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Abstract: Alternative splicing (AS) is a crucial process to enhance gene expression driving organ-
ism development. Interestingly, more than 95% of human genes undergo AS, producing multiple 
protein isoforms from the same transcript. Any alteration (e.g., nucleotide substitutions, insertions, 
and deletions) involving consensus splicing regulatory sequences in a specific gene may result in 
the production of aberrant and not properly working proteins. In this review, we introduce the key 
steps of splicing mechanism and describe all different types of genomic variants affecting this 
process (splicing variants in acceptor/donor sites or branch point or polypyrimidine tract, exonic, 
and deep intronic changes). Then, we provide an updated approach to improve splice variants 
detection. First, we review the main computational tools, including the recent Machine Learn-
ing-based algorithms, for the prediction of splice site variants, in order to characterize how a ge-
nomic variant interferes with splicing process. Next, we report the experimental methods to vali-
date the predictive analyses are defined, distinguishing between methods testing RNA (tran-
scriptomics analysis) or proteins (proteomics experiments). For both prediction and validation 
steps, benefits and weaknesses of each tool/procedure are accurately reported, as well as sugges-
tions on which approaches are more suitable in diagnostic rather than in clinical research. 

Keywords: alternative splicing; splicing sites; splice variant; prediction tools; machine learning; 
experimental validation; variant classification 
 

1. Introduction 
How many protein coding genes have been described in humans? The answer is 

approximately 25,000–30,000. This exorbitant number is nothing when compared with 
the almost 90,000 different proteins that form human proteome. This phenomenon can be 
possible thanks to mechanisms of alternative splicing (AS), a process that was first pro-
posed by Gilbert in 1978 [1]. AS is crucial to enhance gene expression, to drive cellular 
differentiation and organism development. More than 95% of human genes have been 
found to undergo alternative splicing in a developmental, tissue-specific or signal 
transduction-dependent way [2]. During AS, exons, or portions of exons or noncoding 
regions within a pre-messenger RNA (pre-mRNA) transcript, are differentially fixed or 
skipped, resulting in multiple protein isoforms [3]. Regulation of alternative splicing is 
complex with several elements interacting in a coordinated manner including cis-acting 
and trans-acting factors, spliceosome components as well as chromatin or RNA structure 
together with the presence of alternative transcription initiation (ATI) or alternative 
transcription termination (ATT) sites [3]. 

In addition, the presence of genomic variants, involving consensus splicing regula-
tory sequences in different parts of a gene, may modify the splicing process, alter the 
mRNA and eventually affect the corresponding protein-coding sequence [4]. 
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The estimate of variant impact on RNA processing is not always simple, and can 
lead to improper variant classification. The aim of this review is to provide an updated 
approach to this challenge. In the first part, we describe the key element involved in 
pre-mRNA maturation and the potential consequences of genomic variant on the splicing 
process. Then, we review the main computational tools that allow identifying and char-
acterizing genomic variants that may alter the splicing process. Particular attention is 
paid to the Machine Learning (ML) approach. We discuss the main strengths and weak-
nesses of the different approaches, to enable the researchers to estimate and choose the 
right tool/s for their purposes. In the second part, the experimental methods to validate 
the in silico predicted splicing variants are described, suggesting which approaches are 
more suitable in diagnostic rather than in clinical research. 

2. Constitutive Splicing vs. Alternative Splicing 
Whatever the mechanism, the final goal of splicing is to remove introns from a pro-

tein-coding RNA to generate a mature mRNA to produce a functional protein. Constitu-
tive splicing follows the order in which exons are in the gene, whereas AS represents a 
variation from this preferred sequence where some exons are skipped, producing a vari-
ety of mature mRNA and thus different proteins. At least five strategies (Figure 1) of AS 
have been described. 

 
Figure 1. Constitutive splicing and the five main types of alternative splicing. Cassette alternative 
exon and the alternative 3’ or 5’ splice site are the most common in humans (30% and 25%, respec-
tively), while intron retention is typical of metazoans and less present in humans (10%). Arrows 
indicate the resulted sequence after intron/exon removal. 

In the “mutually exclusive exons”, one out of two exons (or one group out of two 
exon groups) is maintained, while the other one is spliced out [5]. In the “cassette alter-
native exon”, which represents the most common mechanism in vertebrates (30% in 
humans) and invertebrates, an exon may be spliced out of the primary transcript or re-
tained [3]. The “alternative 3’ or 5’ splice site” (25% of AS in humans) can produce two 
splice transcripts: one contains the extension and the other excludes it. These transcripts 
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can be formed in different ratios, one can be more abundant compared with the other. If 
an alternative 3’ splice acceptor site is used, we observed a change of the 5’ boundary of 
the downstream exon. When an alternative 5’ splice site is used, the 3’ boundary of the 
upstream exon is changed [6]. Finally, in “intron retention”, which is the preferred 
mechanism by lower metazoans and represents 10% of AS in humans [7], an intron se-
quence may be spliced out or retained. The retained sequence is not flanked by introns. In 
humans, all these steps of intron excision and exons ligation, are carried out by the 
spliceosome complex, a large ribonucleoprotein machinery in which more than 300 pro-
teins assemble in sequence with the uridine-rich small nuclear RNA molecules (U snR-
NAs) to form individual small nuclear ribonucleoprotein complexes (snRNPs). In human 
nuclei, the majority of splicing reactions are carried out by U1, U2, U3 snRNPs, and 
U4/U6.U5 tris-snRNP [8] (Figure 2a). 

 
Figure 2. (a) U1 binds to exon 1 and U2 binds to exon 2 in order to define 5’ ends of the intron be-
fore removal. Addition of tri-snRNP U4/U6.U5 determines the full spliceosome assembly in hu-
mans. (b) Role of cis- and trans-regulatory sequences during alternative splicing. Cis-regulatory 
elements are located in the alternatively spliced exon or in its flanking introns. Cis-factors posi-
tively modulate intronic/exonic splicing enhancers (ISE/ESE) and negatively regulate intron-
ic/exonic splice silencer (ISS/ESS). Cis-sequences are bound by trans-factors such as serine/arginine 
(SR) proteins or the heterogeneous nuclear ribonucleoprotein (hnRNP). 

Pre-mRNA is recognized by splicing machinery at conserved RNA elements: the 5’ 
splice site at the exon-intron border (donor site), the 3’ splice site at the intron–exon 
border (acceptor site), and the branch point, which is followed by a polypyrimidine track 
[9,10] and placed approximately 18–40 nucleotides upstream of the acceptor site [11] 
(Table 1). In order, donor site is recognized by U1 snRNP [12], then the U2 auxiliary fac-
tor binds to the polypyrimidine and the acceptor site [10] generating a complex called “E 
complex”. Next, U2 snRNP binds the branchpoint, resulting in the A complex [13]. 
Binding of the U4/U6.U5 tri-snRNP leads to the B complex [14], which is first activated 
[15]. 
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Table 1. Conserved RNA elements recognized by the splicing machinery. 

Splice Sites Nucleotides 
5’ splice site CAG/GUAAGU 

Branch point sequence YUNAY 
Polypyrimidine tract Yn 

3’ splice site NYAG/G 
Y = C/U; N = any nucleotide; “n” = number of pyrimidine constituting the polypyrimidine tract. 

What influences the final decision of which exons will end up in the mature mRNA? 
Usually shorter exon length, weaker splicing signals at different splice site or higher se-
quence conservation adjacent orthologues alternative exons are the main factors partici-
pating in the choice [16]. Additionally, a pivotal role in deciding exons in final mRNA is 
played by cis-acting elements and trans-acting factors. Cis-acting elements are short nu-
cleotide motifs and include exonic or intronic splicing enhancer and associate with the 
trans-acting factor serine/arginine-rich (SR) proteins. Enhancer elements play a leading 
role in constitutive splicing. Similarly, also belonging to the cis-acting proteins are exonic 
or intronic splicing silencer which are bound by heterogeneous nuclear ribonucleopro-
teins (hnRNPs) negative trans-acting factors and mainly participate to alternative splic-
ing [3] (Figure 2b). In addition to cis-regulatory sequences and their cognate trans-acting 
factors, alternative splicing is controlled by its coupling to RNA polymerase II (RNAPII) 
transcription [17]. This coupling requires the C-terminal domain (CTD) of the RNAPII 
largest subunit. CTD phosphorylation affects the transcriptional properties of RNAPII 
and the outcome of co-transcriptional AS by mediating the consequences of splicing 
factors and by modulating transcription elongation rates [17]. CTD takes part in gene 
expression-related functions from 5’ capping, splicing, polyadenylation, and chromatin 
remodelling, becoming a key factor in governing the interactions between transcription 
and splicing. To complicate the picture even more, is the existence of alternative tran-
scription initiation (ATI) and alternative transcription termination sites (ATT) present in 
the 5’ UTRs and 3’ UTRs, respectively [18], which contribute to generate transcriptome 
diversity. It is evident that incidence and functional implication of different types of al-
ternative events varies between functional domains of transcripts. As a result, AS is 
common in the 5’ UTRs and coding sequences but is rare in the 3’ UTRs given the modest 
intron density in this region [18]. Finally, the presence of a premature termination codon 
(PTC) can cause changes in the splicing pattern of a pre-mRNA. Exon skipping is com-
mon under the selective pressure of a PTC, when normally introduction of a PTC into the 
open reading frame of a protein-coding gene will represent a protective mechanism, 
leading to nonsense-mediated mRNA decay able to avoid the translation of functionally 
defective proteins [19]. 

In addition, both alternative and constitutive splicing are affected by chromatin 
structure, which works either by modulating the RNAPII elongation rate or by promot-
ing the recruitment of splicing factors [20]. The resultant mature mRNA is, thus, a reflec-
tion of DNA modifications such as DNA methylation or histone modifications. 

3. Genomic Variants Affecting Splicing Process 
Considering the complexity of splicing and its role in the correct protein synthesis, 

any alteration of this process may cause modifications of specific mRNAs and proteins, 
and thus lead to aberrant cellular functions [21]. The presence of genomic variants, e.g., 
nucleotide substitutions, insertions and deletions, involving consensus splicing regula-
tory sequences in a specific gene, may modify the splicing process, cause partial or com-
plete intron gain or exon loss from the mature mRNA and ultimately alter mRNA and 
corresponding protein-coding sequence [4]. 

Even though splicing variants may disrupt cis-acting splicing elements or involve 
trans-acting factor, usually the term “splicing variant” is used to refer to a mutation in the 
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cis consensus sequences. These variants may be present in both exons and introns and 
lead to disruption of existing splice sites, creation of new ones, or activation of cryptic 
sites. They can also affect splicing enhancers and silencers or modify the mRNA second-
ary structure, impairing the binding of the spliceosome elements. 

The typical consequence of these variants is exon or exon fragment skipping during 
the splicing process. When the result is an in-frame deletion, a shortened protein will be 
produced. Though the deletion causes the shift of the open reading frame, a premature 
stop codon may be created and a shorter protein may be synthesized. On the other hand, 
the presence of the PTC in the transcript may also result in a faster mRNA degradation. 
The degradation of the defective messenger RNA, which occurs through a protective 
process called nonsense mediated decay (NMD), prevents aberrant protein synthesis and 
results in the same effect as gene deletion or nonsense mutation [22]. 

3.1. DNA Variants in Canonical Splicing Sites 
The “classical” definition of splicing variant refers to DNA variants affecting ca-

nonical splicing sites: splicing acceptor and donor sites, branch point adenosine, and 
polypyrimidine tract. Variants involving any of those sequences may alter pre-mRNA 
splicing, leading to exon skipping/shortening, or partial/full intron retention in the 
mRNA [23–25]. 

3.1.1. Variants in Splicing Acceptor and Donor Sites 
Variants in splicing acceptor and donor sites involve highly conserved sequences 

defining exon-intron boundaries and therefore may modify the interaction between 
pre-mRNA and splicesome complex. The most classical variants involve the +1 and +2 
residues at the 5’ donor splice site and −1 and −2 residues at the 3’ acceptor splice site. 
These variants may cause a single exon skipping (the most frequent consequence), or lead 
to the occurrence of an alternative splicing site, when the presence of the variants exposes 
a cryptic splice site in a neighboring exon or intron. As a consequence, an intron fragment 
can be included or an exon fragment can be removed, depending on the position of the 
cryptic splice site in intron or exon, respectively [26]. 

When searching for canonical splice variants for diagnostic or research purposes, 
exon DNA and short neighboring intron sequences are commonly the templates for 
Sanger sequencing or next-generation sequencing (NGS), thus these variants are easily 
identified [27]. 

3.1.2. Variants Affecting Branch Point and Polypyrimidine Tract 
The branch point motif is located between −9 and −400 bp downstream from the 

acceptor site and in humans is characterized by the consensus sequence YUNAY. Since 
the sequences of the branch point are highly degenerated, their exact localization may be 
hard to identify; however, these sequences are crucial for the spliceosome complex for-
mation. Variants in the branch point motif might cause an exon skipping, as a conse-
quence of improper binding of snRNP splicing proteins and disruption of the acceptor 
splicing site, or lead to intron partial/total intron retention, if they create a new 3’ splice 
site [28]. 

The polypyrimidine tract is localized until 40 bp from the acceptor splice site, up-
stream of the branch point motif. This sequence is recognized by polypyrimidine 
tract-binding proteins belonging to spliceosome complex, which are involved in alterna-
tive splicing regulation. Variants in this sequence probably result in splicing alterations, 
even though only few of these variants have been identified so far [29]. 

In general, variants at the branch point and polypyrimidine tract are very rare. A 
possible explanation is that they are difficult to identify, since their consensus sequences 
are degenerated and their exact localization is hard to predict. In addition, they are not 
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usually considered when the genomic DNA is analyzed for diagnostic purposes, and the 
interest is mainly focused on coding sequences. 

3.2. Exonic Variants Affecting Splicing 
In addition to canonical splice variants, also mutations in the exonic sequences may 

strongly affect splicing process. These exonic variants may exert a dual effect. Indeed, 
they can lead to modifications of pre-mRNA processing and the loss of an exon fragment, 
introducing a new 5’ or 3’ splice site or activating a cryptic site, which could be stronger 
than the original one. On the other hand, the exonic variant may disrupt an exonic 
splicing enhancer (ESE) causing the whole exon skipping [30]. 

As a result of the habit to evaluate the missense variants focusing on the amino acid 
and not on the nucleotide variant itself, the exonic mutation causing splicing alterations 
are often misclassified as synonymous, missense, or nonsense variants. Thus, it is possi-
ble that their effect on gene expression, including pre-mRNA processing, may be over-
looked. However, as discussed below, this possibility should not be neglected, since 
several reports have disclosed the effects of missense DNA variants on mRNA, as re-
viewed in [27]. 

3.3. Deep Intronic Variants 
Deep intronic variants are localized within large introns, far from exon boundaries. 

Such variants may generate novel acceptor or donor sites, which are bound by the 
spliceosome complex and used in combination with the existing intronic cryptic splice 
sites. They may also create novel regulatory elements and lead to the recognition of the 
specific intronic sequences as exonic sequences (detailed review in [31]). As a result, such 
variants may lead to the inclusion of an intron fragment, called pseudo-exon, into the 
mature transcript. The inclusion of a pseudo-exon in the mRNA generally modify the 
reading frame introducing a premature stop codon [32]. 

Deep intronic mutations are not common, and difficult to identify since are located 
in regions not usually analyzed in routine procedures. However, it has been becoming 
increasingly evident that deep intron regions play an important role in different physio-
logical and pathological mechanisms related to mRNA processing [33,34]. Since the effect 
of intronic variants on transcript splicing and protein synthesis may be significant, the 
analysis for their presence should be considered when the standard screening of coding 
regions and exon/intron boundaries is not conclusive. 

4. Identification of Splice Variants in NGS Era 
An accurate classification of genomic variants is the cornerstone of genomic and 

precision medicine. Only identifying the causative variant of inherited disorders and 
evaluating its actual consequences on proteins and cells is possible to offer a helpful ge-
netic counseling and improve patients’ clinical management. The recent advent of next 
generation sequencing (NGS) technologies has allowed obtaining an accurate identifica-
tion of the variants present in an individual’s genome, revolutionizing the times and 
ways to achieve genomic data. Gene panels, exome and genome sequencing consent to 
identify the majority of coding variants for several disorders [35]. However, despite these 
huge technical improvements, the biological and clinical interpretation of a large part of 
identified variants remains challenging [36]. This difficulty is particularly evident in the 
identification of splice variants. 

It has been estimated that up to 15% of all point variants causing human genetic 
disorders involve splice site consensus sequences, particularly at intronic positions, re-
sulting in splicing defects [37]. The percentage of splicing variants reported in the Human 
Gene Mutation Database (HGMD) is about 9% (27,959/323,661) (HGMD database, ac-
cessed on 5 August 2021). However, this number seems underestimated, since it only 
marginally takes into account nucleotide substitutions in coding regions, which are usu-
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ally considered as missense, nonsense, or silent variants. Based on in silico data, it has 
been reported that the proportion of exonic variants that may affect splicing, but have 
been originally classified as missense/nonsense in the HGMD, can reach up to 25% of all 
the variants present in the database [38,39]. In addition, not only point variants but also 
other genetic variants, such as small indels, can modify cis splicing regulatory elements 
and affect the splicing process [40]. These data indicate that variants affecting splicing 
play an important role in the etiology of genetic disease and underline the importance of 
a correct variant interpretation. 

The characterization of potential splice variants is usually based on the analysis of 
RNA from the patient or some other laboratory techniques, including in vitro assay [37]. 
However, laboratory tests for splicing variants are expensive and time-consuming, so 
other approaches have been set up to reduce costs and times of analysis. The use of in 
silico prediction tools allows focusing on those variants with real chance of being delete-
rious and selecting them for further experimental validation. 

5. Predictive Tools for Splice Variant Identification 
The tools available for splicing analysis were originally developed for research 

purposes; however, they have been becoming integral part of the diagnostic process, as a 
first step of variant characterization. In general, splice site prediction tools have increased 
sensitivity (~90–100%) relative to specificity (~60–80%) in predicting splice site abnor-
malities [4]. 

Several algorithms have been proposed, differing among each other in the approach 
they use for splice variant prediction. They can be divided into two big categories: early 
computational methodologies and the more recent Machine Learning-based tools. 

5.1. Early Computational Methodologies for Splice Variant Prediction 
The main differences among these methodologies rely on the consensus sequences 

they used for the comparison with the input sequences, and the statistical model used for 
the analysis. Table 2 shows the key features of some of these tools. 

5.1.1. Input Sequences 
Most of the tools focus on the analysis of consensus splicing donor and acceptor 

sequences at exon-intron junctions and require the sequence input at least including po-
sitions from −3 to +6 in the case of 5′ donor site and or from −20 to +3 for the 3′ acceptor 
sites. Examples of these tools, based on different computational models, are SpliceView 
[41], GeneSplicer [42], Spliceport [43], GENSCAN [44], NetGene2 [45], NNSplice [46], and 
MaxEntScan [47]. 

Other tools have been developed to predict whether a single nucleotide variant can 
affect the branch site motif or polypirymidine tract, e.g., SVM-BPfinder [48] and IntSplice 
[49]. 

A more limited number of algorithms analyze the input sequence to predict exon 
skipping, cryptic site activation, or generation of aberrant transcripts (CRYP-SKIP [50]), 
or to identify though and how distant a variant may influence the splicing process 
(Spliceman [51]). 

Several tools have been built to predict the effect of a specific variant on exonic 
splicing enhancers (ESEs) and exonic splicing silencers (ESSs). These tools may be very 
useful in the characterization of exonic variants. Examples of this kind of algorithms are 
ESE Finder [52,53], ESRseq [54], and FAS-ESS [55], all three based on individual experi-
mental data, HEXplorer [56], and RESCUE-ESE [57], which rely on computational analy-
sis of nucleotide motifs or k-mer distributions, and SpliceAid [58], searching for interac-
tions between validated RNA target motifs and human splice regulatory proteins. 

Other tools focus on motifs involved in the binding to RNA-binding proteins (RBPs). 
RBPmap uses motifs well characterized in the literature and analyzes their evolutionary 
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conservation to define potential binding sites [59]. Splicing Factor Finder performs a 
mapping of splicing factor binding sites considering both genomic environment and 
evolutionary conservation of the regulatory motifs [60]. 

Finally, other bioinformatic tools perform predictive analysis evaluating whether a 
variant may affect mRNA secondary structure. Examples of these algorithms are pFold 
or UNAFold [61,62]. 

5.1.2. Statistical Models 
One of the most frequently used algorithm is the basic Position Weight Matrix 

(PWM) model [63], which scores and ranks each nucleotide on the splice site sequence 
based on its frequency from its aligned consensus sequence. The PWM model has been 
used in several tools, for example in the SpliceView [41], which considers mutual de-
pendency between nucleotides in different positions. 

The Maximal Dependence Decomposition (MDD) model, used in GENSCAN [44], is 
a decision tree method that captures most significant dependencies between positions by 
dividing the dataset into subgroups and modeling each subset separately. The MDD 
model has been implemented by adding Markov models (MM), which identifies addi-
tional dependencies among adjacent positions, in the tool GeneSplicer [42]. 

The Maximum Entropy Distribution (MED) is probably the method that currently 
allows the most unbiased approximation for modeling short sequence motifs. MED can 
be considered as a framework, rather than a single model, which enables to generate 
different models by modifying the applied constraints. MED only assumes that the dis-
tribution is consistent with the empirical features which are obtained from known data. It 
takes into account dependencies between both adjacent and non-adjacent positions. The 
tool MaxEntScan [47] uses this approach and shows high flexibility, since the user may 
choose between default or personalized models. In addition, MaxEntScan can employ 
other algorithms, such as the PWM, MDD, and MM models, to perform the analysis and 
compare the results. 

5.1.3. Tools Combining Multiple Algorithms 
Some tools utilized different algorithms to implement the strength of the analysis. 

Human Splicing Finder [64] performs predictions using the PWM and MED models and 
analyzing branch points, ESEs, and ESSs. SROOGLE is a webserver based on nine dif-
ferent algorithms able to analyze sequences belonging to thirteen groups of splic-
ing-regulatory sequences [65]. Automatic Analysis of SNP sites (AASsites) employs five 
gene prediction programs to evaluate the impact of SNPs on splicing [66]. Finally, 
EX-SKIP and HOT-SKIP examine the probability that substitutions in each exonic posi-
tion cause exon skipping, using several integrate approaches to analyze potential 
ESE/ESS sequences [67]. 

Table 2. List of predictive tools and used strategies. 

Tool Name Analyzed Regions Predictive Mod-
el 

URL Ref. 

Canonical Splice Sites 

MaxEntScan 5′ and 3′ SSMs 
PWM, MDD, 

MM, and MED 
http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan_

scoreseq.html (accessed on 3 September 2021) [47] 

SpliceView 5′ and 3′ SSMs PWM http://bioinfo.itb.cnr.it/~webgene/wwwspliceview.html 
(accessed on 3 September 2021) 

[41] 

GeneSplicer 5′ and 3′ SSMs MDD https://www.cbcb.umd.edu/software/GeneSplicer/gene_spl
.shtml (accessed on 3 September 2021) [42] 

Spliceport 5′ and 3′ SSMs SVM 
http://spliceport.cbcb.umd.edu/ (accessed on 3 September 

2021) [43] 
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GENSCAN 5′ and 3′ SSMs MDD http://hollywood.mit.edu/GENSCAN.html (accessed on 3 
September 2021) 

[44] 

NetGene2 5′ and 3′ SSMs NN http://www.cbs.dtu.dk/services/NetGene2/ (accessed on 3 
September 2021) 

[45] 

NNSplice 5′ and 3′ SSMs NN 
https://www.fruitfly.org/seq_tools/splice.html (accessed on 

3 September 2021) [46] 

SVM-BP 
Finder BPs + PPT SVM 

http://regulatorygenomics.upf.edu/Software/SVM_BP/ 
(accessed on 3 September 2021) [48] 

IntSplice BPs + PPT SVM https://www.med.nagoya-u.ac.jp/neurogenetics/IntSplice_
v1.0/index.php (accessed on 3 September 2021) 

[49] 

Cryptic sites 

CRYP-SKIP 
exons + flanking 

intronic sequences 
multiple logistic 

regression 
https://cryp-skip.img.cas.cz/ (accessed on 3 September 

2021) [50] 

Spliceman variant + flanking 
nucleotides 

L1 distance met-
ric 

http://fairbrother.biomed.brown.edu/spliceman/ (accessed 
on 3 September 2021) 

[51] 

Exonic Sequences 

ESE Finder ESE PWM http://krainer01.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi?
process=home (accessed on 3 September 2021) 

[52,53] 

RESCUE-ESE SREs 
experimental + 
computational 

approach 

http://hollywood.mit.edu/burgelab/rescue-ese/ (accessed 
on 3 September 2021) [57] 

ESRseq ESE + ESS PWM 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149502/ 

(accessed on 3 September 2021) [54] 

Hexplorer SREs 
experimental + 
computational 

approach 

https://www2.hhu.de/rna/html/hexplorer_score.php (ac-
cessed on 3 September 2021) [56] 

FAS-ESS ESS MED http://hollywood.mit.edu/fas-ess/ (accessed on 3 
September 2021) [55] 

SpliceAid ESE + ESS + ISE + 
ISS 

scanning against 
validated splic-
ing sequences 

http://www.introni.it/splicing.html  
(accessed on 3 September 2021) 

[58] 

Conservation 

RBPmap RBP sites 
Weighted-Rank 

(WR) 
http://rbpmap.technion.ac.il/ (accessed on 3 September 

2021) [59] 

Splicing Fac-
tor Finder RBP sites WR 

https://pubmed.ncbi.nlm.nih.gov/19296853/ (accessed on 3 
September 2021) [60] 

RNA Secondary Structure 

pFold RNA sequence 
stochastic con-
text-free gram-

mar (SCFG) 

https://pubmed.ncbi.nlm.nih.gov/12824339/ (accessed on 3 
September 2021) 

[61] 

UNAFold RNA sequence 

free energy 
minimization, 
partition func-

tion calculations, 
and stochastic 

sampling 

http://www.unafold.org/ (accessed on 3 September 2021) [62] 

combined analysis 
EX-SKIP ESEs + ESSs four algorithms https://ex-skip.img.cas.cz/ (accessed on 3 September 2021) [67] 

HOT-SKIP ESEs + ESSs four algorithms https://hot-skip.img.cas.cz/ (accessed on 3 September 2021) [67] 

Sroogle 
SSM + BP + PPT + 

SRE nine algorithms http://sroogle.tau.ac.il/ (accessed on 3 September 2021) [65] 
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Human 
Splicing 

Finder (*) 

SREs, splice sites 
or branch sites PWM and MED http://www.umd.be/HSF3/ (accessed on 3 September 2021) [64] 

(*) free only for academic use. SSMs: Splice Site Motifs; BPs: Branch Site Motifs; PPT: PolyPirymidine Tract; ESE: Exonic 
Splicing Enhancer; ESS: Exonic Intronic Splicing silencer; ISE: Intronic Splicing Enhancer ISS: Intronic Splicing Silencer; 
SRE: Splicing Regulatory Element; RBP: RNA Binding Protein; ORF: Open Reading Frame; PWM: Position Weight Ma-
trix; MDD: Maximal Dependence Decomposition; MM: Markov models; MED: Maximum Entropy Distribution; SVM: 
Support Vector Machine; NN: Neural Network. 

5.2. Machine Learning-Based Tools 
The name “Machine Learning” (ML) was used for the first time in 1959 by Arthur 

Samuel, who defined ML as the “field of study that gives computers the ability to learn 
without being explicitly programmed” [68]. ML methods generally analyze previously 
collected data to build data-based models, find out statistically significant patterns, and 
on this basis make predictions on novel data. Therefore, it can be said that ML algorithms 
are able to “learn” from datasets and utilize the acquired knowledge to analyze similar 
data [69]. 

Algorithm “training” is usually performed using experimentally verified pathogenic 
variants as positive examples, and known benign variants as negative reference. In this 
way, ML software progressively identifies patterns able to discriminate between patho-
genic and benign variants and subsequently uses these patterns to correctly predict 
whether a new variant may be pathogenic or not. During the training, some specific al-
gorithms are used to develop an initial model. The model is then challenged on a test set 
and its efficacy is evaluated. In this way, the model can be progressively improved to 
maximize its efficacy. 

Some elements are fundamental in the learning process. First, all ML models need 
both training and testing datasets, which must be absolutely independent from each 
other. In other words, if an entry is present in one set, it should not appear in the other 
one. To obtain this, a dataset is often divided into two subsets that are used as training set 
and test set, respectively. The lack of overlapping ensures better results, since it avoids 
that the model recognizes in the test set the same items it had already seen in the training 
phase, and therefore displays a performance better than real [35]. Moreover, it is im-
portant to balance positive or negative datasets, as the excess of positive datasets can 
cause underfitting and that of negative dataset can generate overfitting models [35]. 

The variables in a dataset that are input to a ML model are called “features”. Data 
are classified or separated based on these variables. Different features may be used: many 
of them are often sequence-based, e.g., the frequency or position of specific nucleotides in 
a given region, others are biochemical features, such as GC content and thermodynamic 
properties. 

The availability of public datasets of variants is very important for developing 
ML-based prediction tools. Among these databases, an important role is played by ex-
perimentally-derived RNA-seq datasets, which provide an effective link between ge-
nome and transcriptome features, and databases that report a classification variants 
based on potential pathogenicity, such as ClinVar [70]. 

Regression and classification algorithms are used for prediction in Machine learn-
ing. Regression algorithms are used to make prediction on continuous values, while 
classification algorithms are used on discrete data. They divide the data into different 
classes and are used to identify the class to which a new data entry is most likely to be-
long. Table 3 reports a brief description of the different methods used in machine learn-
ing, exhaustively reviewed elsewhere [71,72]. 
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Table 3. Brief summary of the main characteristics of the different methods used in ML. 

Method Main Characteristics 

Regression 

• Evaluation of the relationships between input variables and associated outputs and
modeling of the relationship between them.  

• Use of continous values. 
• Linear regression: the simplest form, the basic idea is simply finding a line that best fits the 

data. 
• Multiple linear regression and polynomial regression: focus on non-linear problems  
• Logistic regression: models the probability of an observation to belong to a finite number of

classes, typically two (0 and 1). 

Classification 

• Finding of a model or function which helps in separating the data into classes based on
different parameters. 

• Use of discrete values.  
• Categorization of data under different labels, according to some parameters given in input  

Support Vector 
Machine (SVM) 

• Classification algorithm based on a hyperplane space that linearly separates training
observations of different classes and creates a demarcation among the categories.  

• Every unseen sample is classified into one of the classes, depending on the side on which it 
appears.  

• Data that cannot be separated by a single continuous hyperplane are usually transformed
using the kernel functions. 

Decision Tree 

• Tree-like support tools used to correspond to a cause and its effect.  
• Each node of the tree represents a test of one or more features of the observation and

determines the following nodes to go through.  
• The last nodes of the decision tree, where a decision is taken, are defined leaves of the tree  
• The more nodes are present, the more accurate the decision tree will be. 
• It can use regression or classification algorithms. 

Random Forest 

• Combination of multiple decision trees, usually resulting in an improved predictive
performance.  

• Use of an “ensemble learning methods” (methods that use multiple learning algorithms to
obtain better predictive performance than any of the constituent learning algorithm alone).  

• Efficient modeling of complex and nonlinear data types, overcoming the limitations of
Decision Trees. 

• It can use regression or classification algorithms. 

Neural Network 
(NN) 

• Similarity to the biological neural network, it is a collection of connected nodes called
“artificial neurons”, which, like in the synapses in a real brain, can transmit information to
other nodes or “neurons”. 

• It is a network of mathematical equations.  
• It works on input variables and, by going through a network of equations, transforms them

in one or more output variables.  
• Networks are built up of layers, each responsible for a linear transformation, followed by a

nonlinear activation function.  
• There are an input layer, one or more hidden layers, and an output layer  
• Generally, more nodes and more layers allow the neural network to make much more

complex calculations. 
• It can use regression and classification algorithms, or combinations of them. 

Deep Neural 
Networks (DNNs) 

• NNs with multiple hidden layers between the input and output layers. 

Convolutional 
Neural Networks 

(CNN) 

• Its architecture is analogous to that of the connectivity pattern of neurons in visual cortex of
the human brain.  

• The hidden layers include layers that perform convolutions (in mathematics convolution is a
mathematical operation on two functions that produces a third function that expresses how
the shape of one is modified by the other). 
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Several ML-based prediction algorithms have been developed in the last years. They 
mainly differ in ML architecture, experimental datasets they use, and functions they 
propose. The main ML tools used for splice prediction are shown in Table 4, including 
details about ML methods, training/testing datasets, strengths and weaknesses of each 
tool. 

Among the earliest ML-based tools, CADD [73,74] has been trained using both be-
nign and pathogenic variant sets. It outputs a score that can be interpreted as a measure 
of pathogenicity. The first version of CADD used an SVM-based approach. Subsequently, 
L2-regularized logistic regression—a kind of regression model allowing the modeling 
and prediction of a binary dependent variable—has been adopted since it leads to im-
proved sensitivity and specificity [73]. The CADD scoring has soon become a gold 
standard for the prediction of variant impact and the reference to evaluate other predic-
tive tools. However, it has some limits that may weaken its efficacy: it uses conservation 
scores, thus it is really effective for protein-coding impact prediction, but it is lacking in 
predicting variant effect at the transcript level [35]. 

This limit is overcome by TraP [75], a random forest-based tool, which analyzes 
non-coding variant impact at the transcript level, providing a score between 0–1. The 
score can be used as a measure of the impact a variant is likely to have on a transcript. It 
has been shown that TraP scoring works better than the CADD model on the prioritiza-
tion of variants impacting on splicing. In addition, TraP identifies also pathogenic in-
tronic variants and evaluates the potential impact of variants across multiple transcripts, 
a feature usually not considered by many prediction tools [76]. 

Another tool is CryptSplice [77], an SVM-based method, which aims to predict the 
variant impact on generation of cryptic splice sites. It evaluates three situations: a ca-
nonical site weakened by the introduction of a new splice site in its proximity, a canonical 
site replaced by a novel site, and the introduction of a functional deep intronic splice site. 

S-CAP [78] is an example of a tool designed to predict the pathogenicity of 
splice-impacting variants. S-CAP distinguishes and separately analyzes 6 distinct re-
gions: 3′ intronic, 3′ canonical site, exonic, 5′ canonical site, 5′ extended, and 5′ intronic, all 
within 50 bases from the canonical exon-intron junction. This approach tries to overcome 
the limit of most ML models that tend to prioritize canonical splice site variants and un-
derestimate the pathogenicity of intronic variants. 

Another approach has been used to develop the tool PEPSI (Prediction of variant 
Effect on Percent Spliced In) [79], a random forest regression model trained on multiple 
layers of features related to sequence conservation and regulatory sequence elements. Its 
peculiarity is to integrate secondary structure information in predicting variants that 
disrupt splicing regulatory elements (SREs). In a comparative analysis with other splice 
prediction tools, PEPSI framework has shown comparable sensitivity and precision in 
predicting variants able to alter splicing. Nevertheless, the approach of PEPSI of evalu-
ating SRE changes based on the probability of secondary structure formation has dis-
played several limitations that may reduce its effectiveness in detecting splice-disrupting 
variants. 

SpliceAI [80], a deep learning tool consisting of a 32-layer deep residual neural 
network, analyzes each position of a pre-mRNA transcript and assesses the probabilities 
it is a splice donor, splice acceptor, or neither. SpliceAI has been designed to infer fea-
tures from the transcript sequence itself. It generates scores for gain or loss of acceptor or 
donor for all nucleotides within 50 bp of the variant of interest. Then, for each of these 
four possibilities, the nucleotide within the region affected by the most significant change 
is returned. When used in a near-agnostic approach to model training, SpliceAI is able to 
identify novel features by itself, potentially increasing global knowledge of splicing 
process. Considering the power of the model, SpliceAI may be considered the current 
gold standard for clinical interpretation of splice-impacting variants. 
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Table 4. List of ML prediction tools with the kinds of used strategies. 

Tool Name Prediction Model Datasets Key-Points Ref 

CADD Score of pathogenicity 

Rirst version: 
linear SVM Later 

versions: 
L2-regularized 

logistic 
regression 

Training datasets: Benign: 
evolutionarily neutral 
variants; Pathogenic: 

simulated de novo 
pathogenic variants Testing 

datasets: Benign: benign 
variants; Pathogenic: 

pathogenic ClinVar variants, 
somatic cancer mutation 

frequencies 

Effective tool for 
protein-coding impact 
prediction; may not be 

informative for 
poorly-conserved 

regions 

[73,74] 

CryptSplice 

Impact of variants on 
existing splice sites, 

cryptic splice site 
prediction 

SVM with RBF 
kernel 

True and false splice sites 
from GenBank-derived 

datasets 

Identify creation of 
cryprtic acceptor/donor 

site; use of a quite 
obsolete database 

[77] 

DARTS 

Prediction of 
alternative splicing 

using both cis sequence 
features and mRNA 
levels of trans RBPs 

DNN and 
Bayesian 

Hypothesis 
Testing 

RNA-seq data (*)  
Evaluation of RBP 
impact on splicing [81] 

MMSplice 

Multiple predictions: 
exon skipping, 

competitive 
interactions, changes in 
splicing effciency, and 

pathogenicity 

Modular NN, 
linear and 

logistic 
regression 

Donor/acceptor modules: 
GENCODE v24 true (known 

sites) and false (random 
sequences) splice sites 

Exon/intron modules: MPRA 
data from [82] 

Easily clinically 
applicable training set; 

contains false 
positive/unverified sites 

[83] 

MutPred 
Splice 

Impact of coding 
region substitutions on 

disruption of 
pre-mRNA splicing 

Linear SVM 

Positive: HGMD exonic 
disease-causing/disease-assoc

iated variants Negative: 
HGMD disease-causing 

missense, not reported to 
disrupt exon splicing, high 

frequency exonic SNPs (SNP- 
from 1000 Genomes Project 

[84] 

Suitable for use in an 
NGS high-throughput 
setting to identify and 
prioritize potentially 

splice-altering variants 

[85] 

PEPSI 

Prediction of coding 
and noncoding variant 
impact on pre-mRNA 

splicing based on 
sequence conservation, 

RNA secondary 
structure, and 

regulatory sequence 
elements 

Random forest 
regression model 

Data obtained form the 
Vex-seq experiment 

(measurement of the ΔPSI of 
2055 variants from the Exome 

Aggregation Consortium 
(ExAC; [Kircher et al., 2014]) 

v24 a selection of 
chromosomes as training set, 
the remaining ones as testing 

set (*) 

Indels and intronic 
variants included [79] 

S-CAP 

Score of variant 
pathogenicity using 

compartmentalization 
of genomic regions 

DNN 

Pathogenic variants selected 
from HGMD and ClinVar; 

benign variants from 
gnomAD 

Evaluation of intronic 
pathogenic variants; 
variants lying more 
than 50 bp into the 

[78] 
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intron are not covered 
by the model 

SPANR Cassette exon skipping 
prediction 

NN modeled on 
Bayesian 

framework 

PSI values for all human 
exons across 16 tissues, based 
on the Illumina Human Body 

Map project (*) 

Web server easy to use, 
availability of a dataset 
of pre-computed scores 
for all eligible variants 

in the genome; 
evaluation of exon 

sequence only 

[86] 

SpliceAI 
Prediction of variant 

impact on loss or gain 
of acceptor/donor sites 

32-layer DNN 

Protein-coding transcripts 
from GENCODE v24 (a 

selection of chromosomes as 
training set, the remaining 

ones as testing set) (*)  

Very powerful tool able 
to use a “near-agnostic” 

approach 
[80] 

SpliceFinder 

Classification of 
variants based on 

impact on donor site, 
acceptor site or 
non-splice-site 

CNN 

Sequences of donor, acceptor, 
and non-splice-site, randomly 

selected from human 
reference genome (90% for 

training, 10% for testing, and 
then 20% of the training data 

for validation) 

Non-canonical splice 
sites can also be 

predicted correctly; 
decreased number of 

false positives 

[87] 

TraP 
Quantification of 

impact of variant on 
transcripts 

Random forest 

Benign: De novo mutations in 
healthy individuals 
Pathogenic: selected 

synonymous variants 
associated with rare disease 

(*) 

High performance in 
distinguishing 

pathogenic and benign 
variants, both intronic 

and synonymous; 
evaluation of potential 

impact of variants 
across multiple 

transcripts 

[75] 

(*) data from NGS experiments. SVM: Support Vector Machine; RBF: Radial Basis Function, DNN: Deep Neural Network; 
NN: Neural Network; CNN: Convolutional Neural Network. 

6. Interpretation and Evaluation 
Considering the number of in silico tools available for splice variant impact predic-

tion, the choice and interpretation of results may be challenging. It may sound obvious, 
but the starting point for a good result analysis is to know the bases and the assumptions 
of the different tools. 

A tool predicting competitive splice site interactions, for example, gives information 
different form one predicting exon skipping, and their results can be conflicting, simply 
because they analyze diverse features. On the other hand, this can become a strength for 
the prediction, since the different approaches adopted by the different tools provide the 
users with the possibility to evaluate variant impact from many perspectives. In general 
terms, in silico tools may perform predictions either on splicing impact or pathogenicity 
of a variant. In the first case, most tools report analysis results as a score, that is a nu-
merical measure of the strength of the splicing signal. The range may varies, but in gen-
eral a higher score corresponds to a stronger similarity to the consensus sequence or a 
greater probability that a site is a true splice site. However, a score is just a number 
whether there is no an affordable threshold separating positive sites from negative ones. 
It is possible to set a cutoff value to evaluate though a variant is causing splicing defects, 
but this value is usually arbitrarily chosen by the users and can change across different 
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tools in different studies [88]. Therefore, it may provide useful information, but should 
not be regarded as an absolute reference to discriminate between variants. 

In the case of tools predicting variant pathogenicity, users should be aware that the 
training of a model is based on human annotations of pathogenicity, reported in data-
bases as ClinVar [70]. These annotations reflect the current variant classification and the 
current knowledge of splice-impacting variants, and probably report some misclassifica-
tion for the less characterized splice variant types [35]. This is a common bias of predic-
tion tools: all of them are based on, or learn from, available experimental data and data-
bases, thus they can be improved only obtaining a higher number of validated data. For 
this reason, a continuous update of databases is fundamental to progressively implement 
and refine prediction reliability. 

Based on these considerations, as a general approach, the use of multiple tools, re-
lying on different assumptions, for splice variant impact prediction is recommended. The 
different programs have different strengths and weaknesses, depending on the algorithm 
they use, and this may allow reducing the possibility of errors. Of course, since the prac-
tical use of tools and the result interpretation is not always easy and often 
time-consuming, the tools that analyze more features simultaneously may be very help-
ful. 

On the other hand, care may need to be taken with the tool selection: many of them 
do use different algorithms, but these algorithms are actually based on similar assump-
tions. In this case, the combination of predictions from different tools does not strengthen 
the analysis and should be considered as a single evidence in variant interpretation [84]. 
In addition, many tools share common limits. Only few tools (CADD, MMSplice, and 
SpliceAI), for example, are able to predict the splice impact of indels, even though indels 
involving specific region, as the PPT, may exert relevant effects on splicing even more 
than single nucleotide variants [89,90]. Additionally, deep intron variants are rarely in-
cluded in the analyzed regions or in the training sets, thus many tools may be poorly ef-
fective in predicting splice modifications involving these low-frequency sites. 

Another underestimated mechanism is the presence of long-distance splicing inter-
actions: splicing may be also affected by the interactions of trans-acting splicing com-
plexes with binding sites across all intron lengths [91,92]. SpliceAI considers a wider 
genomic context than other tools, with a significant increase of model performance. In 
addition, this tool may be very useful in the research of long-range determinants of 
splicing, providing novel information and eventually increasing and deepening our 
knowledge of splicing mechanisms. 

As better discussed below, the ACMG guidelines have recently defined the criteria 
for splicing variant evaluation [4]. In particular, they state that the computational evi-
dence should not be overestimated, also considering that the algorithms can have vastly 
different predictive capabilities for different genes. In general, only though all the pre-
dictive tools agree on the prediction, this evidence can be counted as supporting. How-
ever, these are anyway predictions, and their use in sequence variant interpretation 
should be cautious. It is not recommended that they be used as the only source of evi-
dence for clinical and diagnostic aims, but any positive findings from in silico tools ne-
cessitate to be confirmed using in vitro approaches. 

7. Validation of Predicted Splicing Variants 
Validation methods, which complement and substantiate predictive analyses, con-

sist in the studies of the functional effect produced by a potential splicing variant. Func-
tional testing can be performed on RNA (transcriptomics analysis) and/or at protein level 
(proteomics experiments) [26]. 
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7.1. Transcriptomics Functional Testing 
Transcriptome analysis focuses only in the protein-coding region of a gene, facili-

tating the detection of variants that influence RNA expression rather than detection on 
DNA [93]. Before the description of different functional testing, the major advantages 
and disadvantages of RNA handling need to be explained. Although RNA isolation from 
patients is considered a simple and fast procedure, RNA manipulation is not so easy. 
Other weaknesses are represented by the purity and the degradation rate of this genetic 
material. In practice, the identification of cell lines and/or tissues as optimal source of 
RNA is still challenging. In the majority of cases, blood (leukocytes) or cultured cells 
(generally fibroblasts) represent the best options to isolate a huge amount of RNA from 
patients in order to identify splicing defects [93,94]. Tissues may be the ideal source for 
comparison of effects resulting from aberrant splicing in healthy and affected samples 
and should definitively determine if the splicing mutation causes disease. However, the 
appropriate tissues are often not available and, when available, the genetic material suf-
fers from fixation treatment, so it is hard to obtain high yield of RNA [94,95]. In addition, 
RNA is a highly prone-to-degradation molecule and the NMD process [96] represents the 
predominant cause of false-negative results in RNA analysis. If cells tend to prevent the 
translation of aberrant splice transcripts (carrying the mutated allele), which are com-
monly degraded, only the normal allele is detectable (in heterozygosis condition) and 
splicing cannot be proved [28,93]. In order to circumvent NMD, patients’ cells need to be 
treated with puromycin or cylcoheximide (the most common NMD inhibitors) to stabi-
lize RNA and resolve this intrinsic problem [26,95,97]. 

Experimental procedures for identification of the alternative splicing sites can be 
classified into two groups on basis of their degree of multiplexity, which is a measure of 
how many different genes can be investigated by a given experiment. The class of “low to 
mid-plex methods” includes Northern blotting, RT-PCR and minigene assay, while mi-
croarrays, Tiling array and RNA-seq are methods belonging to the “higherplex technol-
ogies” [98]. 

Northern blotting is a relatively old technique that can be performed for detection 
and quantitation of mRNAs in order to determine whether the predicted variant affects 
splicing. The procedure is based on hybridization of patient-isolated RNA with specific 
radioactively-labeled RNA probes to obtain information about size and amount of RNA 
encoded by the gene of interest [99]. Quantifying RNA is useful to measure the expres-
sion of a particular gene, and this method can also provide a direct comparison of RNA 
level between several samples, based on size disparity between differentially spliced 
transcripts by electrophoresis [100]. In general, Northern blot requires a huge amount of 
RNA and measures only steady-state mRNA levels. All these limitations lead to choose 
the PCR, a more accurate technique, as preferred validation method of predicted splicing 
variants [101]. 

Reverse transcription PCR (RT-PCR) is one of the most used and low-cost methods 
to reveal if the identified variant can influence the mRNA sequence [26]. This highly 
sensitive approach, consisting in the amplification of the target sequence and following 
detection of products on agarose gel, requires a low quantity of RNA for the analysis of a 
large number of samples and several different genes in one single experiment. Over the 
years, a multitude of PCR-based strategies has been developed, followed by Sanger se-
quencing, to successfully identify the precise mutation causing aberrant splicing. 

An alternative method to RT-PCR and sequencing is represented by the minigene 
assay, which compares the splicing mechanism of mutant and wild-type exons within an 
alternatively spliced gene [102]. It is based on the cloning of the specific sequence of in-
terest, with and without mutations, in a plasmid. In case of exonic mutations suspected of 
affecting splicing, the exon and a small amount of flanking intronic regions are inserted 
into the construct, whereas deep intronic mutations can be detected inserting into the 
minigene the two exons surrounding the intronic region of interest. Cells transfected 
with the plasmid will produce the mRNA derived from the minigene that can be selec-
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tively amplified by RT-PCR and then analyzed on agarose gel [95]. This system may be 
useful for analysis of genes with a reduced expression in leukocytes or fibroblasts [103]. 

Several advantages over previous approaches have been obtained with the devel-
opment of high-throughput technologies, either hybridization- or sequence-based, to 
unravel the complexity of transcriptome. In particular, Microarrays and direct RNA se-
quencing have been widely used in order to validate the in silico predictions [28,104]. 

The microarray method belongs to the hybridization-based approaches. It uses mi-
crochips covered with short probes for the large-scale analysis of gene expression [105]. 
Patients’ isolated-RNA and reference RNA are fluorescently labelled and then hybrid-
ized on the array. Following hybridization, fluorescent signals on microarray are cap-
tured by a laser system, generating an image to evaluate gene expression and for subse-
quent data processing (Figure 3) [106,107]. 

Monitoring simultaneously thousands of genes, microarray approach can detect 
splice site mutations and identify diagnostic or prognostic biomarkers which allow to 
discover a different expression pattern in healthy and disease conditions [108]. However, 
the sensitivity of microarray (detection range comprised between 1 and 10 copies of 
mRNA per cell) may result insufficient in case of low-expressed genes, limiting detection 
of relevant changes [107,109]. The whole-genome tiling array, an updated version of mi-
croarray, has been designed to cover the entire genome and not only specific regions, 
providing a global and more unbiased view of gene expression in samples with different 
clinical conditions [110,111]. Nevertheless, both conventional and whole-genome micro-
arrays are affected by numerous sources of noise, such as background problems and 
non-specific hybridization [112,113], threatening the reliability of analysis [104]. 

 
Figure 3. Microarray technology. RNA of two samples (normal/reference RNA and patient-isolated 
RNA) are differently labeled, mixed, and then spotted on the same microchip. After hybridization, 
the chip is scanned at two wavelengths to capture signals of the two different dyes. Scanner of the 
array generates an image for interpretation of the results. Green spots indicate expression in nor-
mal cells, while red spots indicate only expression in affected cells. Yellow signal means 
co-expression (not significant result). 

Recent advances in new sequencing technologies have triggered an increasing shift 
from hybridization arrays towards sequence-based methods, in order to improve the 
detection of novel splicing sites [114,115]. For example, RNA-seq (RNA sequencing) has 
emerged as a new tool for the investigation of the whole transcriptome by directly se-
quencing cDNAs, improving gene expression studies, and unraveling the complex na-
ture of alternative splicing mechanism [115]. As reported by Saedian and collaborators, 
the power of RNA-seq technology resides in the capability to identify pathogenic vari-
ants which cannot be captured by Whole Exome Sequencing (synonymous/silent and 
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nonsynonymous/nonsense exon variants or mutations occurring in deeply intronic re-
gions) probably affecting splicing events [26,116,117]. 

RNA-seq workflow is depicted in Figure 4. 

 
Figure 4. RNA-sequencing workflow. RNA-seq is a three-step method: (1) library construction; (2) 
sequencing; (3) bioinformatic analysis. The RNA species of interest is selected and converted to 
complementary DNA, which is then amplified by PCR in order to prepare a sequencing library. 
Sequencing results in the generation of short sequences (reads) that need to be aligned to a refer-
ence genome. Then, different approaches can be used for transcript assembly to detect quantitative 
gene expression. 

Briefly, the initial phase consists in the RNA isolation using standard procedure, 
followed by the selection of an RNA subtype among different subpopulations (mRNA, 
tRNA, ncRNA, miRNA) [115]. The construction of an appropriate RNA-seq library is the 
next key step, which determine how accurately the final sequencing output reflects the 
original transcriptome [104]. RNA is fragmented to create short transcripts (200–500 bp) 
in order to minimize secondary structure formation and to reduce end biases [118]. RNA 
sequences are then converted into cDNA which undergoes 3′-adenylation and ligation of 
adaptor molecules to both ends of the fragments before amplification through PCR [119]. 
PCR products are then subjected to sequencing that will produce shorts sequences 
(reads) to align with a reference genome to perform the gene expression profile [120]. 

RNA-seq provides a powerful tool for transcriptome-based applications beyond the 
limitations of microarrays, but it also has some pitfalls. Benefits and drawbacks of the 
two methodologies and the main differences between them are following discussed and 
listed in Table 5. 

First of all, RNA-seq analysis consists in the full sequencing of the whole transcrip-
tome and can detect a larger percentage of differentially expressed genes compared to 
microarrays which are limited to pre-defined genes and analyze only a portion of pro-
tein-coding regions. Together with the higher specificity and sensitivity, an important 
benefit of RNA-Seq over microarrays is represented by its ability to quantify almost all 
types of RNAs, mapping the whole genome and enabling identification of new tran-
scripts and previously unrecognized splice variants. By contrast, microarray requires the 
indispensable a priori knowledge of the sequences being investigated and tran-
script-specific probes [115], which reduce gene expression analysis across a narrower 
dynamic range, significantly limiting new splicing variants discovery [120–122]. 
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Table 5. Benefits and drawbacks of high-throughput technologies [114]. 

 Microarray Rna-Seq 

Benefits 
• Availability of standardized approaches and

protocols 
• Low cost procedure (compared to RNA-seq) 

• Analysis of the whole transcriptome 
• Wide dynamic range 
• Alternative splicing sites can be detected

with no biases 
• High specificity and sensitivity 

Drawbacks 

• Analysis only for pre-defined genes 
• Limited dynamic range 
• Absence of specificity for hybridization-based 

approach 
• Eventual loss of new variants 
(depending on probe density) 

• Optimization of the protocols is still poor 
• Expensive procedure compared to micro-

array 
• Complex data analysis 

However, the RNA-Seq approach has some challenges that prevent a complete 
technological switch to sequencing in gene expression profiling: (1) RNA-seq produces 
large size files, which are considerably more complex than microarray results; (2) Se-
quencing data analysis requires an advanced bionformatic approach and expensive 
computational tools; (3) There are no standard protocols and adequate reference data-
bases, which make data interpretation more difficult; (4) although RNA-seq has become 
increasingly affordable, RT-PCR followed by Sanger sequencing is more manageable in 
term of costs [120]. 

7.2. Proteomics Analysis 
Differently from functional testing on genetic materials, proteomics analysis is usu-

ally performed by immunohistochemistry. By contrast to RNA-based techniques, pro-
teins are not commonly isolated from patients’ samples because of high risk of contami-
nation during the extraction procedure that can mostly give low yields of product [93,94]. 
In order to test a protein on a functional level, the Protein Truncation Test (PTT) or 
In-Vitro Synthesized Protein assay (IVSP) [123] was developed to identify variants that 
introduce a premature stop codon, compromising protein translation. In practice, the 
procedure consists of a RT-PCR followed by in vitro translation of the PCR product into 
proteins or radiolabelled proteins through the 3H-Leucine incorporation. Performing the 
SDS-PAGE, proteins are separated on basis of their size. Additionally, when radioactive 
amino acids are used, gel is then blotted and exposed to X-ray. In both non-radioactive 
and radioactive PTT the analysis will reveal if shorter than normal-size variants are 
synthesized. Obtaining proteins of lower mass than the expected full-length proteins 
means that there are mutations in the analyzed gene (i.e., deletions, duplications, and 
variants affecting splicing) affecting the normal RNA processing (Figure 5) [26,124]. 

Once truncated proteins have been identified, an in vitro assay could then be de-
signed to directly test their function in cellular pathways and biological processes, for 
example, their DNA binding properties or enzymatic activity. Of course, performing 
DNA sequencing, splicing site mutations can be validated as variants encoding aberrant 
proteins. 

Of note, false positive PTT results only rarely occurs, by contrast of several causative 
events that might produce false negatives results: low-purity RNA and errors during 
amplification process [93]. 
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Figure 5. Overview of the protein truncation test. DNA or cDNA obtained from RNA by re-
trotrascription can be used as a template to perform PCR. During amplification process, an RNA 
polymerase promoter and a translation initiation sequence (ATG) are added to products, together 
with a consensus Kozak sequence to improve the process. Then, the RNA polymerase promoter 
initiates transcription and the ATG sequence is used to start translation of RNA into protein. PCR 
fragments are then separated on basis of their size by agarose gel-electrophoresis, and mutations 
affecting splicing can be revealed. In the radioactive PTT, addition of radiolabelled amino acids in 
nascent proteins requires blotting after SDS-PAGE and then exposition to X-ray to analyze results 
(not shown). Finally, only DNA sequencing can confirm if the production of truncated proteins is 
due to aberrant splicing. 

Several improvements have been made over time to the original procedure in order 
to increase the experimental throughput: in example, the substitution of radioac-
tive-labeled with biotin-labeled amino acids has facilitated detection through fluores-
cent-conjugated antibodies, or the use of specific protein tagging N- and C-terminal se-
quence of the synthesized proteins has allowed to detect truncating changes without 
performing SDS-PAGE [124,125]. 

Two-dimensional gel electrophoresis, Western blotting, and mass spectrometry are 
considered alternative methods to the PTT assay, even if they detect truncating variants 
as well as variants carrying amino acid substitutions [93,110], without testing functional 
activity of the mutated protein. 

Despite advancements in the procedure and the employment of alternative meth-
ods, PTT has been mostly replaced by sequencing technology; however, it still remains a 
good method to test functional activity of aberrant proteins already validated by tran-
scriptomics, with a detection efficiency close to 100% [26,93]. 

8. Splice Variant Characterization in Diagnostics 
The recent NGS technologies allow sequencing large panel of genes, or whole exo-

mes and genomes, for a wide range of disorders, and identifying candidate causative 
variants for these conditions. The assessment of the real functional impact of variants on 
genetic diseases is a key element in the proper interpretation of their clinical significance. 
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This evaluation may be particularly challenging in the case of variants affecting the 
splicing process. While the variants that impact donor and acceptor splice site motifs are 
usually identified as splice variants, exonic and intronic variants outside of the donor and 
acceptor splice site motifs are often overlooked. The American College of Medical Ge-
netics and Genomics (ACMG) have recently developed updated guide lines for the in-
terpretation of sequence variants, including splice site variants [4]. ACMG guidelines 
remind that it is important to evaluate the possibility that a variant may act directly 
through the specific DNA change rather than through the amino acid change. Exonic 
variants should not be annotated as synonymous, missense, or nonsense, based on pre-
dicted codon and the amino acid they affect, but an analysis of their impact on splicing 
should be performed. Of course, this analysis should take into account the patient’s clin-
ical history. For example, the segregation of the variant with a phenotype in a family is 
evidence for the association of the variant with the disorder, even though that variant has 
been classified as “silent”. Therefore, further studies on actual role of the variant in the 
disease are needed before assuming that a synonymous nucleotide change will have no 
effect. In addition, some disorders are characterized by highly stereotyped variants that 
introduce a premature termination codon in the protein [126]: in this case an evaluation 
of splice impact of a variant classified as “missense” should be considered. It must be 
remembered that a splice variant causing deletion (or insertion) of one or more amino 
acids, and then strongly modifying the protein, is more likely to disrupt protein function 
than a missense variant changing only one amino acid. Care must be also taken to po-
tential in-frame deletion/insertion, which could anyway alter protein critical domains 
and potentially lead to a gain-of-function effect. 

Deep intronic variants are also more difficult to characterize: only a few data on 
them are available, since they are poorly considered in clinical testing, as the routine 
analyses do not include these genomic regions. However, the analysis for the presence of 
such variants should be evaluated when the identification of potentially pathogenic var-
iants in the coding regions and exon/intron boundaries is not effective, and the patient 
presentation is highly suggestive of a variant in a specific gene [26]. 

Since misclassification of variants have been reported for several diseases [127–131], 
an accurate evaluation of potential variant impact on splicing is recommended. A scheme 
resuming the strategy to characterize splice variants is depicted in Figure 6. 

The first step of this analysis is an in silico approach, using tools able to predict the 
effect of a variant on splicing. The algorithms can have different predictive reliability for 
different genes, and display their own strengths and weaknesses, therefore it is recom-
mendable to use several tools, or tools incorporating different kind of predictions. Of 
course, the choice of the tool is crucial: it is necessary to consider the location of the var-
iant in the gene (exonic, intronic, deep intronic), and use a tool able to analyze that spe-
cific region. The advent of ML-based approaches has recently increased the predictive 
power and enhanced the genomic regions considered for the prediction. 

As a general rule, when all of the in silico programs agree on the prediction, then 
this evidence can be considered as supporting. However, though in silico predictions 
disagree, then this evidence should not be used for variant classification. When predic-
tion algorithms neither predict an impact on a splice consensus sequence nor the creation 
of a new splice consensus sequence, and the nucleotide position is not conserved over 
evolution then it is less likely that the variant affects the splicing [4]. 

Nevertheless, these tools perform predictions, and their use in sequence variant in-
terpretation should be cautious. It is not recommended to use these predictions as the 
sole basis to make a clinical evaluation. An experimental confirmation is always neces-
sary. 
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Figure 6. Strategy for splice variant characterization. 

Validation methods can be performed both at gene (mainly through RT-PCR and 
RNA sequencing) and at protein level (using PTT). Even with the advent of 
high-throughput methodologies, which allow to fully characterize the transcriptome, 
conventional experimental RT-PCR, followed by Sanger sequencing, remains the pre-
ferred method of analysis for diagnosis of diseases caused by aberrant splicing. For the 
investigation of a genotype–phenotype correlation in research, RT-PCR may be replaced 
by microarrays or predominantly by direct sequencing of cDNA, even if RNA-seq is still 
highly expensive and data interpretation is difficult and troublesome for many laborato-
ries. 

9. Conclusions 
Variants affecting splicing account up to 15% of all point variants causing human 

genetic disorders. However, recent laboratory evidence has shown that the percentage of 
these variants seems to be underestimated, since it considers mainly variants involving 
canonical splice sites. The proper classification of splice variants is essential for the cor-
rect diagnosis and genetic counseling. It is currently based on predictive bioinformatics 
analysis and experimental validation. 

Prediction tools and experimental procedures are directly linked to each other. The 
availability of experimentally validated variants is fundamental for the continuous up-
date of variant databases. All the prediction tools are based on, or learn from, verified 
variant classification; thus, they may be enhanced only by acquiring more validated ex-
perimental data. On the other hand, reliable predictions provided by effective tools may 
guide variants classification and reduce the number of variants to validate. For this rea-
son, it is important to deepen our knowledge of splicing process, extending the studies 
outside of the canonical donor and acceptor splice site motifs for splicing mechanisms, in 
particular in intronic regions. Concurrently, clinical variants databases must be updated 
with validation results. These advances will be critical to increase the accuracy of bioin-
formatics predictions and thereby improve the assessment of variant pathogenicity. 
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