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Abstract: Crosslinking of proteins for their irreversible immobilization on surfaces is a proven
and popular method. However, many protocols lead to random orientation and the formation of
undefined or even inactive by-products. Most concepts to obtain a more targeted conjugation or
immobilization requires the recombinant modification of at least one binding partner, which is often
impractical or prohibitively expensive. Here a novel method is presented, which is based on the
chemical preactivation of Protein A or G with selected conventional crosslinkers. In a second step,
the antibody is added, which is subsequently crosslinked in the Fc part. This leads to an oriented
and covalent immobilization of the immunoglobulin with a very high yield. Protocols for Protein
A and Protein G with murine and human IgG are presented. This method may be useful for the
preparation of columns for affinity chromatography, immunoprecipitation, antibodies conjugated
to magnetic particles, permanent and oriented immobilization of antibodies in biosensor systems,
microarrays, microtitration plates or any other system, where the loss of antibodies needs to be
avoided, and maximum binding capacity is desired. This method is directly applicable even to
antibodies in crude cell culture supernatants, raw sera or protein-stabilized antibody preparations
without any purification nor enrichment of the IgG. This new method delivered much higher signals
as a traditional method and, hence, seems to be preferable in many applications.

Keywords: antibody coating; proximity-enhanced reaction; immunoglobulins; IgG; Protein A;
Protein G; bio-interaction; immunoprecipitation; pull-down assay; immunocapture; stabilization;
yield; regeneration; nanoparticles; microparticles; biochips; immunosensor; photochemical crosslinker;
click chemistry; Herceptin; Trastuzumab

1. Introduction

Antibodies are one of the most important biochemical reagents. They can be used in
immunoassays [1,2], biosensors [3–7], microarrays [8,9], atomic force microscopy [10], surface plasmon
resonance [11,12], affinity chromatography [13,14], affinity purification-mass spectrometry [15], mass
spectrometric immunoassay [16], immunoprecipitation [17], and magnetic particle separation [18] for
the application in diagnostics, food and environmental analysis, medical and biochemical research.
Many of these techniques require the immobilization of the respective antibody to a surface. Although
the random attachment of the immunoreagent is common due to its simplicity, oriented immobilization
is usually considered to be preferable [12,19–23]. A multitude of techniques has been proposed for the
oriented immobilization of antibodies. However, only the use of secondary antibodies, (strept)avidin,
Protein A [24] or G [25] and the periodate method [26] have been used more frequently. In some cases,
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the reversibility of such complexes is seen as an advantage since the surface can be regenerated by the
release of the primary binding reagent. However, for preparative applications or sample preparation
for mass spectrometry (e.g., immunocaptureLC-MS/MS), the elution of the immunoreagent leads to
unwanted contamination of the sample or product. Besides, the expensive antibody may be lost during
the elution step. In these cases, either non-oriented covalent techniques are used, or the oriented
Protein A/G/antibody complex needs to be stabilized with crosslinking reagents. Unfortunately, with
conventional crosslinkers, a targeted approach is challenging, which leads to the random derivatization
of many antibody side chains and amino-termini. Since crosslinkers have been used heavily for the
examination of protein–protein interactions in general, these reactions have been studied in some
detail. However, up to now, the random-derivatization characteristics were accepted as an inevitable
consequence of this approach. It must be noted that the N-termini of antibodies are quite near to their
binding sites, which makes a potentially negative influence of amino-reactive reagents quite likely.
Since the variable region of antibodies shows individual structures and properties, the prediction of
such problems, e.g., the loss of binding capacity, is nearly impossible today.

To overcome these limitations, we developed a novel two-step crosslinking method (Figure 1).
In these protocols, the antibody capturing molecule is pre-activated with “slow” crosslinkers, and
subsequently, any residual reagent is washed away to avoid any contact of the free crosslinking
reagent with the antibody. “Slow” in this context means the property that in a bifunctional crosslinker,
the first reaction does not lead to the hydrolysis or otherwise deactivation of the second function.
This concept shows some similarity with photochemical crosslinking [27], which has been used in
the exploration of nearly all types of bio-interactions. However, photochemical linkers have some
significant disadvantages, which may have limited their more widespread application. The most
obvious drawback is their light sensitivity, which requires appropriate countermeasures during
synthesis, purification, and use. Accidental exposure to light might reduce the conjugation yield in an
irreproducible way. Furthermore, the reaction yields of photochemical reactions often are low [27].
Also, the required setup for UV irradiation adds complexity to the experiments, the progression of
the reaction is difficult to monitor, and unwanted photochemical byproducts may be formed. Some
short wavelength lamps also need additional safety measures to avoid unwanted exposure of the
laboratory workers. Finally, the possibility of the direct introduction of a photo-inducible group in a
recombinant protein [28], leads to a complicated and expensive production, which might preclude
commercial availability even in the future.Methods Protoc. 2018, 1, x FOR PEER REVIEW  3 of 15 
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Figure 1. Comparison of conventional crosslinking (A) to the proposed preactivation crosslinking
method (B). Please note the potentially higher binding capacity of the immobilized antibody and the
complete lack of chemical modification in the Fab region (blue: Protein A or G, grey: antibody, orange:
crosslinker, orange with red rim: protein-protein crosslink, orange with dark rim: intramolecular or
half crosslink, green: antigen).

Our work is also related to the concept of heterofunctional supports in the field of enzyme
immobilization, which has been presented and discussed in several papers [29–32].
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One of the most popular applications for which chemical crosslinking plays an important role
is the immobilization of antibodies on magnetic or other beads. Particles pre-coated with Protein A
or G are readily available from many commercial suppliers. Most of the protocols delivered by the
manufacturer suggest crosslinking the Protein G/IgG complex by use of chemical crosslinkers, such as
bis(sulfosuccinimidyl)suberate (BS3), to avoid co-elution of the antibody. However, the formation of
many byproducts and the potential inactivation of the antibodies is rarely considered at all.

In recent years, some quite smart concepts have been presented, to achieve “proximity-enhanced”
or “proximity-enabled” crosslinking reactions in biochemical complexes. Xiang et al. [33–36] showed
the introduction of haloalkane-modified tyrosine residues for this purpose. Very recently, a similar
concept was published based on haloalkane-modified lysines [37]. Furthermore, lysines modified with
a fluoroacetamide group were used in combination with a cysteine to introduce defined crosslinks in
proteins or protein complexes [38]. In addition, Furman et al. [39] and Xuan et al. [40] presented other
reactive groups for the same purpose. All of them require the site-specific introduction of artificial
amino acids [41,42], e.g., by tRNA-synthetases. This limits the applicability to genetically modified
proteins [43] and may be the reason for their lack of practical use. In contrast, our approach can be used
for any protein or peptide, irrespective of their source, if a favorable (bio-) interaction can be formed.

2. Materials and Methods

2.1. Chemicals and Reagents

Laboratory water was obtained from a Milli-Q water purification system (Millipore, Bedford,
MA, USA). Dimethylsulfoxide (DMSO), was from AppliChem (Darmstadt, Germany), bovine serum
albumin (BSA), disodium hydrogen phosphate dihydrate, sodium dihydrogen phosphate dihydrate,
sodium chloride, citric acid monohydrate, and trisodium citrate dihydrate, sodium cyanoborohydride,
sulfuric acid, Tween 20, sodium tetraborate decahydrate were obtained from Sigma-Aldrich
(Steinheim, Germany). The reagents for crosslinking were obtained from the following sources:
Succinimidyl iodoacetate (SIA), bis(sulfosuccinimidyl) suberate, 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS) were obtained from Thermo
Scientific, succinimidyl(4-iodoacetyl) aminobenzoate) (SIAB) and sulfosuccinimidyl (4-iodoacetyl)
aminobenzoate) (Sulfo-SIAB) were obtained from Apollo Scientific (Bredbury, UK). Glutaraldehyde,
1,3-butadiendiepoxide and formaldehyde were obtained from Sigma-Aldrich (Steinheim, Germany),
disuccinimidyl tartrate was from CovaChem, glyoxal was from Merck (Darmstadt, Germany) and
tris(hydroxymethyl)phosphine was bought from abcr (Karlsruhe, Germany). Protein G (pro-402-c) and
recombinant Protein A (pro-774) were purchased from ProSpec (Ness-Ziona, Israel). The microtitration
plates were from Greiner bio-one (Frickenhausen, Germany). Mouse Monoclonal antibodies to
horseradish peroxidase (HRP), clone HP-03 (IgG1), product No. 11-262-C100 were obtained from
EXBIO (Praha, Czech Republic). The humanized antibody Herceptin (Trastuzumab) was kindly
supplied by Roche (Penzberg, Germany). In this article, Herceptin is referred to as “human IgG1”,
due to its human Fc domain. It was purified from any additives by Protein A chromatography. TMB
substrate was obtained from Seramun GmbH, Heidesee, Germany.

2.2. Buffers

Phosphate-buffered saline (PBS), pH 7.4: 2.3 mM KH2PO4, 10 mM Na2HPO4*2 H2O, 136.9 mM
NaCl, Phosphate buffer, pH 6: 12.3 mM Na2HPO4*2H20, 61.0 mM NaH2PO4*2 H2O, Phosphate buffer,
pH 7: 87.7 mM Na2HPO4*2H20, 39.0 mM NaH2PO4*2 H2O, Sodium borate buffer (SB), pH 8 and
9: 10.0 mM Na2B4O7*10 H2O, Citrate buffer, pH 5: 35.0 mM Citric Acid*H2O, 65.0 mM Trisodium
citrate*H2O, Washing buffer (PBS-Tween), pH 7.4: pH 7.4: 1.3 mM KH2PO4, 6.6 mM Na2HPO4*2
H2O, 0.5 mM Tween 20, Elution buffer (Glycine/HCl), pH 2.3: 0.1 M Glycine, titrated to pH 2.3 with
0.1 N HCl.
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2.3. Equipment

ELISA washer: 405 Select BioTek, ELISA reader: EPOCH 2 BioTek, multichannel pipettes:
Eppendorf Xplorer plus, Brand Transferpipette S, balance Mettler Toledo XS105 Dual Range, centrifuge
Hettich Mikro 220R, UV VIS spectrophotometer ThermoScientific Evolution 220.

2.4. Crosslinking Protocol with SIAB or Sulfo-SIAB

Crosslinking assays (Figure 2) were performed in 96-well polystyrene microtitration plates (MTP).
Protein G was diluted in phosphate-buffered saline (PBS, pH 7.4) to a final concentration of 10 mg/L.
Then, 100 µL of this solution was pipetted into each well of the MTP, which was shaken for at least
90 min at 750 rpm. The plate was washed three times with PBS-Tween. In the next step, 300 µL of a 1%
solution of bovine serum albumin (BSA) was added to each well. This blocking step was performed for
at least one hour at a shaking frequency of 750 rpm. The plate was subsequently washed three times.
Then 100 µL of the crosslinker solution was added to the wells. Suitable concentrations have been
determined as follows: 0.25 mM for SIAB and 1 mM for sulfo-SIAB. For poorly soluble crosslinkers,
such as SIAB, DMSO can be used as solubilizer with a subsequent dilution in a buffer to a maximum
final concentration of 40% of solvent. After a reaction time of 15 min, residual crosslinker was removed
by three washing steps. The monoclonal anti-peroxidase antibody was diluted 1:100,000 (10 ng/L) in
phosphate buffer (pH 6) and added to the wells (100 µL per cavity). This solution was incubated at
750 rpm for sixteen hours and removed by three washing steps with PBS-Tween. A solution of 10 mg/L
of horseradish peroxidase was prepared in PBS-Tween-BSA as described above. Then, 100 µL was
added to each well and shaken at 750 rpm for 15 min. Subsequently, the plate was washed three times
with PBS-Tween. Finally, 100 µL per well of TMB substrate was added and incubated for 1–30 min,
as required to reach a sufficient absorbance. After this development time, the reaction was stopped
with 0.25 M sulfuric acid. The absorbances were recorded with a microplate reader at 450 nm (650 nm
reference wavelength).
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Figure 2. Crosslinking assay for the screening of potential crosslinkers (blue: Protein A or G, grey:
anti-horseradish peroxidase antibody, orange: crosslinker, orange with red rim: protein-protein
crosslink, orange with black rim: intramolecular or half crosslink, green: horseradish peroxidase
(antigen), yellow: chromogenic product. (A) Coating with Protein G, (B) Preactivation with the
crosslinker, (C) Antibody binding to Protein G, (D) Formation of crosslink, (E) Binding of antigen
(enzyme), (F) Enzymatic formation of chromogenic product (washing steps are not shown).

2.5. Crosslinking Protocol with Glutaraldehyde

First, the protocol was performed as described in Section 2.4 with Protein G. Instead of SIAB
solution, 100 µL of glutaraldehyde (2 mM) dissolved in sodium borate buffer (pH 8) was added to
the wells. After a reaction time of 15 min, residual crosslinker was removed by three washing steps.
The monoclonal anti-peroxidase antibody was diluted 1:100,000 (10 ng/L) in phosphate-buffer (pH 6)
with 0.1% of Tween 20 and 1% of bovine serum albumin (BSA) and added to the wells (100 µL per
cavity). This solution was incubated at 750 rpm for one hour and removed by three washing steps
with PBS-Tween. In the following step, 100 µl of NaCNBH3 (200 µg/mL) in PBS was added to the wells
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to reduce imines to stable secondary amines. A one-hour incubation was required for the reduction
(750 rpm), and subsequently, the solution was removed by three washing steps with PBS-Tween. The
rest of the protocol followed the steps described in Section 2.4.

2.6. Comparison of Crosslinking Protocols

The experiment was performed in analogy to the protocol 2.4. 100 µL of a Protein G solution
(10 mg/L, PBS pH 7.4) was pipetted to a microtitration plate and incubated for 90 min at room
temperature under shaking. After a washing step (PBS-Tween, pH 7.4), blocking was performed with
300 µL of BSA solution (PBS pH 7.4) for one hour. After another washing step, 100 µL of sulfo-SIAB
(100 µL, 1 mM, PBS, pH 7.4) was incubated for 30 min. The wells for the BS3 crosslinker were supplied
with 100 µL of PBS. After a subsequent washing step, the whole plate (except controls) was incubated
with a murine monoclonal antibody (HP-03, IgG1, 100 µL, 1:100,000, phosphate buffer, pH 6.0) for
16 h. After the next washing step, the sulfo-SIAB wells were supplied with 100 µL of PBS, and the BS3
wells were incubated with 100 µL of BS3 in PBS (pH 7.4) for 30 min under shaking. After the next
washing step, any non-crosslinked antibody was removed with elution buffer (pH 2.3, glycine/HCl,
30 min) under shaking. After a further washing step, the plate was supplied with 100 µL of horseradish
peroxidase (HRP, 10 mg/L, PBS-Tween + 1% BSA) and incubated for 15 min. After a final washing step,
the 100 µL of TMB substrate was added, incubated for 10 min and stopped with diluted sulfuric acid.
The signal was recorded at 450 nm. A blank value (without crosslinker) was subtracted.

3. Results

3.1. Crosslinking Assay Based on Protein G–Mouse IgG Interaction

Well-known protein interaction pairs were chosen for this study. Recombinant Protein G, a protein
from Streptococcus, (or Protein A), and a murine monoclonal antibody (IgG1) against horseradish
peroxidase (HRP) were used. The advantage of the latter is its antigen, which can be easily determined
in a microtitration plate (MTP) format and hence is ideally suited for screening purposes. Protein G (or
A) were adsorbed to the MTP, washed and subsequently activated with the respective crosslinker. Any
excess of the reagents was easily removed by washing steps; this is a big plus of any heterogeneous
format. Furthermore, this setup simplifies any pH variation by complete buffer exchange. After the
activation step, the antibody was added in a suitable conjugation buffer. After a suitable conjugation
time, the conjugation yield was determined by elution of the antibody by acidic buffer (glycine/HCl).
Any non-conjugated antibody will be released; the conjugated fraction will stay immobilized on the
plate surface. In the next step, horseradish peroxidase was added and incubated. After the next
washing step, a chromogenic substrate, based on tetramethylbenzidine, and hydrogen peroxide were
added. After a suitable development time, the color reaction was stopped by acid and absorbance was
measured with an MTP-reader. This assay (Figure 2) was designed for the convenient examination of
the preactivation crosslinking procedure.

3.2. Crosslinker Screening

A considerable number of crosslinkers have been proposed, and quite a few of them are
commercially available. The most frequently used ones seem to be based on N-hydroxysuccinimide
(NHS) chemistry or their sulfo-derivatives [44–46], targeted against the ε-amino group of the lysine
side chain and the N-terminus of a peptide or protein. We have chosen a series of crosslinkers based
on different chemistries for a prescreening. There are several criteria, which are relevant for the
selection of a suitable crosslinker, for example, the chemical reactivity, the linker length and flexibility,
the hydrophobicity, the solubility and stability of the reactive groups in aqueous buffers, their pH
preference and many more. In Table 1, a list of crosslinkers is shown, which have been used for
the screening.
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Table 1. Compounds used for the preactivation crosslinker screening with Protein G at pH 7.4.

Crosslinker Abbr. Efficiency

Formaldehyde [47] FA -
Disuccinimidyl tartrate [48] DST -

Tris(hydroxymethyl) phosphine THP -
1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide [49]/

N-Hydroxysuccinimide EDC/NHS -

Bis(sulfosuccinimidyl)suberate [48] BS3 +
1,3-Butadiendiepoxide BDDE +
Glutaraldehyde [50–52] GA ++

Succinimidyl iodoacetate [53] SIA ++
Succinimidyl (4-iodoacetyl)aminobenzoate [48] SIAB +++

Sulfosuccinimidyl (4-iodoacetyl)aminobenzoate [48,54] Sulfo-SIAB +++

In Table 1, the results are summarized as – to +++, where – stands for no crosslinking and
+++ denotes a very high signal caused by crosslinked Protein G/antibody complex. It has to
be noted that many crosslinkers, which are perfectly suitable for normal crosslinking protocols
(reaction with the preformed complex), such as BS3, are not or only weakly active in the new
format. In the novel preactivation format only a few crosslinkers have proven to be suitable:
Particularly glutaraldehyde (GA) [50,55,56], succinimidyl iodoacetate (SIA) [53], sulfosuccinimidyl
iodoacetate (sulfo-SIA), succinimidyl (4-iodoacetyl)aminobenzoate (SIAB) [48] and sulfosuccinimidyl
(4-iodoacetyl)aminobenzoate (sulfo-SIAB) [54] can be recommended. All further experiments have
been focused on these pre-selected reagents (Figure 3).
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3.3. Influence of pH on the Crosslinking of Protein G with Murine IgG1

Most crosslinking reactions are highly pH dependent. This was explored with the examples of
glutaraldehyde/mouse IgG1/Protein G, and SIAB/mouse IgG1/Protein G. For glutaraldehyde, it could
be shown that a pH of 8 seems to be optimal for preactivation (Figure 4A). This means that a standard
buffer, such as PBS of a pH 7.4 is a suitable option. In the second step, the addition of the mouse IgG1,
a pH of 6 seems to be preferable (Figure 4B). This might be dominated by the binding optimum of
the murine IgG1/Protein G pair, which has been determined as pH 4–6 [57,58]. In addition, it was
observed that increasing the incubation time of the glutaraldehyde leads to increasing immobilization
yields (data not shown).
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influence of antibody solution (mouse IgG1) in the same experiment.

For SIAB a pH around 7 was found to be optimal for preactivation (Figure 5A). This also means
that a standard buffer, such as PBS pH 7.4 might be a good option. Similar to the situation with
glutaraldehyde, a pH of 6 was found to be preferable (Figure 5B) for the antibody (mouse IgG1).
In experiments with Protein A, a preferable pH of 7.4 was found (not shown), in accordance with
the reported IgG/Protein A optimum. This also supports the notion that not the linker, but the
protein–protein interaction governs the second step. This has to be taken into consideration when new
crosslinking pairs should be explored.
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In the next step, the sequential crosslinking with the systems Protein A and Protein G in
combination with murine IgG1 and human IgG was examined. In the case of IgG1 from mouse, a
monoclonal antibody against horseradish peroxidase was used as a model system. In Figure 6A it
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could be shown that Protein A/IgG1 leads to a much lower signal than Protein G/IgG1. In the case of
human IgG, Protein A and Protein G lead to very similar immobilization results (Figure 6B).
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The species specificity of Protein A, G, and other IgG binding molecules had been explored in
detail [59]. Hence, it is well-known that mouse IgG1 binds only weakly to Protein A, in contrast to
human IgG, which is a strong binder. These properties could be confirmed in our system. This is
also clear support of the selectivity of this crosslinking procedure. If the crosslinker alone would be
responsible for the immobilization, no such behavior would be expected. Furthermore, the addition
of BSA to the antibodies did not influence the immobilization significantly (data not shown). This
also substantiates the highly selective mechanism and contradicts any simple protein crosslinking
hypothesis. In this case, any presence of any irrelevant protein should heavily compete with the desired
immobilization process, which is a frequent problem in conventional immobilization procedures.

3.4. Incubation Time of SIAB-Activated Protein G with Mouse IgG1

In the next experiments, the time-dependency of the crosslinking process with SIAB was explored.
It could be shown that some of the crosslinkers seem to bind relatively fast, in contrast to others,
which need several hours to reach a maximum signal. After one hour of antibody incubation, about
50% of the maximum was achieved already. After 16 h, the signal doubled. Further extension of the
incubation time did not increase the response anymore. The non-linear increase indicates that at least
two different rate constants, and hence two different crosslinking sites may be involved. In general,
24 h should be more than sufficient to reach a maximal signal (Figure 7).

3.5. Influence of Solvents on the Crosslinking Process

The water solubility of different crosslinkers varies widely. Particularly, SIAB is poorly water
soluble. Hence, concentrated SIAB solutions cannot be prepared in the usual buffers. Hence, SIAB
should be pre-dissolved in organic solvents such as methanol or DMSO. Interestingly, we found
that DMSO leads to more efficient activation of Protein G than methanol. With 40% of DMSO, a
concentration of only 0.25 mM of SIAB is sufficient to obtain a maximum signal in the model system.
In contrast, with 40% of methanol, more than 2.5 mM of SIAB is necessary (data not shown). This leads
to the conclusion that the activation of Protein G with SIAB should be preferentially performed in PBS
pH 7.4 with 40% of DMSO. In the case of SIA, the exceptionally high reactivity even with methanol has
to be taken into consideration [53]. For SIA, a stock solution in acetonitrile seems to be preferable.
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Figure 7. Influence of the incubation time on the SIAB-based preactivation immobilization of mouse
IgG1 on Protein G.

3.6. Crosslinking Yield of the Protein A/G IgG System

The crosslinking yield of the method was determined by an additional dissociative elution step
with acidic glycine/HCl buffer, which is a proven approach to elute IgG from Protein A or G columns.
Any non-crosslinked IgG should be lost during this step, leading to a loss of binding capacity. Figure 8
shows a schematic representation of this test.
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Figure 8. Elution test for the determination of the crosslinking yield. (A) Bound antibodies before the
elution step and (B) Bound antibodies after the elution step. Any non-crosslinked antibody is lost in a
subsequent washing step.

In contrast to most photochemical crosslinking protocols, the crosslinking yield with SIAB seems
to be quantitative (Figure 9), at least in systems of sufficient binding strength of the protein–protein
complex. However, even in the case of incomplete crosslinking, a simple pre-elution step easily
gets rid of any traces of non-crosslinked antibody. This avoids leakage of antibodies into the
affinity-purified sample.
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Figure 9. Examination of the crosslinking yield of SIAB-activated Protein G with the recombinant
antibody Herceptin. Residual non-crosslinked human IgG was eluted with a glycine/HCl buffer at pH
2.2 (black: before elution, red: after elution). The crosslinking yield of the Protein G/human IgG system
was apparently quantitative.

3.7. Comparison of the Efficiency of the Traditional and the Novel Immobilization Method

A traditional crosslinking protocol with the reagent bis(sulfosuccinimidyl)suberate (BS3) was
compared to the proposed 2-step (preactivation) method based on sulfo-SIAB (Figure 10). It is evident
that the novel method leads to a much higher signal in this model assay. Besides, the experiment
shows that a higher concentration of BS3 leads to lower signals, which is most likely caused by the
unwanted chemical modification of the antibody binding site as discussed. The used concentration
range of BS3 is based on the manufacturer's recommendation. The concentration of sulfo-SIAB in the
preactivation step was derived from our optimization experiments.

Methods Protoc. 2018, 1, x FOR PEER REVIEW  11 of 15 

 

Figure 10. Comparison of the traditional with the novel immobilization method. BS3: Post-crosslinking 

of Protein G/antibody complex according to the manufacturer’s recommendation [60], sulfo-SIAB: 

Preactivation of Protein G with the subsequent addition of the antibody. Any non-crosslinked antibody 

was removed by elution buffer (glycine/HCl pH 2.2). 

4. Discussion 

It could be shown that some known crosslinkers can be used in a novel, 2-step protocol for oriented 

antibody immobilization. Up to now, Protein G/IgG or Protein A/IgG complexes have been treated with 

crosslinkers after the protein-complex had been formed, which inevitably leads to chemical changes in 

and near the variable region of the antibody, which is critical for selective binding and preservation of 

binding capacity. In our approach, Protein A or G is chemically  

pre-activated by an excess of homo- or heterobifunctional reagents. This did not eliminate the 

bioselective interaction between Protein A or G and the immunoglobulin. It can be assumed that this 2-

step reaction is generally applicable for most immunoglobulins, which have some affinity to Protein A 

or G. A further advantage of this approach is the flexibility of the conjugation conditions, such as pH, 

salt concentration, additives and so on. The resulting conjugate should show no loss of binding capacity 

by the chemical crosslinking step since any covalent bonds are restricted to the Fc part of the antibody 

far away from the antigen binding site. Also, it can be assumed that no optimization of the conjugation 

should be required for known IgG subclasses since the regions involved in binding to Protein A or G 

are highly conserved. We noticed that the presence of other proteins (such as albumin) did not 

significantly influence the conjugation efficiency and hence, neither a pre-purification nor 

preconcentration of the antibody or serum is necessary. Even very raw or diluted antibody preparations 

might be used directly for the conjugation, which is in strong contrast to common products with pre-

activated surfaces. 

This selective and covalent immobilization protocol should be useful in many fields: The 

preparation of immunoaffinity columns, magnetic beads, the coating of nanoparticles, such as quantum 

dots or gold particles, the activation of glass or other slides for microarray technology, the robust coating 

of immunosensor surfaces, the oriented and irreversible immobilization of antibodies on microtitration 

plates and even homogeneous variants, such as the labeling of antibodies might be feasible. It should 

be stressed that in contrast to most other recent concepts, neither the production of genetically modified 

proteins [61] nor the introduction of synthetic amino acids is required. Most buffers, preservatives or 

protein additives do not limit the applicability of this approach. However, the transfer of this protocol 

to other biochemical binding pairs has still to be explored. 

BS3 0.25 mM  BS3 0.5 mM BS3 5.0 mM sulfo-SIAB 1.0 mM

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

a
b

s
o

rb
a

n
c
e

Figure 10. Comparison of the traditional with the novel immobilization method. BS3: Post-crosslinking
of Protein G/antibody complex according to the manufacturer’s recommendation [60], sulfo-SIAB:
Preactivation of Protein G with the subsequent addition of the antibody. Any non-crosslinked antibody
was removed by elution buffer (glycine/HCl pH 2.2).

4. Discussion

It could be shown that some known crosslinkers can be used in a novel, 2-step protocol for oriented
antibody immobilization. Up to now, Protein G/IgG or Protein A/IgG complexes have been treated with
crosslinkers after the protein-complex had been formed, which inevitably leads to chemical changes in
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and near the variable region of the antibody, which is critical for selective binding and preservation of
binding capacity. In our approach, Protein A or G is chemically pre-activated by an excess of homo-
or heterobifunctional reagents. This did not eliminate the bioselective interaction between Protein
A or G and the immunoglobulin. It can be assumed that this 2-step reaction is generally applicable
for most immunoglobulins, which have some affinity to Protein A or G. A further advantage of this
approach is the flexibility of the conjugation conditions, such as pH, salt concentration, additives and
so on. The resulting conjugate should show no loss of binding capacity by the chemical crosslinking
step since any covalent bonds are restricted to the Fc part of the antibody far away from the antigen
binding site. Also, it can be assumed that no optimization of the conjugation should be required for
known IgG subclasses since the regions involved in binding to Protein A or G are highly conserved.
We noticed that the presence of other proteins (such as albumin) did not significantly influence the
conjugation efficiency and hence, neither a pre-purification nor preconcentration of the antibody or
serum is necessary. Even very raw or diluted antibody preparations might be used directly for the
conjugation, which is in strong contrast to common products with pre-activated surfaces.

This selective and covalent immobilization protocol should be useful in many fields: The
preparation of immunoaffinity columns, magnetic beads, the coating of nanoparticles, such as quantum
dots or gold particles, the activation of glass or other slides for microarray technology, the robust
coating of immunosensor surfaces, the oriented and irreversible immobilization of antibodies on
microtitration plates and even homogeneous variants, such as the labeling of antibodies might be
feasible. It should be stressed that in contrast to most other recent concepts, neither the production
of genetically modified proteins [61] nor the introduction of synthetic amino acids is required. Most
buffers, preservatives or protein additives do not limit the applicability of this approach. However, the
transfer of this protocol to other biochemical binding pairs has still to be explored.

This approach might be even useful for crosslinking experiments in solution, which are highly
popular in proteomics [62] and structural biology [63,64]. All experiments, which are performed
with traditional thermal or photochemical crosslinkers today, could be alternatively performed with
protocols analogous to those presented here. The crosslinking site might be more restricted and hence
better to control.

Regarding the reaction mechanism, it seems to be evident that crosslinkers suitable for this
approach need at least one active group, which does not hydrolyze or otherwise deactivate too fast.
Therefore, bifunctional NHS esters [45] seem to be suboptimal. In contrast, haloacetyl-residues, such
as SIA or SIAB possess a good balance between stability and reactivity towards nucleophiles. We
assume that at neutral pH values, primarily histidine residues are involved in the crosslinking with
haloacetyl groups, in contrast to the mechanism with glutaraldehyde, which should be dominated by
lysines [52]. Due to the slow reaction, even complexes with a relatively low affinity at low protein
concentrations may be accessible, in contrary to photochemical groups, which have very short reactive
lifetimes and hence often low reaction yields [27] with various side reactions. Finally, we want to stress
that all required reagents necessary for this novel approach are commercially available from standard
suppliers. Considering the much lower signals obtained with the old method, in most applications the
proposed approach should be preferred.
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