by clicking the Advance button right below the search box (Figure 7).
You can also add filters to refine your search.

• We recommend that you use the default refseq[filter] (Figure 7). In the “Search box” on
the right, you can look at the command that you are applying to your search (Figure 7).

• To download the database, click on Send to→ File→ Format→ FASTA→ Create File
(Figure 7).

• Note that this will download the whole list of results. Therefore, it is important to be
as precise as possible with your query.

• You can download nucleotide sequences in a similar way at https://www.ncbi.nlm.
nih.gov/nuccocre/?term=, accessed on 27 January 2022. Type biomol_mrna[PROP]
after your query to download transcripts.

3.1.3. BLAST Searches

A. Locally Using Python

• Type run decompress_genomes.py in the Spyder Python console to decompress the
genomic data files. Use genomic, RNA, or protein arguments or directory for your own
custom path.

• Go to https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/ (accessed on
27 January 2022) and download ncbi-blast-version-x64-win64.tar.gz (Windows users)
or ncbi-blast-version-x64-linux.tar.gz (Linux and Mac users).

• Decompress the BLAST program.
• Run blast.py [blast_directory] [data_type].
• BLAST programs are located in the bin folder inside the BLAST directory. Drag the bin

folder to the Spyder console after –blast_path parameter when running.
• The program will check in Genomic, RNA, and Protein directories automatically. You

can change the directory by using –directory arguments, but you must also specify the
genomic data type.

• You can modify the e-value parameter (see https://www.ncbi.nlm.nih.gov/books/
NBK279690/, accessed on 27 January 2022, and https://www.ncbi.nlm.nih.gov/
books/NBK279684/table/appendices.T.options_common_to_all_blast/ for more in-
formation, accessed on 27 January 2022). You will obtain a “.tsv” file with all the hits
found in your target genomic data.

3.1.4. Extraction of RAW Sequences

A. Locally Using Python

• Type run get_unique_hits.py to obtain the best hit for every of the entries of your
target data.

• For whole-genome data, go to Section 3.1.4. Multiple Gene Inspection below and then
continue with the next step.

• Type run get_RAW_sequences.py [data_type] to extract every sequence corresponding
to each unique hit. The extracted sequences will be stored in the Extraction directory
located in the same folder as the whole genome file.

• Change directory using –directory argument but keep using genomic data type.
• If using whole genome sequences, you may have to modify the –in_len parameter to

control the intron length.
• Using –query_seqs arguments and typing your database file path allows you to attach

some of the database sequences that match your query entry.
• By default, the program will attach the five (arbitrary number) first non-redundant

sequences according to the entries of the BLAST output file. Change this using –
query_seqs_num parameter.

• Note that for whole genome entries that include more than one gene, this number
depends on the number of modified query entry IDs (see above).

https://www.ncbi.nlm.nih.gov/nuccocre/?term=
https://www.ncbi.nlm.nih.gov/nuccocre/?term=
https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
https://www.ncbi.nlm.nih.gov/books/NBK279690/
https://www.ncbi.nlm.nih.gov/books/NBK279690/
https://www.ncbi.nlm.nih.gov/books/NBK279684/table/appendices.T.options_common_to_all_blast/
https://www.ncbi.nlm.nih.gov/books/NBK279684/table/appendices.T.options_common_to_all_blast/
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• You can manually add any sequence. Preferably, add sequences from closely related
species. You can download single sequences in the same way as the query dataset (see
Section 3.1.2).

B. Locally Using a Text Editor

• For whole-genome data go to Section 3.1.4. Multiple Gene Inspection below and then
continue with the next step.

• Open every “whole_genome_name_out.tsv” file. Look at the second column (target
ID) and keep just unique IDs. For whole-genome data, follow Section 3.1.4 A.

• Open your genomic data (i.e., Genus_species_id.faa) with a text editor. This step cannot
be performed in some cases, especially those that imply the use of non-annotated
genome sequences.

• Pick up every unique target ID and search for it in the corresponding genomic data file.

Multiple Gene Inspection (Mandatory for Whole-Genome Data; Skip if Using RNA or
Protein Data).

• The following steps assume that you have used –outfmt 6 (i.e., BLAST tabular output
format 6).

• Open the “whole_genome_name_out.tsv” file with a spreadsheet program (such as
Microsoft Excel) or a text editor.

• Every row corresponds to a different hit, and the second column indicates the target
identifier (scaffold ID) (Figure 8).
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• Controlling by the 2nd column, you must check the 9th and 10th columns that contain
the start and end positions where the query sequence aligned within the target entry
and compare entries below to identify different start or end positions that could be
associated with two different genes.

• In order to facilitate visibility, you can highlight every target by clicking on Conditional
Formatting→ Highlight Cells Rules→ Equal to→ Choose the corresponding cell→ OK.

• You can also highlight the 9th and 10th columns in the same way using Between to
instead of Equal to for controlling.

• If you spot another gene in the same query entry, you must modify the query entry
ID (first column) by adding “_1” to the rows that belong to the first one, “_2” to the
second one, etc. We recommend changing at least five query entry IDs if possible in
order to facilitate proper gene fishing (see below). Additionally, you must update
the “_unique.tsv” file with the new query names, and you must add at least one row
containing the information of the new gene(s).

• Before continuing with the next target ID, click on Conditional Formatting→ Clear Rules
→ Clear Rules for Entire set.

3.1.5. Coding Sequence Identification (Although This Step Is Mandatory When Working
with Whole Genome Sequences, You Can Skip It When Working with Protein and
RNA Sequences)

• You should have used –query_seqs earlier (Section 3.1.4 A) to attach template se-
quences or have manually added some.

Alignment

A. Locally Using Python

• Go to MAFFT software web (https://mafft.cbrc.jp/alignment/software/, accessed on
27 January 2022) and navigate to the specific page according to your operating system.
Follow the steps to install MAFFT software on your computer.

• On the Spyder Python console, type run align_sequences.py. You can choose a specific
alignment algorithm using –algorithm. The MAFFT manual recommends using the
Auto function when you know little about your data. For genomic data and working
with one gene family, we recommend using the E-INS-i algorithm.

• As in other cases, you can use genomic, rna, and protein or directory arguments.
• Windows users may encounter some problems in either installing or running MAFFT,

especially those using older system versions. If this is the case, look at the next section.

B. Through MAFFT Server

• Go to the MAFFT online version page (https://mafft.cbrc.jp/alignment/server/,
accessed on 27 January 2022).

• Paste the content of the file you want to align in the available text box or browse for
your file by clicking on the Choose File button.

• Select Same as input for the options: UPPERCASE/lowercase, Direction of nucleotide
sequences, and Output order.

• Scroll down to the Advance settings section. In the Strategy section, we recommend
using Auto if you know little about your data. For genomic data, we recommend using
the E-INS-i algorithm.

• Download the alignment from the results page (Figure 9). This page will pop up after
the alignment run is completed.

• At the top of the page, click the right button of the mouse over Fasta format→ Save link
as→ Save it adding “_final.fas” suffix (Figure 9).

https://mafft.cbrc.jp/alignment/software/
https://mafft.cbrc.jp/alignment/server/
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Trimming and Retrieving Coding Sequences (Using MEGA Version 11)

• Go to the MEGA home page (https://www.megasoftware.net/, accessed on 27 January
2022), select your operating system, Graphical GUI, and MEGA 11 (or newer versions if
available), and click on the Download button.

• Follow the steps for MEGA downloading and installation.
• Open the MEGA program and load every alignment file (ALIGN→ Edit/Build Align-

ment→ Open a saved alignment version→ OK→ Open the downloaded file) (Figure 10).
• Trim the sequences using the Scissors tool (Figure 10) or using Ctrl or Cmmd + X. If

you are using genomic or RNA data, you can click on Translated Protein Sequences
to obtain the deduced amino acid sequences (see also Section 3.2.1), which can be
useful for delimiting open reading frames (identification of start/stop codons and
intronic/exonic regions by visual inspection).

• Finally, click on Data→ Export Alignment→ Fasta Format→ Save it.
• When working with genomic sequences, it may be necessary to conduct steps in

Section 3.1.5 several times (iterative refinement) in order to eventually obtain the
coding sequence of interest. The alignment becomes progressively refined by itera-
tively trimming intronic regions and leftover positions at the beginning and the end of
the sequence.

• In some cases, you will have to rerun get_RAW_sequences.py, changing the –in_len
parameter value in order to cover all the sequence. Sometimes the chosen value may
be too small, and part of the sequence can be left out unintentionally.

• Once the coding sequence has been fully identified, save the alignment with MEGA as
detailed above and add the suffix, “_final.fas”.

https://www.megasoftware.net/
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Figure 10. MEGA version 11 program showing a nucleotide alignment window. The blue arrow
indicates the tool bar where the ALIGN and DATA buttons are located. The red arrow indicates the
scissors tool. The green arrow indicates the Translated sequences tab.

3.2. Phylogenetic Analyses
3.2.1. Translate Sequences

A. Locally Using Python

• This step is mandatory if you want to obtain a protein data matrix
• and you are working with genomic or RNA sequences.
• In the Spyder console, type run translate_sequences.py [data_type]. Typically, you are

going to use it with genomic sequences or, in some cases, with RNA sequences
(particularly for checking and removing ambiguously aligned positions).

• By default, the program will look for files with “final.fas” or “RAW.fas”. Change this
using the –pattern parameter.

• If you are working with several species that each have a different genetic code, you
will have to run this program several times. We recommend cutting those folders
that share the same genetic code and pasting them into a new folder. Use –directory
arguments to indicate the new path and run the program. Then, put the folders back
in their initial location and repeat the step with the different genetic codes.

B. Locally Using MEGA

• Open the MEGA program (see Section 3.1.5. Trimming and Retrieving Coding Se-
quences for MEGA installation).

• Import alignment as in Section 3.1.5. Trimming and Retrieving Coding Sequences
(Figure 10).

• On the emergent window, click on Translated Protein Sequences→ Choose the adequate
genetic code (Figure 10).

• Finally, click on Data→ Export Alignment→ Fasta Format→ Save with “_translated.fas” suffix.
• Repeat with all the files that need to be translated.
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3.2.2. Matrix Assembly

A. Locally Using Python

• In the Spyder Python console, type run get_combined_seqs.py [output name][data_type].
The three data types can be combined. However, note that if you have information for
more than one data type for the same species, then you may obtain redundant sequences.

• By default, the pattern for file searching is “final.fas”. However, it is programmed to
look for “final_translated.fas”, “RAW.fas”, and “RAW_translated.fas” when it cannot
find the first pattern.

• You can change this using the –pattern parameter. Then, the program will search for
“new_pattern.fas”, “new_pattern_translated.fas”, “RAW.fas”, and “RAW_translated.fas”.

• The program will produce a data matrix named “[output name]_all_combined.fas”,
which will be downloaded to the Data folder.

B. Locally Using MEGA

• Import a sequence file as in Section 3.1.5. Alignment B. (Figure 10).
• In the emergent window, click on Edit → Insert Sequence From File → Open every

sequence file (Figure 10).
• This step can also be conducted manually with a text editor; simply open every file

containing the downloaded sequences and paste their content into a new file, one after
the other.

3.2.3. Alignment

• See Section 3.1.5. Alignment. If using the Python version, use –directory, and drag the
combined matrix file.

Alignment Filtering

A. Using trimAl Locally through Python

• Go to http://trimal.cgenomics.org/downloads (accessed on 27 January 2022) and
download the specific program according to your operating system.

• Decompress the trimAl file. For Windows and Mac/Unix users, open the terminal
and follow the steps on the trimAl README.md file. You can run the program on
the terminal following the instructions at http://trimal.cgenomics.org/use_of_the_
command_line_trimal_v1.2 (accessed on 27 January 2022) or the following steps.

• Type run alignment_trimming.py [path_to trimAl] [path_to_matrix] [combined_matrix] in
the Spyder console. For Windows users, trimAl will be stored in the bin directory. For
Mac and Unix users, trimAl will be stored in the source directory.

• This will remove all positions in the alignment with gaps in 90% or more of the
sequences (-gt 0.9), which is the default option of the program.

• The trimming algorithm can be changed using –trimal_command. See http://trimal.
cgenomics.org/use_of_the_command_line_trimal_v1.2 (accessed on 27 January 2022)
for additional information.

B. Using trimAl through the Phylemon Web Server

• Go to http://phylemon2.bioinfo.cipf.es/, accessed on 27 January 2022.
• Create and account and login or star as anonymous user.
• Go to Utilities→ Alignment Utilities→ TrimAl (Figure 11).
• Paste the content of the matrix or upload the file clicking on browse server→ Upload

new file→ Browse→ Open the matrix→ Select format→ Aligned sequences→ Upload
→ Accept.

• Click on Method→ User define→ In Gap threshold, fraction of positions without gaps in a
column set 0.1. Similar output as using Python version.

• Run the job.
• Refresh the page. On the right panel, open the job when finished.

http://trimal.cgenomics.org/downloads
http://trimal.cgenomics.org/use_of_the_command_line_trimal_v1.2
http://trimal.cgenomics.org/use_of_the_command_line_trimal_v1.2
http://trimal.cgenomics.org/use_of_the_command_line_trimal_v1.2
http://trimal.cgenomics.org/use_of_the_command_line_trimal_v1.2
http://phylemon2.bioinfo.cipf.es/
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Figure 11. Phylemon2 Utilities web server. The red arrow indicates the trimAl program. Accessed on
27 January 2022.

3.2.4. Phylogeny Inference

A. Using IQ-TREE Locally through Python

• Go to http://www.iqtree.org/#download (accessed on 27 January 2022) and download
the adequate version for your operating system.

• Decompress the folder.
• Type run phylogenetic_inference.py [iqtree_folder] [trimmed_matrix] [data_type].
• IQ-TREE program is located in the bin folder in the IQ-TREE program folder. Drag

this folder to the Spyder console when running.
• The “.treefile” will be stored at Data/Phylogenetic_inference.

B. Using IQ-TREE Web Server

• Go to http://iqtree.cibiv.univie.ac.at/, accessed on 27 January 2022.
• Browse the trimmed matrix in the Alignment file field.
• Select sequence type.
• Do not change any more parameters for a similar run and output as the Python version.
• Enter your e-mail and click on SUBMIT JOB.
• When finished, you will receive and e-mail. Click on the provided link, and with the

button on the left, click DOWNLOAD SELECTED JOBS.

http://www.iqtree.org/#download
http://iqtree.cibiv.univie.ac.at/
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Tree Visualization

• Go to the FigTree website (https://github.com/rambaut/figtree/releases (accessed
on 27 January 2022)) and download the specific version for your operating system.

• Decompress the file and open FigTree (Figure 12).
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Figure 12. FigTree program. The red arrow indicates the Node Label panel.

• Click on File→ Open→ Open “.treefile” file.
• Provide a label for the values of support (or leave unchanged).
• The left panel allows for modification of multiple tree features displayed as collapsi-

ble menus. For example, tree appearance options can be changed from the Appear-
ance menu.

• Display the values of support. Click on Node Labels→ Display→ Select the name of the
label provided before (Figure 12).

• The root of the tree can be changed by selecting a specific branch and then clicking the
Reroot button at the top of the window.

4. Expected Results

The detailed protocol will primarily yield a sequence alignment and a phylogenetic
tree (along with a best-fit model of substitution) for a particular group of organisms of
interest. Altogether, these resulting data are the typical starting point of molecular evolution
analyses, such as those aimed at detection of adaptive and/or purifying selection, ancestral
protein reconstruction, or protein structure. Additionally, the protocol can provide refined
annotation of raw genome sequences, which can be used for other goals, such as gene
mapping or functional analyses. Finally, the provided pipeline and protocol constitute a
basis for bioinformatic work with DNA and protein sequences that can be easily modified
and adapted for many other specific tasks in the present context of massive generation of
genomic data.

https://github.com/rambaut/figtree/releases
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5. Troubleshooting

The first issue that readers may encounter relates to software versions and maintenance
of websites and online resources. Even if some of these are discontinued, the methods
outlined in the workflow would stand as a solid guideline. Every day, new applications
and versions are released, and it is not difficult to find programs that perform similar
tasks to the ones mentioned in the protocol. It is also possible that the functions of some
of our Python applications may become deprecated in the future. This may represent a
more challenging issue because the user might have to modify the source code (therefore
requiring at least some basic notions of programming languages). The user should also be
aware that unexpected inputs and commands can result in illogical outcomes. It is therefore
of critical importance to follow the instructions provided here or in the README.md file
and to carefully inspect the output files generated in each step.

Additionally, there may be internet connection issues when downloading a large
number of genomes (especially genomic sequences) using GNFish that may produce
partly empty or incomplete files (apparently correct sometimes). This will prevent further
progression in the workflow, as subsequent steps become logically impossible even if the
inputted commands are valid. A similar issue can occur when downloading the query
sequences, although this is less common.

Generally speaking, it is always a challenge to work with genomic sequences because
their analysis usually requires substantial investment of time and use of computational
resources. If possible, we recommend running the GNFish package on an HPC (high-
performance computing) cluster, particularly when working with scaffold sequences. As
previously stated, these data must be iteratively curated, and identifying open reading
frames can be arduous or even impractical in some difficult cases. In all cases, outcome
sequences must be carefully examined by the user. The more information about the gene is
available, the easier and more accurate the retrieval becomes. In some particular cases, the
user would benefit from repeating the retrieval process if additional knowledge of the data
is gained.

Another issue may be related to phylogenetic inference if the maximum likelihood
analysis becomes trapped in local optima (particularly an issue for very large datasets). If
this is suspected, the IQ-TREE developers recommend repeating the analysis with at least
10 independent runs.

Last but not least, high-throughput sequencing technologies are not flawless, and
sequencing errors may occur in the source data. We recommend using the RefSeq database
throughout the protocol because it only contains curated sequence data. We also suggest
the use of some filters when searching for sequences, which may improve the quality of
the outcome. Nonetheless, the user should be aware that full exclusion of low-quality
sequences may not always be possible, and dealing with a certain proportion of them in
the datasets is likely unavoidable. In principle, this proportion should be low, with little or
a negligible impact on subsequent analyses.
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