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Abstract: Twenty years since their first derivation, human pluripotent stem cell-derived
cardiomyocytes (hPSC-CMs) have shown promise in disease modelling research, while their potential
for cardiac repair is being investigated. However, low transfection efficiency is a barrier to wider
realisation of the potential this model system has to offer. We endeavoured to produce a protocol for
improved transfection of hPSC-CMs using the ViafectTM reagent by Promega. Through optimisation
of four essential parameters: (i) serum supplementation, (ii) time between replating and transfection,
(iii) reagent to DNA ratio and (iv) cell density, we were able to successfully transfect hPSC-CMs
to ~95% efficiencies. Transfected hPSC-CMs retained high purity and structural integrity despite a
mild reduction in viability, and preserved compatibility with phenotyping assays of hypertrophy.
This protocol greatly adds value to the field by overcoming limited transfection efficiencies of
hPSC-CMs in a simple and quick approach that ensures sustained expression of transfected genes for
at least 14 days, opening new opportunities in mechanistic discovery for cardiac-related diseases.

Keywords: human pluripotent stem cell-derived cardiomyocytes; transfection; ViafectTM;
disease modelling

1. Introduction

Transfection is the introduction of foreign DNA into a cell to assess gene expression, evaluate
gene silencing and for the analysis of recombinant proteins [1]. Transfected cells enable the study
of genes and their functions by either repression or overexpression and to produce recombinant
proteins. The first transfection protocols date back to the 1960’s by Pagano and Vaheri [2]. Since then,
numerous methods have been developed which are organised into three groups: chemical, physical and
biological [3]. The introduction of DNA is either transient or stable, resulting in: a shorter expression
window due to non-integration of the material to the genome vs. continuous expression through the
passing of DNA onto the progeny [4]. The objective of the experiment (or the cell type) determines the
choice between the two approaches. Transient methods can be affected by loss of transfected DNA
through cell division or by degradation by nucleases, whereas maintaining stable expression can be
hindered by toxicity of the transgene or silencing by gradual epigenetic mechanisms, particularly
when regulatory pathways are involved [5–7].

Efficient transfection methods can greatly support disease modelling research to clarify genetic
causation and disrupt pathological signalling pathways. Despite accounting for 31% of global deaths
worldwide in 2017 [8], the disease mechanisms of many cardiac disorders are poorly understood,
especially those in the cardiomyopathies [9]. At present, human pluripotent stem cell (hPSC)
derived cardiomyocytes (CM) might be one of the best resources to promote cardiac repair [10,11]
and model cardiac disorders, complementing preceding in vivo models [9,12,13]. Transfection of
hPSC-CMs provides further mechanistic insight into these diseases, towards the development of
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improved and effective treatments, which are still elusive in several cardiac disorders such as
cardiomyopathies [14]. For instance, the overexpression of long non-coding RNA (lncRNA) Ahit
in mice was performed to modulate the hypertrophic response and to identify interacting partners
and novel disease mechanisms [15]. Additionally, sustained overexpression of genetically-encoded
calcium or voltage sensors may be used to establish reporter cell lines of hPSC-CMs, which currently
require suboptimal genome integration or short-lived dyes [16,17]. Finally, overexpression may also
be used to promote more efficient cardiomyocyte differentiation and maturation [18]. Altogether,
hPSC-CM transfection can greatly benefit the research community, particularly if high efficiency
protocols are available.

Nevertheless, there is an unmet need to improve transfection protocols in hPSC-CMs,
which presents a barrier to full realization of the opportunities for these cells as model systems
and research tools into cardiac disorders. This is a critical requirement, as a PubMed search reflects an
exponential increase in publications on the subject of human induced pluripotent stem cells (hiPSC)
and also hiPSC-CMs, but displays a severe deficiency in the number of papers on the transfection of
hiPSC-CMs (Figure 1). In comparison to the 2133 publications on the topic of hiPSC-CMs since 2000,
there are only 85 publications referring to transfection with even best-in-class physical or chemical
methods achieving between 20% and 56%, respectively [19,20]. The importance of obtaining a high
transfection efficiency (TE) for enhanced mechanistic understandings of disease compels us to explore
better transfection methods for hPSC-CMs.
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Determining which transfection protocol to employ requires the consideration of several factors:
(i) proliferation rate of cell type of interest, (ii) cost-effectiveness, (iii) compatibility with downstream
experiments and (iv) the desirable transfection efficiency (TE) level. Most kits and reagents are
expensive and will require some degree of optimisation. Physical techniques (such as electroporation
or nucleofection) can cause cell death through disruption of the cell membrane and might also require
the purchase of specialist equipment [22]. Some chemical procedures such as lipofection, the use of
liposomes to fuse to cell membranes of the target cells, can affect expression of the introduced DNA,
cause chemical toxicity to some cell types and also reduce the TE [23]. Finally, biological methods such
as viral vectors can be exceptionally hazardous to the operator and can also have mutagenic effects in
the targeted cells due to unintended insertional mutagenesis [24,25]. Moreover, some cell lines are
more challenging to transfect [3]. Certain biological properties of cells can make the uptake of DNA
difficult, e.g., those that grow in clumps which display reduced cell membrane area availability, as well
as highly confluent cells. Another desirable feature for effective stable transfection is constant nuclear
envelope reformation due to rapid division, which hPSC-CMs do not possess since they are largely
quiescent cells [26].

Through systematic optimization, we have found that Viafect™ is a reagent that can provide very
high efficiency for the transfection of cardiomyocytes. This cationic delivery reagent in an aqueous
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solution functions by interacting with the negatively charged DNA, allowing its passage into the cell by
preventing the electrostatic repulsion of the cell membrane [27]. The transfection of CMs using Viafect™
is transient as the DNA inserted does not integrate into the genome. However, hiPSC-CMs show
very limited proliferation rates, thus preventing the dilution of the transfected DNA over time [28].
Our overarching goal of transfecting hPSC-CMs is to identify novel targets that may be underlying
molecular mechanisms of cardiomyopathy progression.

Herein, we describe the steps for high TE of hPSC-CMs, with a focus on optimisation of serum
content, reagent:DNA ratio, and the importance of seeding density and timing. Optimisation was
carried out in CMs derived from an in-house cell line known as REBL-PAT, an hiPSC line previously
described [29]. CMs derived from a human Embryonic Stem Cell (hESC) line known as HUES7 [30]
were also used to validate this method in independent CM lines. While the determined key parameters
(serum supplementation, time between replating and transfection, reagent:DNA ratio and cell density)
are generally applicable across various hPSC lines, the end user should optimise them due to the
existence of various hPSC-CM culture protocols [31].

2. Materials and Methods

2.1. Materials

• Vitronectin–Recombinant Human Protein, 500 µg/mL in PBS, (Gibco™, Thermofisher,
Loughborough, UK, Cat. No: A174700)

• Phosphate Buffer Saline (PBS, Gibco™, Thermofisher, Loughborough, UK, Cat. No: 14190–094)
• Nunc 96-well Flat Bottom, Delta Coated (Thermofisher, Loughborough, UK, Cat. No: 167008)
• B-27™ Supplement (50X), custom (Gibco™, Thermofisher, Loughborough, UK, Cat.

No: 0080085SA)
• RPMI 1640 medium (Gibco™, Thermofisher, Loughborough, UK, Cat. No: 21875034)
• Fetal Bovine Serum (FBS, Gibco™, Thermofisher, Loughborough, UK, Cat. No: 11573397)
• Viafect™ (Promega, Southampton, UK, Cat. No: E4981 1X 0.75 mL, E4982 2X 0.75 mL)
• Opti-MEM™ (Gibco™, Thermofisher, Loughborough, UK, Cat. No: 31985070)
• Axygen™ MaxyClear Snaplock Eppendorff tubes, 1.5 mL (Axygen™, FisherScientific,

Loughborough, UK, Cat. No: 11326144)
• Concentrated plasmid DNA of interest (100 ng per well of a 96 well plate is required); if using

more than one plasmid divide by the number of plasmids to ensure total of 100 ng per well
• pmaxGFP from Lonza™ P3 Primary Cell 4D-Nucleofector™ X Kit L, (FisherScientific,

Loughborough, UK, Cat. No: 11326144), or any other eGFP reporter plasmid high content imaging
• Cellavista® (Synentec, BPES, Kent, UK) or any other fluorescence plate imaging system

2.2. Methods

Details on culture, differentiation and dissociation of hPSC-CMs can be found in the Supplementary
Methods. All the steps were performed in sterile conditions in a type II Biological Safety Cabinet,
and cells were maintained in a humidified incubator, at 37 ◦C and 5% CO2 (Heracell).

2.2.1. Replating hPSC-CMs

1. Prepare a solution of Vitronectin at 5 µg/mL in PBS (1:100 dilution from stock). A total of 5 mLs is
enough to coat a whole 96 well plate.

2. Coat a Nunc 96-Well Flat Bottom Delta plate with 50 µL of Vitronectin solution at 5µg/mL.
Incubate at room temperature (RT) for 1 h.

3. Supplement RPMI 1640 with a B27 supplement (RB27, 1:50 dilution from the stock), aliquot
enough for 75 µL/well X the number of wells to be used and let it reach RT. OPTIONAL STEP
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you may use other culture media and extracellular matrix proteins provided they have been
optimised for cardiomyocyte culture.

4. Aspirate the Vitronectin and wash with 50 µL PBS. Aspirate PBS and add 75 µL RB27 per well.
5. Resuspend pelleted pre-dissociated hPSC-CMs at 1 × 106 cells/mL in RB27, forming a single

cell suspension.
6. Replate hPSC-CMs at a density ranging from 3.0 × 104 to 4.0 × 104 per well (~95–125 K/cm2)

in wells containing 75 µL RB27. Allow the cells to settle for 30 min at RT before placing in
the incubator.

7. Replace medium with 100 µL/well RB27 every other day for 3 days post plating.

2.2.2. Transfecting hPSC-CMs

1. On the morning of transfection, replace media with 90 µL/well RB27 supplemented with 10% FBS.
2. Calculate transfection mixture so that each well of a 96 well plate is transfected with 100 ng of

plasmid DNA:

a. Volume of plasmid(s) =
100 ng/well×number of wells
Plasmid concentration (ng/µl)

b. Volume of Viafect (µL) (6:1 ratio) = 6× total plasmid mass in µg
c. Volume of OptiMEM (µL) = (number wells × 10) −Vplasmid − VViafect

3. Before pipetting, allow the reagents to reach RT and mix by inverting.
4. On the afternoon of transfection, add the reagent volumes calculated in step 9 to a 1.5 mL

Eppendorff tube.
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CRITICAL STEP Flick tube to homogenise transfection mixture (do not vortex or pipette
mix). Incubate at RT for 20 min.

5. Add 10 µL of transfection mixture to each well, directly into the medium without touching
the cells.

6. Place cells in an incubator at 37 ◦C and 5% CO2. Replace media the following day with RB27 with
or without FBS (as per your standard culture practises) and then every second day from thereon
until performing desired phenotypic assay.

7. Measure transfection efficiency using an appropriate reporter gene (e.g., GFP), preferably using a
high content imaging system.

3. Results

The transfection of hPSC-CMs using Viafect™ was optimised in four main parameters: (i) serum
content, (ii) the day of transfection after replating, (iii) ratio of Viafect™ to DNA and (iv) the cell
seeding density (Table 1).

Table 1. Optimal conditions for transfecting hPSC-CMs with high efficiency.

Condition Optimal Range Tested

Serum content 10% FBS 0−20%
Day of Transfection after replating 3 days 1–7 days

Ratio of Viafect™ (µL) to DNA (mass) 6:1 6:1-25:1
Seeding Density per well (96 well plate) 30–40 K 10–50 K

hPSC-CMs were generated following previously published methods achieving >95% purity [29],
quantified by high-content imaging of α-actinin (Supplementary Figure S1a–c), as detailed in [32].
Cardiomyocytes were then transfected with a pmaxGFP reporter plasmid and the transfection
efficiency was evaluated by measuring the percentage of cells expressing GFP using fluorescent
imaging (Figure 2a). Optimisation was carried out in two steps. First, different ratios of Viafect™:DNA
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were compared, versus the amount of FBS in the media (Figure 2b). The 6:1 Viafect to DNA ratio in
hiPSC-CMs cultured in RB27 supplemented with 10% FBS yielded the greatest TE (~95%, Figure 2c),
whilst maximizing cost-effectivity. Subsequently, we assessed how the day of transfection after replating
affected TE. We observed that 3 days post-dissociation maximises transfection efficiency by allowing
cardiomyocytes enough time to attach and recover from the dissociation procedure and be receptive to
uptake DNA. Following our optimisation, we assessed how long expression could be sustained for
in hiPSC-CMs, considering the transient transfection nature of this transfection. For this, cells were
transfected with a strong promoter plasmid driving the expression of a lncRNA being investigated for
its potential role in hypertrophic cardiomyopathy. The fold change of expression was quantified by
qPCR at 4, 7 and 14 days post transfection. Surprisingly, we observed that lncRNA overexpression was
maintained in hiPSC-CMs for up to at least 14 days (Figure 2d).
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Figure 2. Optimisation of hiPSC-CM transfection with Viafect™. To determine the experimental
conditions ensuring highest TE, hiPSC-CMs were replated in 96 well plate format and transfected
with reporter plasmid pmaxGFP under several combinations of serum content and Viafect:DNA
ratios. (a) High content fluorescence imaging enabled determination of transfection efficiency (TE)
in hiPSC-CMs; (b) Optimisation of serum content and Viafect to DNA ratio in 96 well plate format
revealed that (c) transfection with 6:1 Viafect:DNA ratio in medium containing 10% foetal bovine serum
(FBS) achieves >95% TE; (d) Sustained expression of a lncRNA in hiPSC-cardiomyocytes. The results
were normalised to an untransfected control. n = 3 biological replicates (4 days and 7 days), n = 1
(14 days). Scale bars in (a) = 1 mm, (b) = 10 mm.

2D hPSC-CM phenotyping assays rely mostly on cell clusters or monolayers [32,33]. Thus,
different hPSC-CM densities were tested to ensure compatibility with those assays. We observed
that optimum density levels ensuring high TE (above 90%) were in the range of 30–40 K hiPSC-CMs
per well (96 well format, Figure 3), which translates to an approximately 80% confluence, whilst
also avoiding drawbacks of high-density cultures (50 K/well) where cells tend to peel off and detach.
We settled on an average of 35,000 cells per well of a 96 well plate, as it provides an adequate pool for
further experiments. However, while the transfection of hiPSC-CMs did not change the high purity
(Supplementary Figure S1d), the total number of cardiomyocytes decreased by ~34%, indicating ~66%
cell viability (Supplementary Figure S2a–c).
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Figure 3. Seeding density affects transfection efficiency. hiPSC-CMs were seeded at a range of
densities, from 1 × 104 to 5 × 104 per well, then transfected with 6:1 Viafect to DNA with 10% serum
supplementation, 3 days post replating. Live images taken 3 days post transfection (upper panel GFP
only, lower panel GFP and brightfield overlay). Scale bar = 1 mm.

Furthermore, we confirmed that the conditions identified above were readily transferrable to
cardiomyocytes derived from other human pluripotent stem cells by demonstrating high TE in the
HUES7-CMs, an hESC line (Figure 4) [30].
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Figure 4. hESC-CMs can be successfully transfected with Viafect. Live images showing brightfield
and GFP fluorescence. hESC-CMs were transfected with the reporter plasmid pmaxGFP, using the
same parameters of serum, content, reagent: DNA ratio, seeding density and timing determined by the
hiPSC line. Scale bar = 1 mm.

4. Discussion

We optimised a quick and simple method for attaining high transfection efficiencies (~95%)
in hiPSC-and hESC-derived cardiomyocytes. In summary, the optimal conditions were: medium
supplementation with 10% FBS, a ratio of Viafect™:DNA at 6:1 and a seeding density ranging between
30,000 and 40,000 cells/well in a 96 well plate. We observed that the time to transfect the cardiomyocytes
achieving highest efficiency was three days post dissociation, and that this was a critical factor in
ensuring a high TE. Longer timelines between replating and transfection were detrimental, just as
performing transfection too soon after replating. It is worth noting that 10% FBS at Viafect™ to DNA
ratios 6:1 and 8:1 was virtually identical. We opted for 6:1 to reduce usage of Viafect™ for economical
purposes. This protocol is suitable for both protein-coding genes (as we have optimized it using a GFP
reporter plasmid) and non-coding DNA.

While high efficiency transfection (>80%) of undifferentiated hiPSCs was achieved long ago [34],
the same is not true of hiPSC-CMs, which have proved refractory to simple approaches for gene
transfer. For example, other chemical and physical methods using Lipofectamine and magnetic
nanoparticles achieved a maximum TE of up to ~56% and ~20%, respectively, in hiPSC-CMs [19,20].
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Viral gene transfer methods have shown more success, with adeno associated virus (AAV), adenovirus
and lentivirus achieving 90–95% in hiPSC-CMs [35], but often causing cell toxicity, and entailing
technical complexity of viral engineering and/or biosafety risks. Therefore, finding a simple chemical
approach for transfection of hiPSC-CMs provides a benefit to the research community. ViafectTM

could achieve ~95% TE in a rapid and simple protocol, overcoming suboptimal efficiencies of other
physical and chemical methods, without the need for lengthy pre-complexation procedures and/or
magnetic activation necessitating specialised equipment. Nevertheless, Viafect transfection resulted
in ~66% cardiomyocyte viability. While a previous method using liposomes [20] achieved higher
cardiomyocyte viabilities upon transfection (80.8–92.8%), the transfection efficiency reported was much
lower (~56%) than when using Viafect (~95%). Importantly, the cell loss upon transfection did not
prevent further phenotypic assays, such as the identification of hypertrophy markers (such as Brain
Natriuretic Peptide, BNP) (Supplementary Figure S2d).

Ordinarily, transiently transfected cells are collected 24–72 h after transfection as the expression of
the introduced gene is short lived due to factors such as cell division, half-life of gene expression and
protein turnover [36]. Extensive research has been conducted to determine whether CMs truly are
non-dividing. The previously accepted assumption that there are a fixed number of cardiomyocytes in
a human heart has been questioned, with more recent data showing that less than 1% of cardiomyocytes
are replaced per year in an adult heart [37], reaffirming that CMs possess little ability to divide. This has
been corroborated by data with hiPSC-CM lines [38]. The limited cell division is what we consider
to have been key to our ability to maintain expression of any gene of interest for up to at least two
weeks in our hiPSC-CMs transfected with Viafect™, which was not shown in other non-viral methods.
With no active mitotic events that may end up diluting the foreign DNA, the only factor limiting fully
stable transfection is the degradation of the plasmid DNA over time. Thus, this method enables highly
efficient sustained expression of the plasmid of interest without integration into the genome and the
shortcomings associated with the use of lentiviral vectors [39].

Our standard culture practices avoid the use of serum due the masking effects it may have on
hypertrophy [40], which would interfere with our experiments. Despite this, we determined that
the use of serum for a short exposure time improves the TE, possibly by improving the uptake of
DNA. The serum is removed at the following medium change (24 h post transfection) and we have not
observed any detrimental effects such as cytotoxicity or clear changes in cell morphology upon serum
withdrawal. As such, the use of FBS can be restricted for the duration of the transfection, avoiding
longer term effects. The majority of cationic delivery methods do not work in cultures with serum
present due to the effects on DNA–lipid complex formation which is essential for transfection to take
place and thus reduce the TE [41]. For cells that must be grown with serum, Viafect™ provides an
excellent alternative.

In conclusion, we determined that Viafect™ can successfully transfect hiPSC-CMs with high
transfection efficiencies with no apparent undesired effects or clear interference with our experimental
outcomes. We confirmed the reagent is also useful to successfully transfect hESC-CMs. We also
observed that the lack of CM division is favourable in order to carry out longer term experiments in
CMs, which are inherently restricted in transient transfection methods. Altogether, our protocol is
novel because it overcomes low efficiencies of other hPSC-CM transfection methods, retaining high
cardiomyocyte purity and compatibility with downstream phenotypic assays. Moreover, despite a
mild reduction in cell viability, this simple and cost-effective method enables sustained expression
of the transfected gene for at least 14 days. Ultimately, this protocol is expected to greatly support
the field of cardiac disease modelling or any other applications where hPSC-CMs play a pivotal role
(e.g., transplantation and drug discovery) [42].

Supplementary Materials: The following are available online at http://www.mdpi.com/2409-9279/3/3/57/s1,
Supplementary methods; Figure S1: Determination of the purity of hPSC-CM used in this study, Figure S2: Effects
of transfection on hiPSC-CM viability and phenotypic assays, raw data for Figure 1, Figure 2, Figures S1 and S2.
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