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Abstract: Synthetic biology integrates diverse engineering disciplines to create novel biological
systems for biomedical and technological applications. The substantial growth of the synthetic
biology field in the past decade is poised to transform biotechnology and medicine. To streamline
design processes and facilitate debugging of complex synthetic circuits, cell-free synthetic biology
approaches has reached broad research communities both in academia and industry. By recapitulating
gene expression systems in vitro, cell-free expression systems offer flexibility to explore beyond the
confines of living cells and allow networking of synthetic and natural systems. Here, we review the
capabilities of the current cell-free platforms, focusing on nucleic acid-based molecular programs and
circuit construction. We survey the recent developments including cell-free transcription–translation
platforms, DNA nanostructures and circuits, and novel classes of riboregulators. The links to
mathematical models and the prospects of cell-free synthetic biology platforms will also be discussed.

Keywords: synthetic biology; cell-free transcription-translation; rapid prototyping; artificial cell;
riboregulator; DNA origami; mathematical model

1. Introduction

Synthetic biology focuses on engineering biological circuits to manipulate biological systems and
technological applications. Formative works in synthetic biology demonstrated the creation of simple
regulatory circuits in Escherichia coli [1,2]. The dynamics of these synthetic circuits were reasonably
captured through mathematical modeling, driving further developments of forward-engineering
approaches [3]. As the scope of synthetic biological circuits increases dramatically, comprehensive
design, analysis, and predictive modeling in cellular contexts becomes challenging despite progress in
computer-aided designs [4,5]. Cell-free synthetic biology provides a paradigm to test components
and circuits in a well-controlled environment that is similar to physiological conditions [6]. Cell-free
approaches could expedite development and exploration of synthetic system designs beyond the
confines of living organisms. In turn, novel, sustainable, and cost-effective technologies based on
cell-free synthetic biology could help meet broader, worldwide challenges in the future.

In this article, we review the current scope of cell-free synthetic biology, focusing on synthetic
circuits and systems using nucleic acid-based programs. We limit ourselves to the design and
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applications of these synthetic molecular circuits. Readers are referred to other excellent reviews
for recent developments in other areas of cell-free synthetic biology such as cell-free metabolic
engineering [7,8]. We first survey cell-free transcription–translation platforms that are gaining
popularity as a testbed for rapid prototyping of synthetic circuit elements and circuitry. We then review
in vitro model dynamical systems and recent progress in de novo-designed RNA regulatory toolkits
for synthetic biology. Next, we discuss synthetic cell approaches through compartmentalization and
the prospect of nucleic acid-based nanostructures and circuits to function in cell-like environments.
Finally, we discuss modeling approaches and developments as well as their links with the future of
synthetic biological circuits.

2. Cell-Free Transcription–Translation Platform for Synthetic Biology

Synthetic biology approaches for achieving novel and complex functionality in cellular
systems have shown significant progress. Using cells as chassis to engineer circuits, however,
presents challenges for rapid design–build–test cycles despite ongoing development of applicable
tools. The cell-free transcription–translation system presents an attractive alternative to construct,
characterize, and interrogate synthetic biological circuits (Figure 1). Although a number of cell-free
expression systems have been developed, including rabbit reticulocytes, wheat germ, and insect cells,
the prokaryotic extract cell-free expression system is the most popular and is commercially available [9].
We will mainly discuss the E. coli cell-extract system, termed as ‘TXTL’ in this section [10]. Compared
to in vivo systems, the cell-free TXTL platform enables rapid prototyping of genetic circuit design
using either generic plasmid DNA templates or short linear DNA templates [11,12]. Further, because
TXTL-based circuits are implemented in vitro, these circuits are not limited by production of toxic
proteins and chemicals or use of unnatural amino acids, which limit implementation of the same
circuits in living cells [13,14].
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Figure 1. Overview of the cell-free transcription–translation platform. The cell-free transcription–
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the prototyping of synthetic circuits rapidly through iterative cycles of experiments and 
computational modeling. TXTL has a number of applications, such as characterization of CRISPR 
elements or construction of synthetic cells. Reproduced with permission from [15,16]. 

The TXTL platform is not without limitations and challenges. Energy sources can be easily 
depleted in batch mode [17], while enzymes can degrade nucleic acids and protein products within 
the cell extract. Additionally, a complete understanding of machinery in TXTL system has yet to be 
achieved, and the yields of TXTL systems can be less than yields of corresponding in vivo systems 
[6]. Molecular crowding effects [18] or unintentional crosstalk between components [19] could 
contribute to these issues. 

The PURE system is a completely purified cell-free expression platform containing the T7 RNA 
polymerase (RNAP) with fewer active components than cell extract-based TXTL systems [20]. In 

Figure 1. Overview of the cell-free transcription–translation platform. The cell-free
transcription–translation platform including Escherichia coli cell-extract (TXTL) system and PURE
system, allows for the prototyping of synthetic circuits rapidly through iterative cycles of experiments
and computational modeling. TXTL has a number of applications, such as characterization of CRISPR
elements or construction of synthetic cells. Reproduced with permission from [15,16].

The TXTL platform is not without limitations and challenges. Energy sources can be easily
depleted in batch mode [17], while enzymes can degrade nucleic acids and protein products within
the cell extract. Additionally, a complete understanding of machinery in TXTL system has yet to be
achieved, and the yields of TXTL systems can be less than yields of corresponding in vivo systems [6].
Molecular crowding effects [18] or unintentional crosstalk between components [19] could contribute
to these issues.

The PURE system is a completely purified cell-free expression platform containing the T7
RNA polymerase (RNAP) with fewer active components than cell extract-based TXTL systems [20].
In principle, the concentration of individual components can be adjusted in the PURE system during
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reconstitution, and purification of output proteins is straightforward by using affinity chromatography.
The PURE system is costly and typically has a smaller yield than TXTL, but it can be advantageous for
applications that require clear background and long-term storage of genetic elements [21].

The unique advantages of cell-free reactions make TXTL an ideal platform for prototyping
genetic circuits by characterizing the properties and activities of circuit components [22]. For instance,
the behaviors of CRISPR components (gRNA, protospacer adjacent motif (PAM) sequence, Cas9,
and inhibitors of Cas9) are characterized using TXTL [23]. Importantly, the design–build–test
cycle can be performed much faster than in vivo systems, thereby facilitating rapid prototyping of
engineered circuits [24–26]. Circuit elements characterized in TXTL can be ported to an in vivo system,
as demonstrated by the three- and five-node oscillator systems characterized in TXTL and successfully
ported to E. coli [27].

Early works by Noireaux and colleagues demonstrated a multistage cascade circuit by
superimposing several basic (input–parameter–output) units [11], where bacteriophage RNAP drove
the expression of cascade circuits. However, with cascades including three to five stages, circuit
performance was limited because of simple regulatory structures and extensive resource utilization.
To expand the repertoire of transcriptional regulatory elements, sigma factors and cognate E. coli
promoters were used for circuit construction [10,22]. They were able to demonstrate a five-stage
transcriptional activation cascade through clever use of the different affinities of sigma factors to the
core RNAP for efficient signal propagation (Figure 2A, left). Regulatory functions can be expanded
by integrating various regulatory elements for constructing a more complex circuit (Figure 2A, right).
Simultaneously monitoring the concentrations of produced RNA and proteins can assist in debugging
synthetic circuits characterized in TXTL [19].

Synthetic RNA circuits are also efficiently and easily characterized in TXTL. Networks constructed
from riboregulators propagate signals directly as RNAs, thus bypassing intermediate proteins, making
these networks potentially simpler to design and implement than transcription factor-based layered
circuits [28]. qPCR and next-generation sequencing techniques can characterize species, structural
states, and interactions of RNAs [29]. Since the speed of signal propagation within circuits is determined
by the decay rate of the signal, RNA networks can operate on much faster time scales than protein
networks [30]. An early model of an RNA circuit used the transcriptional attenuator structure of RNA
and its complementary antisense RNA [28]. The hairpin structure of the transcriptional attenuator
was targeted by antisense RNA, which promoted the formation of a downstream intrinsic terminator
hairpin that caused RNAP to fall off and stop transcription (Figure 2B). Other simple RNA-based
circuits have also been characterized in TXTL systems [26,31], such as a negative autoregulation circuits,
which use the attenuator and antisense RNA simultaneously [32].

The strength of the TXTL platform enables the expression of remarkably large natural DNA
programs. A large amplification of the T7 phage, with a genome size of 40 kbp and supplemented with
thioredoxin, was observed in vitro [33]. Cell-free self-organization of the even larger T4 phage, with a
genome size of 169 kbp, under in vitro conditions was observed by increasing molecular crowding
effects [34]. Replication of viral genomes occurred simultaneously with phage gene expression, protein
synthesis, and viral assembly.

Beyond scientific inquiry, several practical tools emerged for using cell-free expression platforms.
For instance, sequence-specific colorimetric detection of Zika viral RNA can be performed at single-base
resolutions through a cell-free reaction on a paper disc. This paper-based diagnostic platform is
advantageous because it is mobile and low-cost [35]. Another recent development demonstrated
microfluidic reactors [15] and paper-based devices [36] that produced therapeutic proteins on demand.
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Figure 2. Systematic construction of DNA and RNA circuitry in TXTL. (A) Basic (input–parameter–
output) modules are integrated to build complex synthetic circuits. Assembly of an AND gate, 
repressor, and inducer modules provides versatile and scalable circuits for synthetic biology 
applications. (B) RNA regulatory motifs are utilized for synthetic circuits such as a serial RNA circuit 
and a negative autoregulation circuit (NAR). The RNA circuits can be optimized in TXTL and ported 
to in vivo conditions. 

3. In Vitro Synthetic Gene Circuits 

In vitro regulatory networks are model systems that offer a flexible test bed for the design 
principles of biochemical networks without the complexity of cellular environments. In vitro 
regulatory models can be stripped of cellular machinery for protein translation and may use nucleic 
acid-based programs to design biochemical networks. In this section we will discuss simplified in 

Figure 2. Systematic construction of DNA and RNA circuitry in TXTL. (A) Basic
(input–parameter–output) modules are integrated to build complex synthetic circuits. Assembly
of an AND gate, repressor, and inducer modules provides versatile and scalable circuits for synthetic
biology applications. (B) RNA regulatory motifs are utilized for synthetic circuits such as a serial RNA
circuit and a negative autoregulation circuit (NAR). The RNA circuits can be optimized in TXTL and
ported to in vivo conditions.

3. In Vitro Synthetic Gene Circuits

In vitro regulatory networks are model systems that offer a flexible test bed for the design principles
of biochemical networks without the complexity of cellular environments. In vitro regulatory models
can be stripped of cellular machinery for protein translation and may use nucleic acid-based programs
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to design biochemical networks. In this section we will discuss simplified in vitro synthetic regulatory
models using the synthetic transcription-based genelet system as an example [37].

Genelets are synthetic DNA switches that form a partially double-stranded (ds) DNA template.
The expression states of a genelet are controlled by specific DNA inputs, which are recognized by an
incomplete promoter region in the template [38–40]. The genelet system consists of synthetic DNA
templates and two enzymes: T7 RNAP and E. coli ribonuclease H (RNase H). Because of the incomplete,
partially single-stranded (ss) promoter region of genelets, the DNA template (‘T’) by itself is poorly
transcribed [41]. An ssDNA activator (‘A’) can bind to complete the promoter region, and the resulting
complex (‘T-A’) transcribes well, approximately half as efficiently as a full dsDNA template [39]. The
activity of genelets can be controlled by nucleic acid inputs forming an inhibitory regulation [39] and
an excitatory regulation [42]. The inhibitable switch is turned off by an RNA inhibitor that binds
to DNA activator more favorably than the switch template thereby removing the activator from the
template (Figure 3A). The activating switch is turned on by an RNA activator that binds to a DNA
inhibitor and releases the DNA activator (Figure 3B). Both the DNA inhibitor and activator contain a
‘toehold’, a single-stranded overhang, to facilitate toehold-mediated strand displacement reactions [43].
Genelet circuits have the advantages of modularity and programmability for switch parameters, such
as concentrations of switches and activators, which are analogues of weights and thresholds of neurons
in artificial neural networks [38].

Methods and Protoc. 2019, 2, 39 5 of 25 

 

vitro synthetic regulatory models using the synthetic transcription-based genelet system as an 
example [37]. 

Genelets are synthetic DNA switches that form a partially double-stranded (ds) DNA template. 
The expression states of a genelet are controlled by specific DNA inputs, which are recognized by an 
incomplete promoter region in the template [38–40]. The genelet system consists of synthetic DNA 
templates and two enzymes: T7 RNAP and E. coli ribonuclease H (RNase H). Because of the 
incomplete, partially single-stranded (ss) promoter region of genelets, the DNA template (‘T’) by 
itself is poorly transcribed [41]. An ssDNA activator (‘A’) can bind to complete the promoter region, 
and the resulting complex (‘T-A’) transcribes well, approximately half as efficiently as a full dsDNA 
template [39]. The activity of genelets can be controlled by nucleic acid inputs forming an inhibitory 
regulation [39] and an excitatory regulation [42]. The inhibitable switch is turned off by an RNA 
inhibitor that binds to DNA activator more favorably than the switch template thereby removing the 
activator from the template (Figure 3A). The activating switch is turned on by an RNA activator that 
binds to a DNA inhibitor and releases the DNA activator (Figure 3B). Both the DNA inhibitor and 
activator contain a ‘toehold’, a single-stranded overhang, to facilitate toehold-mediated strand 
displacement reactions [43]. Genelet circuits have the advantages of modularity and programmability 
for switch parameters, such as concentrations of switches and activators, which are analogues of 
weights and thresholds of neurons in artificial neural networks [38]. 

 

Figure 3. Genelet switches and circuits. (A) Design and operation mechanism of an inhibitable switch. 
The input, RNA inhibitor, sequesters the DNA activator from the active template and turns the switch 
to an OFF state. (B) Design and operation mechanism of an activating switch. The input, RNA 
activator, strips off DNA inhibitor bound to DNA activator. The released DNA activator in turn can 
turn the switch to an ON state. The sequence domains are color coded to indicate identical or 
complementary sequences. (C) Schematics of bistable circuits. A single switch with positive 
autoregulation (left) or two mutually inhibiting switches (right) can show bistability. (D) Schematics 
of oscillators. An activating switch and an inhibiting switch (Design I), Design I with further positive-
autoregulation (Design II), and three inhibiting switches in a ring (Design III) form an overall negative 
feedback to achieve oscillation. Reproduced with permission from [15,16]. 

A bistable network is a dynamic system with two distinct stable equilibrium states [44], and it is 
often found in cellular networks requiring decision making processes such as cell cycle regulation, 
cellular differentiation [45], and apoptosis. The bistable network can be designed by genelets in two 
ways [39,42]: two switches can be connected in a mutually inhibiting configuration, or a single switch 
can be connected to activate its own transcription (Figure 3C). An oscillator circuit that produces 
periodic signals is another hallmark of basic circuit elements, and it is often found in cell signaling 
systems including genetic oscillation [46,47]. A synthetic oscillator was constructed using genelets 

Figure 3. Genelet switches and circuits. (A) Design and operation mechanism of an inhibitable switch.
The input, RNA inhibitor, sequesters the DNA activator from the active template and turns the switch
to an OFF state. (B) Design and operation mechanism of an activating switch. The input, RNA activator,
strips off DNA inhibitor bound to DNA activator. The released DNA activator in turn can turn the
switch to an ON state. The sequence domains are color coded to indicate identical or complementary
sequences. (C) Schematics of bistable circuits. A single switch with positive autoregulation (left) or two
mutually inhibiting switches (right) can show bistability. (D) Schematics of oscillators. An activating
switch and an inhibiting switch (Design I), Design I with further positive-autoregulation (Design
II), and three inhibiting switches in a ring (Design III) form an overall negative feedback to achieve
oscillation. Reproduced with permission from [15,16].

A bistable network is a dynamic system with two distinct stable equilibrium states [44], and it is
often found in cellular networks requiring decision making processes such as cell cycle regulation,
cellular differentiation [45], and apoptosis. The bistable network can be designed by genelets in two
ways [39,42]: two switches can be connected in a mutually inhibiting configuration, or a single switch
can be connected to activate its own transcription (Figure 3C). An oscillator circuit that produces
periodic signals is another hallmark of basic circuit elements, and it is often found in cell signaling
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systems including genetic oscillation [46,47]. A synthetic oscillator was constructed using genelets
with three different designs [48] (Figure 3D): a two-switch negative feedback oscillator that utilized
activating and inhibiting connections (Design I); an amplified negative feedback oscillator that included
an additional self-activating connection (Design II); and a three-switch ring oscillator with three
inhibitory connections (Design III). The three designs shared the same basic architecture of overall
negative feedback in the system. An amplified negative feedback oscillator (Design II) could potentially
have four different phases, unlike a simpler oscillator (Design I), and the ring oscillator with an extra
connection (Design III) featured a slower oscillation. The ability to construct different circuit motifs
using genelets demonstrated the modularity and programmability of the system design. However,
it remains a challenge to maintain circuit operation, such as oscillation, for an extended period of
time in batch mode because of the exhaustion of nucleoside triphosphate (NTP) fuel, loss of enzyme
activities, and build-up of incomplete RNA transcripts [48].

In addition to providing basic motifs, these synthetic circuits could be coupled with downstream
processes to dynamically control other molecular systems. A number of downstream processes,
which can be considered as a downstream ‘load’, have been demonstrated including DNA-based
nanomechanical devices (“DNA tweezers”) and functional RNA molecules (“aptamers”) [40]
(Figure 4A). DNA tweezers have two rigid double-stranded “arms” connected by a single-stranded
hinge, which can be opened and closed by nucleic acid inputs. Retroactivity of the load process
degraded the upstream oscillator circuit, which was alleviated by introducing insulator circuits to
prevent excessive consumption of core oscillator components and to amplify RNA signals.
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Aptamers are nucleic acid molecules that fold into complex 3D shapes and bind to specific 
targets [49]. Functional RNA aptamers can be generated in vitro and tailored for a specific target, 
which are attractive features as downstream components to be controlled by genelet circuits. For 
instance, the transcription process can be monitored by using the aptamer against chromophore 
malachite green (MG) [40]. Sensing of specific molecules is enabled by designing the activator 
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Figure 4. Extension of genelet circuits. (A) Driving downstream processes with genelet circuits. The
output signal from genelet circuits can be functional RNA aptamers or can be used to drive DNA
nanodevices such as DNA tweezers. (B) Signal propagation using encapsulated genelet circuits. Each
droplet contains a genelet switch and aptamer-activator complex. Signal molecule (DFHBI) binds
the aptamer and releases the DNA activator for the genelet switch. The activated genelet in turn
produces kleptamer that binds the aptamer, releases DFHBI, and attenuates fluorescence output. (C)
The experimental fluorescence images for one- and two-dimensional signal propagation. Reproduced
with permission from [15,16].

Aptamers are nucleic acid molecules that fold into complex 3D shapes and bind to specific
targets [49]. Functional RNA aptamers can be generated in vitro and tailored for a specific target, which
are attractive features as downstream components to be controlled by genelet circuits. For instance,
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the transcription process can be monitored by using the aptamer against chromophore malachite green
(MG) [40]. Sensing of specific molecules is enabled by designing the activator sequence of a genelet
switch to bind to a specific aptamer, where the recognition of analyte by its aptamer releases the
previously occupied DNA activator to activate the genelet. Using this approach, Dupin and Simmel
demonstrated a genelet system to detect signal propagation in one and two dimensional array of
compartments [50] (Figure 4B,C). The activity of enzymes can be controlled by using aptamers against
T7 and SP6 RNAP, and an ssRNA/ssDNA with the complementary sequence of the aptamer, termed
kleptamer, to provide yet another building block for synthetic biological circuitry with genelets [51].
These RNAP aptamers can also be used for logic circuits and transcriptional cascades [52].

Systems from natural processes and engineering disciplines provide further directions for
developing genelet systems. Inspired by the architecture of electronic flip-flops, a genelet system design
was proposed where the periods of a molecular clock were multiplied and divided [53]. Negative
autoregulation provided model circuitry to produce outputs suitable for variable demands [54].
Adaptation in biological systems provided a framework to develop genelet circuits that detected
fold-change of inputs [55]. Further, molecular titration utilized in natural and synthetic biological
circuitry could be reiterated in genelet circuits with the support of mathematical modeling [56].

An analogous system, termed RTRACS (reverse transcription and transcription-based autonomous
computing system), that relied on reverse transcriptase, DNA polymerase, RNAP, and RNase
demonstrated modularity and programmability [57,58]. The modules of RTRACS received specific
RNA input sequences and produced an RNA output through programmed computation. Experimental
operation of an AND gate was demonstrated with RTRACS, and the prospect of more complex
functionality such as oscillations was reported. The polymerase exonuclease nickase (PEN) toolbox
bypassed the transcription step and relied exclusively on DNA and DNA-modifying enzymes to
construct desired circuits [59,60]. Single-stranded DNA templates served as network architecture and
short ssDNA species took the role of dynamic species that functioned as activators and inhibitors
of templates. Despite its simplicity, the PEN toolbox successfully demonstrated bistability [60,61],
oscillations [59,60,62], and pattern formations [63] through rational design approaches and easy
monitoring [64]. An even more abstract approach is feasible with precisely programmed DNA
sequences. Numerous studies demonstrated the power of DNA strand displacement circuits, including
instructions, to create chemical reaction networks [65], logic circuits [66,67], neural networks [68,69],
and oscillators [70] through toehold-mediated strand displacement [43]. These theoretical and
experimental developments will enable future works to further enhance the programmability and
complexity of synthetic in vitro circuits to control nucleic acid nanorobots for in vivo applications [71].

4. RNA Regulatory Circuits for Cell-Free Synthetic Biology

The programmable nature of RNA molecules that allows predictable design of structure and
function provides a rationale to construct synthetic biological circuits with RNA toolkits. The most
basic regulatory mechanism of RNA is to induce a trans interaction between the target mRNA and
complementary RNA; RNAs that perform this function are called riboregulators [72]. Inspired by a
plethora of natural examples of riboregulator-based gene expression control [73], synthetic biologists
harnessed these design principles to create synthetic riboregulators in E. coli [74]. Following these
seminal synthetic riboregulator systems, RNA-based synthetic biological circuits have emerged that
are easily programmable with improved performance. In this section, we will discuss the recent
progress in synthetic RNA regulators for cell-free diagnostic applications using toehold switch and
small transcription activating RNA (STAR) as examples.

A toehold switch is a de novo-designed regulatory RNA inspired by the mechanism of a
conventional engineered riboregulator [75] (Figure 5A). In the switch RNA, the ribosome binding
site (RBS) and the start codon are blocked by its own secondary structure. When the trigger RNA is
introduced to initiate a toehold-mediated branch migration, a switch-trigger complex is formed in
which the RBS and the start codon become available for the expression of the target gene. In E. coli,
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high-performance toehold switches showed dynamic ranges rivaling those of well-established protein
regulators. This suggests toehold switches can provide a novel, high-performance platform for
synthetic biological circuits. Moreover, the RBS and the start codon are not directly involved in
base-pairing within the secondary structure design of switch RNA, which allows for the construction
of a library of toehold switches without sequence constraints.
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Figure 5. Toehold switch mechanism and application for paper-based diagnostics. (A) Mechanism
of toehold switch. Linear-linear interaction between switch RNA and trigger RNA initiates from the
toehold region. The resulting conformation of switch-trigger complex makes ribosome binding site
(RBS) and start codon (AUG) available for ribosome access. (B) Freeze-dried paper-based diagnostic kit
using toehold switch as a synthetic sensor. LacZ was used as a reporter gene so that the change of color
could be checked by the naked eye.

Capitalizing the functionality of toehold switches, Pardee et al. constructed a paper-based
diagnostic platform using a toehold switch as a sensor [21] (Figure 5B). DNA that encoded the switch
RNA and components for cell-free expression (enzymes, dNTPs, amino acids, etc.) were freeze-dried
on paper discs, which could remain stable for storage at room temperature. Upon the addition of
the trigger RNA specific to toehold switches, up to 350-fold induction of green fluorescent protein
(GFP) was observed with the desired orthogonality. This laid the foundation for development of a
paper-based diagnostic tool for Ebola virus by using toehold switches that specifically sensed part of
nucleoprotein mRNA of Ebola as trigger RNAs [21]. β-galactosidase (LacZ) was used as a reporter
gene to allow confirmation of results with the naked eye, and 24 toehold switches that targeted different
sequences (Sudan strain 12 regions, Zaire strain 12 regions) were successfully tested. One notable
feature was that the fold change of LacZ expression was dependent on the sequence of switch RNA,
suggesting that the sequence design needed to be optimized for improved utility. In a follow-up study,
Pardee et al. constructed a paper-based diagnostic tool for Zika viruses [35]. To improve sensitivity,
a nucleic acid sequence-based amplification (NASBA) step was introduced to isothermally amplify the
target region of Zika RNA. Their system responded normally to Zika virus but not to the closely related
Dengue virus. In addition, they combined this system with a CRISPR/Cas9-based module to create
a NASBA-CRISPR cleavage (NASBACC) system. This biosensor showed sophisticated diagnostic
performance that could discriminate strains of Zika viruses (American or African) by utilizing the
presence of the PAM sequence. In another recent work, Ma et al. demonstrated a paper-based cell-free
diagnostic system that detected Norovirus with toehold switches [76] (Figure 5B). They introduced
virus enrichment via synbody and α-complementation of LacZ enzyme to improve the sensitivity and
speed of diagnosis. Takahashi et al. demonstrated a microbiota sensing system, rather than a single
virus, with the same platform [77]. They designed switch RNAs based on the 16S rRNA sequence
of each bacterial species, and functionality of the sensor was verified against 10 different bacterial
strains. Moreover, they proposed the potential for paper-based diagnosis of more diverse target RNAs,
including host biomarker mRNAs such as calprotectin, Interleukin 8, C-X-C motif chemokine ligand
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5, oncostatin M, and specific pathogen toxin mRNA. These demonstrations provide evidence that
toehold switches can be utilized as a generalizable platform for portable diagnostic systems in field
testing diseases and other environmental samples.

To process an increasing complexity of inputs through synthetic biological circuitry, it is necessary
to integrate a number of input signals in a seamless manner. To achieve this goal, the basic mechanism
of the toehold switch has been expanded to incorporate multiple toehold switches in the same RNA
transcript, which facilitates signal integration, termed a ‘ribocomputing’ strategy [78]. Green et al.
implemented a complex logic system (combination of AND/OR/NOT) of 12 RNA inputs with five
consecutive toehold switches colocalized in the same transcript. This 12-input logic circuit in E. coli
provided evidence that a ribocomputing strategy could help in scaling up synthetic biological circuits
in the future [79]. At the same time, novel RNA tools where translation is inactivated by trigger
RNAs are also being explored. These include toehold repressor, three-way junction (3WJ) repressor,
and looped antisense oligonucleotide, which enable a more complex and versatile logic with universal
NAND and NOR gates [80,81].

In a similar vein, Lucks et al. engineered the natural antisense RNA-mediated transcriptional
attenuation mechanism of plasmid pT181, and they proposed an RNA toolkit that could turn off

transcription [28]. Based on this, Takahashi and Lucks demonstrated that more diverse orthogonal
transcriptional regulators could be designed by combining the module with natural antisense RNA
regulators [82]. Building on these works, Chappell et al. devised a novel transcription regulatory
system, termed the ‘small transcription activating RNA’ (STAR), which promoted transcription upon
cognate trigger RNA binding [83] (Figure 6A). The natural mechanism was utilized in an opposite
manner such that the complementary STAR RNA disrupted the transcription terminator structure of
the target gene. In their first demonstration of the STAR system, the fold change ranged from 3- to
94-fold. In a subsequent work, they further optimized various domain lengths of STAR RNA through
computational designs to create a STAR library with a broad fold activation range, from more than
400-fold to less than 10-fold, to allow for more sophisticated biological circuit designs [84].
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Figure 6. Small transcription activating RNA (STAR) system and application for detecting plant
pathogens. (A) Mechanism of STAR. A transcription terminator consists of a stem-loop and a poly-U
track, where the binding of STAR RNA breaks the step-loop structure such that transcription proceeds
normally. (B) A platform to diagnose plant pathogens using STAR. Viral RNA in the sample can be
amplified with the addition of a STAR sequence and a promoter through recombinase polymerase
amplification (RPA). Then, the corresponding RNA transcribed through cell-free expression induces
the expression of reporter gene (CDO, catechol 2,3-dioxygenase). RNAP: T7 RNA polymerase.

A platform for plant pathogen detection was demonstrated using the STAR system [85] (Figure 6B).
Verosloff et al. amplified viral DNA with the T7 RNAP promoter and an upstream STAR sequence by
using recombinase polymerase amplification (RPA) with a primer that bound to a specific sequence
of viral DNA. When viral RNA with the STAR sequence was transcribed by cell-free expression,
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the reporter RNA started normal transcription of catechol 2,3-dioxygenase (CDO) in the tube, which
caused a colorimetric change in the sample observable with the naked eye. In particular, this system
has the advantage that both the RPA and the cell-free expression steps are conducted isothermally
using only body heat as a heat source.

A number of other works also demonstrated the utility of synthetic RNA regulatory parts for
building synthetic biological circuits. Well-established anti-sense RNA (asRNA) could be utilized for
translation regulation through binding at the 5′ untranslated region (UTR) and the start codon of the
target mRNA [86]. Through analysis of the difference in repression of asRNA sequences, the repression
was further enhanced by introducing the Hfq binding sequence into the asRNA [87]. Meanwhile,
Rodrigo and Jaramillo developed a computational design tool, named ‘AutoBioCAD’, that allowed
automatic RNA circuit design using secondary structure design and free energy analysis [88,89].
These RNA regulatory toolkits can contribute to the growing repertoire of cell-free synthetic biology
applications including point-of-care devices for biomedical applications.

5. Encapsulation of in Vitro Circuits toward the Synthesis of Artificial Cells

In vitro synthetic biology has recently made progress towards realizing minimal cell systems.
A key step toward this is the encapsulation of gene expression or TXTL systems in microscopic
compartments. It has been demonstrated that both the kinetics and noise levels of chemical reactions
are different in bulk than in cell-sized compartments or molecularly crowded solutions [90,91]. Thus,
working with encapsulated synthetic biology components may improve our understanding of native
cellular systems and how to emulate cell processes in synthetic systems [16]. Minimal cell systems
can be designed to perform specified tasks autonomously, or they can network with native cells to
increase sensing and actuation of biological systems. As encapsulation offers a barrier between critical
components in synthetic circuits and surrounding environments, it is an essential step for designing
effective minimal cell systems.

Both water-in-oil droplets and vesicles have been used to encapsulate gene expression systems in
sizes relevant to cells (roughly 1–50 µm in diameter). Water-in-oil droplets have been demonstrated to
be biocompatible, stable at high temperatures, and capable of withstanding deformation [92]. The
oil medium surrounding the droplets greatly limits molecular exchange between individual droplets,
effectively creating isolated, independent, cell-sized reaction chambers. Microfluidics can produce
hundreds or thousands of uniformly sized droplets a minute, while shaken droplet protocols result in
droplets of varying sizes.

Liposomes or vesicles more closely resemble native cells than water-in-oil droplets, but they
are non-trivial to produce at cell sizes. Because the environment surrounding the vesicles is
aqueous, exchange of biological molecules between the vesicles and the environment is possible
for membrane-permeable molecules as well as membrane-impermeable molecules in the presence
of surface pores or channels [93–95]. Emulsion transfer, thin-film hydration, and microfluidics have
been shown to effectively encapsulate TXTL systems in vesicles [90,96–100]. Emulsion transfer
and microfluidics allow for finer control of the vesicle size and contents than thin-film hydration
techniques [100].

Early encapsulation of expression systems characterized the production of single reporter proteins
in bulk and in vesicles. Noireaux and Libchaber reported that expression of GFP in both vesicles and
bulk solution had similar durations and produced similar outputs [90] (Figure 7A). They showed that
by expressing a GFP-labeled α-hemolysin pore, expression was increased by one order of magnitude.
The toxin α-hemolysin acts as a pore in lipid bilayers with a molecular mass cutoff of 3 kDa, which
allows nutrients from a surrounding feeding solution to enter the vesicle. Tan et al. demonstrated
that vesicles protected an encapsulated GFP expression system from RNase A in the aqueous medium
surrounding the droplet, which inhibited gene expression via degrading RNA [101].
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Figure 7. Synthetic gene circuits in cell-sized compartments. (A) (left) Expression of eGFP in bulk (open
circles) and in a vesicle (closed dark circles), and expression of α-hemolysin-eGFP (closed green circles).
(Inset) an expanded view of the first 20 h. (right) Fluorescence microscopy images of α-hemolysin-eGFP
expressed in vesicles. Scale bar: 10 µm. Reproduced with permission from [16]. (B) Superimposed
false-color images of cyan fluorescent protein (CFP) and yellow florescent protein (YFP) expressed in
droplets without (left) or with (right) Ficoll. In the presence of Ficoll, the expression level is highly
variable across the population of droplets. Reproduced with permission from [102]. (C) Microscopy
images of mYPet expression inside an aqueous two-phase system (ATPS) water-in-oil droplets. The
images of transmitted light, fluorescence microscopy of mYPet, and fluorescence microscopy of Alexa
647-labeled dextran are presented, from left to right. mYPet is preferentially expressed in the dextran
phase rather than the polyethylene glycol (PEG) phase. Scale bar: 25 µm. Reproduced with permission
from [103].

Actualization of more complex gene expression systems, such as oscillators and cascading gene
circuits, have subsequently been described in compartments [97,104]. In cascading reactions, products
of an initial transcription system are necessary for further TXTL processes in the circuit. Garamella et al.
encapsulated both five- and six-gene cascading circuits within vesicles [22]. They reported both an
increase in the average expression across a population of 20–30 vesicles as well as an increase in the
variability of expression for individual vesicles within the population for the six-gene circuit compared
to the five-gene circuit. Adamala et al. reported that higher-order cascading circuits in vesicles produced
similar amounts of protein to bulk reactions containing the same volume [105]. They observed smaller
vesicles than the work by Garamella and colleagues, using mammalian HeLa cell extracts, and their
circuits were triggered by diffusion of doxycycline through α-hemolysin pores in the membranes of
the vesicles. The average expression for the population of vesicles containing a three-gene cascading
circuit produced less fLuc than vesicles containing either one- or two-gene cascading circuits. The
encapsulated three-gene circuit did, however, produce similar amounts of fLuc to a bulk solution
with the same reaction volume, while the encapsulated one- and two-gene circuits produced less than
the corresponding bulk reactions. Both reports noted that the high variability in expression for the
higher-order circuits likely was due to nonuniform encapsulation of the individual components of the
circuit throughout the population of vesicles. This phenomenon has been described in other works,
and it even affects lower-order genetic circuits such as simple transcription of eGFP [106].

In addition to studying the effects of compartmentalization on TXTL systems, the influence of
molecular crowding on encapsulated systems is relevant for both minimal cell design and understanding
native cell processes. The crowded interiors of cells have been shown to influence intracellular reaction
rates [107]. Hansen et al. investigated the relationship among stochasticity of expression within
water-in-oil droplets, concentration of genes, and concentration of crowding molecules [102]. They
reported that introduction of the crowding molecule Ficoll 70 resulted in microenvironments of cyan
fluorescent protein (CFP) and yellow fluorescent protein (YFP) within the droplets for the duration
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of expression (Figure 7B). They concluded that the microenvironments formed because the rate of
mRNA production was greater than the diffusion rate of the macromolecules involved in TXTL,
as CFP and YFP diffused evenly through the droplets after the expression completed. They also
noted that decreasing the available copies of gene within the expression system further increased the
stochasticity of expression across the population of droplets. Tan et al. reported the effects of crowding
molecules on minimal gene expression systems in vesicles, noting that crowding due to large dextran
polymers increased expression of GFP in larger vesicles, while it had little effect on expression in
smaller vesicles [101].

Molecular crowding not only affects reaction rates within cell-sized compartments but also
leads to crowding-induced phase separation, which is another area of interest for synthetic biology
efforts [108,109]. Liquid phase separation is a form of membrane-less partitioning, which occurs
in native cell structures such as nucleoli and centrosomes, and is influenced by temperature, pH,
concentration, and other factors [110]. Torre et al. showed confined expression of mYPet, a fluorescent
protein, within a single phase of an aqueous two-phase system (ATPS) [103] (Figure 7C). The ATPS
was a result of introducing both polyethylene glycol (PEG) and dextran to water-in-oil droplets, which
separated into distinct PEG- and dextran-rich phases within the droplet. Torre et al. hypothesized that
confinement of the gene expression to the dextran phases was a result of TXTL machinery partitioning
the less hydrophobic dextran phase of the droplet. They reported no expression in encapsulated
aqueous three-phase systems, suggesting this was due to splitting of the TXTL components between
the dextran and Ficoll phases within the droplets.

As the complexity of artificial cells increased, so too has the exploration of communication
between networks made of artificial and native cells [50,111–114]. After showing that two distinct
liposome-based minimal cells in a shared environment could respond to the same trigger without
crosstalk, Adamala et al. demonstrated cascading networks of synthetic minimal cells as well as
fusion-controlled TXTL systems [105] (Figure 8A). They realized a cascading expression system in which
products from one vesicle that contained bacterial TX machinery triggered a response in a separate
vesicle that contained mammalian TL machinery. Their work demonstrated that encapsulating TXTL
systems provided modularity, allowing for interaction between otherwise incompatible components.
Lentini et al. increased the sensing capacity of E. coli through networking with a synthetic translator
cell [115] (Figure 8B). They induced expression of GFP within E. coli by creating an artificial cell that
produced a chemical signal familiar to the bacteria, isopropyl β-D-1-thiogalactopyranoside (IPTG),
in response to theophylline (Theo), which was otherwise undetectable to the native cell.

The exploration of artificial TXTL systems in cell-sized compartments is necessary for realizing
artificial cells and fully understanding intracellular processes in confined and crowded environments.
A number of complex gene expression circuits have been demonstrated in cell-sized compartments;
however, the variety of components available for design—lipid bilayer vesicles vs water-in-oil
droplets, bacterial vs mammalian cell-extracts, and so on—makes direct comparison between
different studies difficult. The often encountered high variability in component concentrations during
encapsulation processes may be alleviated through further exploration of encapsulation methods, fusion,
and intercompartment exchange processes. Through compartmentalization, previously incompatible
natural or synthetic systems in bulk solution can be interconnected as modular components, which
paves the way for increasing the complexity of cell-free synthetic circuits and coordination with
native cells.
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dynamic devices, which can function autonomously by processing information obtained from its 
surroundings. DNA systems and circuits can present properties comparable to devices naturally 
found in the living cell, for example, it is possible to build DNA nanotubes with size and mechanical 
properties comparable to cytoskeletal filaments, DNA nanopores that dock on lipid bilayers with 
selective permeability, and transcriptional oscillators that could serve as clocks in synthetic cells 
[40,48,118,119]. DNA nanostructures could serve as physical components such as scaffolds, pores, 
and transport elements in artificial cells. Nucleic acid strand displacement reactions could be used to 
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and reporter liposome pair, which contain bacterial and mammalian TXTL machinery, respectively.
α-hemolysin (aHL) produced by theophylline treatment in the sensor liposome releases internal
doxycycline to the environment, which in turn triggers expression of fLuc in the reporter liposome.
(right) Expression of fLuc in different ratios of sensor and reporter liposomes. Occupancy refers to
the ratio of droplets that contain TXTL machinery for both sensor and reporter droplets. Reproduced
with permission from [105]. (B) (left) Flow cytometry data for E. coli containing a plasmid for GFP
in the presence of the following components: theophylline (Theo), artificial cells (AC), artificial cells
with theophylline (AC + Theo), isopropyl β-D-1-thiogalactopyranoside (IPTG) encapsulated in vesicles
(Encapsulated IPTG), and IPTG in the bulk solution (IPTG). (right) Histogram of flow cytometry data
shown in the left panel. Fluorescent signal is only increased in the presence of artificial cells and
theophylline. Reproduced with permission from [115].

6. Artificial DNA Structures and Systems for in Vitro Synthetic Biology

Because of its predictable self-assembly properties, DNA has been used to build versatile molecular
machines and structures [116,117]. Complementary Watson–Crick base pairing between segments
of synthetically designed DNA strands is utilized for the rational design of these static and dynamic
devices, which can function autonomously by processing information obtained from its surroundings.
DNA systems and circuits can present properties comparable to devices naturally found in the living
cell, for example, it is possible to build DNA nanotubes with size and mechanical properties comparable
to cytoskeletal filaments, DNA nanopores that dock on lipid bilayers with selective permeability,
and transcriptional oscillators that could serve as clocks in synthetic cells [40,48,118,119]. DNA
nanostructures could serve as physical components such as scaffolds, pores, and transport elements
in artificial cells. Nucleic acid strand displacement reactions could be used to build sensors and
signaling pathways [66,120–122]. Yet, these synthetic DNA systems may have difficulty in achieving
desired structural integrity and functionality in the cellular environment since DNA nanostructures
and networks have been typically characterized in buffer conditions very different from the complex
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environment of a cell. Therefore, it becomes a necessity to explore synthetic DNA systems in cell
lysates, serum, and cell-free extracts to develop design rules for proper operation in complex cellular
environments and to realize their full potential as programmable components for in vitro and in vivo
synthetic biology.

The presence of cytoplasmic enzymes can affect the structural stability of synthetic DNA systems.
Kuem et al. measured the half-life of tetrahedral DNA nanostructures (TDNs) in the presence of DNase I
and found that the stability of TDNs was more than twice that of double-stranded DNA [123] (Figure 9A).
Castro et al. incubated DNA origami structures in the presence of different nucleases—DNase I,
T7 endonuclease I, T7 exonuclease, E. coli exonuclease I, lambda exonuclease, and MseI restriction
endonuclease [124]. Only DNase I and T7 endonuclease I were found to degrade the test origami
structure, where the DNA origami structure could withstand complete degradation for 2 h in the
presence of DNase I in contrast to the duplex plasmid DNA that disappeared within 5 min (Figure 9B).
The interconnectivity and dense packing of the DNA nanostructures rendered some resistance to
degradation by nucleases.

Another cell-like medium in which to characterize synthetic DNA systems can be cell lysates—the
mixtures containing cellular components created by breaking down the membranes of cells. Mei et al.
tested the stability of DNA origamis in cell lysate and reported that single- and double-stranded
nucleic acids could not be recovered, whereas DNA origami could be recovered after up to 12 h [125].
However, the physiological relevance of this particular study was damped by the fact that cell lysate
used sodium dodecyl sulfate (SDS) and deoxycholic acid (DCA), which suppressed many cellular
enzymes. Therefore, a more physiological cell lysate preparation should be used for better assessing
synthetic DNA systems in cell-like media.
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Figure 9. Characterization of DNA structures in cell-like media. (A) Denaturing polyacrylamide gel
electrophoresis (PAGE) of tetrahedron and duplex DNAs with nonspecific degradation by DNase I.
Digestion of the unligated tetrahedron is gradual and appears to generate a well-defined product,
whereas digestion of linear DNA appears to be rapid and nonspecific. Reproduced with permission
from [123]. (B) Stability of honeycomb-packed DNA nanostructure: 140 nm (18-helix bundle), 100 nm
(24-helix bundle), and 70 nm (32-helix bundle), from left to right, were used for stability screening with
TEM and agarose gel electrophoresis. Scale bar = 20 nm. Reproduced with permission from [124]. (C)
Enhanced stability of DNA nanotubes with χ-site integration and chemical modifications in E. coli
TXTL system. Fluorescence microscopy images of five-base DNA nanotubes with ligation of tile sticky
ends and eight-base DNA nanotubes with phosphorothioate-bonded tile sticky ends incubated in TXTL
with and without χ-site DNA present. Scale bar = 20 µm. Reproduced with permission from [126].
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A useful platform for rapid characterization of synthetic components is the E. coli cell-free TXTL
system. TXTL reiterates the physiological conditions found in cells as well as harsh linear DNA
degradation through the RecBCD complex. Klocke et al. tested the stability of tile-based DNA
nanostructures in the TXTL system, demonstrating that the stability of structures increased significantly
in the presence of χ-site double-stranded DNA, which was an inhibitor of the RecBCD complex [126]
(Figure 9C). With the addition of 10 µM χ-sequences, tile-based nanotubes assembled from ligated DNA
strands were stable in TXTL for more than 10 h. Further, phosphorothioation of the strands within
nanotubes extended their viability in TXTL for more than 10 h without, and 24 h with, χ-sequences.
However, chemically modified strands in DNA structures can introduce toxicity or trigger unwanted
immune responses when introduced in cells [127]. Thus, chemical modifications should consider
potential trade-offs of structural stability and cell toxicity.

A number of studies were carried out to test the stability of DNA systems in serum and
serum-supplemented media. The Sleiman group tested the stability of DNA assemblies in 10% fetal
bovine serum (FBS) [128]. They reported that individual strands had a half-life of less than one hour,
whereas the half-life of DNA structures in the shape of a triangular prism was closer to two hours.
Hahn et al. tested the stability of DNA origamis in mammalian cell culture media supplemented with
serum, and they indicated that DNA nanostructures were sensitive to depletion of Mg2+ in tissue
culture medium [129] (Figure 10A). Interestingly, structural stability was significantly enhanced with
the addition of actin, a protein that competitively binds to nucleases. No observable differences in cell
growth, viability, or phenotype were present when actin was included in the medium.

The functionality of synthetic DNA circuitry is an important goal to achieve in the cellular
environment. This spurred a number of studies on DNA circuitry in serum and serum-supplemented
media. Goltry et al. investigated topological influences on the lifetimes of DNA devices using a
three-state DNA tweezer nanomachine and a two-state linear probe in human serum and FBS [130]
(Figure 10B). Degradation analysis revealed that the mean lifetimes of both systems in human serum
were roughly six times longer than those in FBS. They reported that the device lifetimes varied
greatly with topology (i.e., circular vs linear) and molecular conformation (i.e., shape of the structure),
potentially providing a simple design rule to program structural stability or fragility. Graugnard et al.
tested an autocatalytic strand-displacement network, reported by Zhang and colleagues [131], in human
serum and mouse serum [132]. With the addition of SDS to halt nuclease activity, the synthetic network
was functional in serum with both DNA and RNA catalysts. Fern and Schulman investigated strategies
to enable strand-displacement circuits to operate in 10% FBS [133] (Figure 10C). By inhibiting nuclease
activity using actin protein, and by modifying DNA complexes with hairpin extensions on the 3′

ends of DNA strands, the half-life of DNA strands increased by 10-fold. Through these modifications,
a multilayer cascade circuit was demonstrated that released a desired output strand with controlled
kinetics with the aid of computational modeling.

Taken together, densely packed and interconnected DNA nanostructures, such as DNA origami,
are consistently more stable than structurally simple nucleic acid architectures in cell-like environments.
Nucleases can be a primary cause for structural instability of synthetic DNA systems; however, other
processes also need to be taken into consideration. For instance, nonspecific transcription by RNAP
can produce transcripts that, in turn, can interact with DNA nanostructures, leading to disassembly via
a toehold-mediated branch migration [134]. Thus, more systematic research is warranted to develop
strategies that shield DNA systems from unintended crosstalk with biological components and that
maintain integrity of devices within the cellular context. Use of actin or χ-sites as molecular decoys,
structural modifications to increase interconnectivity, chemical modifications, and hairpin extensions
are some of the strategies explored towards achieving better functionality of synthetic DNA systems.
The improved design rules for DNA nanomachines and circuits may support the translation of devices
operational in cell-free settings to the cellular environment.
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Figure 10. Characterization of DNA structures and circuits in serum. (A) 3D model of DNA
nanooctahedron (DNO), six-helix bundle nanotube (NT), and 24-helix nanorod (NR) (top). TEM images
of nanostructures incubated in unmodified (middle) or Mg2+-adjusted (bottom) medium. Structural
integrity is maintained for all three designs with additional Mg ion. Scale bar = 100 nm. Reproduced
with permission from [129]. (B) (top) Three-state DNA nanomachine transitions between relaxed,
closed, and open states with the addition of fuel strands and their complements. The two-state linear
probe transitions between bright and dark states upon hybridization of the dye-labeled probe strand, P,
and the quencher-labeled strand, Q. (bottom) Mean lifetimes of the DNA nanomachines and linear
probes show considerable differences in degradation rates. Reproduced with permission from [130].
(C) (top) Schematic of two-layer DNA cascade reaction. (bottom) Simulation results of a two-layer
cascade with 5 bp toeholds using the fitted parameters and experimental measurements. Reproduced
with permission from [133].

7. Mathematical Modeling Supports the Development and Analysis of in Vitro Systems

Mathematical modeling has contributed to the success of synthetic biology since its inception [1,2].
Models are helpful to support the design of synthetic systems and to explain quantitatively observed
phenomena, which may be otherwise difficult to understand, especially when they include feedback
loops. Validated models are also useful to make predictions and guide experiments, making it possible
to save time and costly reagents. Ordinary differential equations (ODEs) are one of the simplest
approaches to build mathematical models to describe kinetic systems. ODE models are particularly
well-suited to capture systems operating at high copy numbers, so they are an excellent choice for
in vitro synthetic biology. Because in an in vitro setting it is usually possible to collect a large amount
of kinetic data in which experimental conditions are varied systematically, ODEs can be easily fitted to
the data and yield solid estimates of various parameters that govern the kinetics.

Many in vitro synthetic systems have been quantitatively modeled using ODEs that can be
built systematically starting from a list of relevant chemical reactions. Transcriptional networks,
for example, include synthetic genes (genelets), two enzymes, and mRNA species to create regulatory
interconnections between genelets in a rational manner [39,48]. To formulate an ODE model that
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captures the kinetics of an inhibited genelet, the species to be considered are the template T (active
and inactive), its DNA activator A, the RNA inhibitor rI, and RNAP and RNase H that control
RNA production and degradation. RNA inhibitor is produced by a “source” template (S), whose
concentration is constant. The active template TA produces an RNA output rO. The template and its
activator are referred to as a “switch” (SW). The complete set of reactions associated with this system
is shown in Figure 11A. Using the law of mass action, it is possible to write ODEs that describe the
reaction kinetics. For example, the free template concentration T is converted to active template TA by
binding to the activator A at rate constant kTA; in turn, the active template TA is converted back to the
free template T when it interacts with the inhibitor rI, which displaces the activator at rate kTAI. As a
consequence, we can immediately write the kinetics of the free template as:

dT
dt

= −kTA[T][A] + kTAI[TA][rI]. (1)

The ODEs for all other species can be derived with the same procedure. Because the total
template concentration remains constant, then [TA] =

[
Ttot
]
− [T], which means the model does not

require a specific ODE for the kinetics of TA. For enzyme kinetics, it is possible to use the well-known
Michaelis–Menten quasi-steady state approximation so that the available concentrations of RNAP and
RNase H can be expressed with an analytical, static formula as a function of their substrate (Figure 11C).
The complete ODE model is pictured in Figure 11D. This model can be fitted to kinetic data, and it
reproduces the steady state input–output map of the inhibitable switch (the input is the concentration
of source S, the output is the fraction of active switch) (Figure 11E).

More complex transcriptional networks can be modeled with the same approach by modularly
composing the models of individual switches. For instance, an ODE model of a bistable switch
(Figure 11F) could be immediately built by interconnecting the models of two inhibitable switches
whose RNA outputs mutually inhibited transcription [39]. The models were augmented by taking into
account undesired or putative reactions, such as transcription from inactive template T, and captured
very well the kinetic experiments, as shown in Figure 11G. Similarly, Kim and Winfree developed [48]
ODE models for different versions of a transcriptional oscillator, in which side reactions played a very
important role. For example, the ability of the model to reproduce the oscillator kinetics (in particular
the damping rate) was significantly improved by including incomplete degradation products that
accumulated during the oscillator reaction and their potential interactions with activation and inhibition
of the genelets. ODE models built using the law of mass action can be used to model genelets, molecular
machines, and other molecular processes, and they can be used to computationally test the influence
of new, modified, or unknown components on the system [40,135]. To summarize, mechanistic ODE
models are successful at recapitulating the dynamic behaviors of in vitro synthetic systems, and they
can be easily expanded to include additional species or reactions. Yet, these models can become
very large, even in systems with few desired interactions, and obtaining physically meaningful fitted
estimates for the model parameters requires the inclusion of tight bounds.

A phenomenological approach to building ODE models is advantageous in building models with
few variables and parameters, which helps in obtaining more intuitive results on the behavior of the
system under consideration. Rather than being built from a list of chemical reactions, phenomenological
models rely on qualitative relationships between species. For example, the steady state behavior of the
inhibitable genelet shown in Figure 11E could be modeled using a single ODE in which the source
template could cause a decrease of active switch via a Hill-type function. Beyond transcriptional
circuits, phenomenological models have been used for many synthetic systems built in vitro, including
RNA regulator-based circuits [32,136,137]. Figure 11H shows the qualitative model for a transcription
regulator that achieves negative autoregulation (NAR) [32]; the species in the equations are the
concentrations of RNA (R) and GFP (G), whose productions decrease as the concentration of RNA
(R) increases (self-inhibition). Using parameters from the literature, this simple model was used to
compare the efficiency of one versus two tandem repressors, and it yielded the trajectories in Figure 11I
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that qualitatively agreed with the experimental data in Figure 11J. Although a detailed mechanistic
model was required to quantitatively reproduce data (Figure 11J), the simple model provided useful
insights on the system kinetics.

Limited modeling efforts have been dedicated to compartmentalized cell-free circuits, largely
because this research is still in its early stages. Encapsulation can introduce noise and stochastic
phenomena even when operating with few components at high concentration. The operation
of a transcriptional oscillator, for example, was significantly affected by partitioning noise when
encapsulated in water-in-oil droplets [104]; a model combining ODEs and stochastic partitioning
of components (following a Poisson process) was able to recapitulate the variability in the circuit
dynamics. Stochastic simulations could improve our understanding of noise observed in recent works
aimed at encapsulation in high-order synthetic circuits [105,111,138].Methods and Protoc. 2019, 2, 39 18 of 25 
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Figure 11. Ordinary differential equation (ODE) models for design and characterization of in vitro
synthetic systems. (A) Schematic of an inhibited transcriptional switch. (B) List of reactions describing
a transcriptional switch that is inhibited by RNA transcribed by a source template S. (C) Mass
conservation and Michaelis–Menten expressions allow a simplification of the ODEs. (D) ODEs
describing the inhibited transcriptional switch. (E) Example data showing the input–output steady state
curve mapping the concentration of inhibitor source to the output switch concentration, overlapped
with simulated steady state data (solid lines). Reproduced with permission from [39]. (F) A bistable
switch can be constructed by interconnecting two inhibitor switches. (G) Experimental data (left)
compared to simulated trajectories (right) of the bistable switch. Reproduced with permission from [39].
(H) Example transcription regulator used to build a gene performing NAR. G indicates GFP and its
qualitative ODE model. (I) The qualitative ODE model suggests that the NAR circuit operates better
when using at least two transcription repressors in tandem. (J) Simulations of detailed mechanistic
models reproduce experimental data well. Adapted with permission from [32].
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8. Concluding Remarks

As synthetic biological systems have become larger and more complex, deciphering the intricate
interaction of synthetic systems and biological entities becomes a challenging task. Cell-free synthetic
biological approaches, with the aid of rapid progress in its scope, and toolkits may provide the right
platform for rapid design–build–test cycles. New technological breakthroughs for synthetic biology,
such as CRISPR-Cas systems, can also be elucidated in this simplified TXTL test bed [23]. The ease with
which to program nucleic acids has dramatically accelerated the structural and functional complexity of
nucleic acid-based molecular devices. These new developments encompass simplified synthetic model
dynamical systems and nucleic acid nanostructures, as well as synthetic RNA regulatory components,
which form the core of practical tools for biomedical applications. Compartmentalization for synthetic
cells opens up ways for scientific inquiry and enhanced functionality through networks of synthetic
and natural systems. Data-driven model building needs to guide the research and development
towards complex synthetic systems with prescribed dynamics in the future. In the coming years,
we anticipate that the utility of cell-free synthetic biology will rapidly expand the scope of biotechnology
and synthetic biology, and it will provide innovative solutions in biomanufacturing therapeutics for
biomedical applications and biologic products for industrial applications.
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