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Abstract: Glucose-6-phosphate dehydrogenase (G6PD) deficiency, an X-linked genetic disorder,
is associated with increased risk of jaundice and kernicterus at birth. G6PD deficiency can manifest
later in life as severe hemolysis, when the individual is exposed to oxidative agents that range
from foods such as fava beans, to diseases such as typhoid, to medications such as dapsone, to the
curative drugs for Plasmodium (P.) vivax malaria, primaquine and tafenoquine. While routine testing
at birth for G6PD deficiency is recommended by the World Health Organization for populations
with greater than 5% prevalence of G6PD deficiency and to inform P. vivax case management using
primaquine, testing coverage is extremely low. Test coverage is low due to the need to prioritize
newborn interventions and the complexity of currently available G6PD tests, especially those used
to inform malaria case management. More affordable, accurate, point-of-care (POC) tests for G6PD
deficiency are emerging that create an opportunity to extend testing to populations that do not have
access to high throughput screening services. Some of these tests are quantitative, which provides
an opportunity to address the gender disparity created by the currently available POC qualitative
tests that misclassify females with intermediate G6PD activity as normal. In populations where the
epidemiology for G6PD deficiency and P. vivax overlap, screening for G6PD deficiency at birth to
inform care of the newborn can also be used to inform malaria case management over their lifetime.

Keywords: glucose-6-phosphate dehydrogenase; G6PD deficiency; point-of-care; diagnostics;
malaria; Plasmodium vivax

1. Introduction

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common X-linked
genetic blood disorders in the world, impacting more than 400 million people. Individuals that are
G6PD deficient can develop severe jaundice in the neonatal period and acute hemolytic anemia when
exposed to certain infections and drugs or when ingesting certain foods such as fava beans [1,2].

Females carry two copies of the G6PD gene, such that they can be homozygous for normal alleles
(g6pdnorm/norm), homozygous for deficient alleles (g6pddef/def) or heterozygous with one deficient and
one normal G6PD allele (g6pddef/norm). Wild-type homozygous females will present phenotypically as
normal, with a G6PD activity level greater than 80% of the normal activity level, and homozygous
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females with two deficient alleles will present with a G6PD activity level less than 30%. However,
heterozygous females with a deficient and a normal allele have a much broader phenotype, which lies
mostly in the intermediate 20–80% G6PD activity ranges. With a single allele, G6PD activity levels in
males are either normal or deficient [3–7].

G6PD deficiency is relevant to newborns because of the higher risk neonates with G6PD
deficiency face in developing non-physiologic hyperbilirubinemia. Elevated levels of serum bilirubin
(SBR) can pass the blood-brain barrier and lead to a range of neurologic disorders, including acute
bilirubin-induced encephalopathy, kernicterus (chronic neurologic disease), and even death [8–10].
In term and late preterm newborns (≥35 weeks of gestational age), hyperbilirubinemia can be treated
with blue-light phototherapy and, in the most severe cases, with exchange transfusion following
universally-accepted guidelines based on an age-specific SBR nomogram.

Severe hyperbilirubinemia usually develops within one week of birth but can also develop
at a later stage. A hospital or birthing center’s ability to monitor SBR levels is crucial for clinical
management. In places where SBR testing is not routine, the ability to identify risk factors of
hyperbilirubinemia before hospital discharge (ideally at birth) should prompt SBR testing and, together
with parents and health workers, instigate education about signs of hyperbilirubinemia and guide the
follow-up at home. For newborns with G6PD deficiency in particular, clinical management both in the
hospital and at home includes an avoidance of hemolytic triggers (including drugs, food, and other
substances). In 1989, the World Health Organization (WHO) working group on G6PD deficiency
recommended that “whenever possible, neonatal screening should be performed . . . in populations
where G6PD deficiency is common (i.e., where it affects more than three to five percent of males)” [11].

Geographically, G6PD deficiency is ethnically constrained, resulting in significant variability
in risk, even within limited geographical boundaries [12,13]. Overall, populations with historic
or current exposure to malaria typically have higher prevalence for G6PD deficiency with a mean
prevalence of approximately 8.0% in malaria-endemic countries [12]. There is data to suggest that
G6PD deficiency—while not protective against red blood cell invasion from parasites—is protective
against severe clinical forms of malaria, which may explain the epidemiological overlap between G6PD
deficiency and malaria [14–17].

In 2016, there were an estimated 8.5 million Plasmodium (P.) vivax cases, representing more than
35% of malaria cases outside of Africa [18]. As countries transition from malaria control to elimination,
the predominant form of malaria often also transitions from P. falciparum to P. vivax; P. vivax accounts
for 70% of malaria cases in countries with fewer than 5000 cases per year [19]. Case management of
P. vivax (and P. ovale) is complicated compared to that of P. falciparum, due to the ability of P. vivax
parasites to reside dormant in the liver as hypnozoites [20,21]. Hypnozoites are not susceptible to
typical antimalarial drugs, which target the blood forms of the parasite, and can therefore cause relapse
of the disease, weeks or months after primary infection. Relapse infections are a major source of disease
burden in P. vivax–endemic populations [22,23]. The only class of antimalarial drugs that can cure
individuals of P. vivax malaria is 8-aminoquinoline drugs; however, they can cause severe hemolysis in
patients with G6PD deficiency. Historically, a high-dose, 14-day regimen of primaquine has been used
for a radical cure of patients with P. vivax. Recently, tafenoquine, under the brand name of Krintafel,
was approved by the Food and Drug Administration as a single-dose regimen to treat patients with
confirmed P. vivax infection. WHO recommends testing for G6PD deficiency before administration of
primaquine [24], and given the toxicity profile of the single-dose regime, testing will be required prior
to administration of tafenoquine.

Due to an increased awareness of the morbidity caused by P. vivax relapse, the contribution of
P. vivax relapse to onward malaria transmission, the commitment to malaria elimination in many
predominantly P. vivax–endemic countries and the imminent availability of tafenoquine, there is
renewed focus to address relapsed P. vivax infections by increasing access to a radical cure. In response,
diagnostics manufacturers have advanced the development of point-of-care tests for G6PD deficiency
that will be required for use in malaria case management.
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This review discusses the overlap between screening for G6PD deficiency in newborns and testing
for G6PD deficiency to inform malaria case management as well as the availability of new technologies
that can bring G6PD testing to underserved and remote populations where G6PD deficiency and
P. vivax malaria predominates.

2. Testing for G6PD Deficiency

The G6PD deficiency status of an individual can be characterized by genotype or by phenotype
(Table 1). There are increasingly effective tools for G6PD genotyping both in terms of cost and
timeliness [25]. For males, the genotype is sufficient to unambiguously assign a phenotype. For females,
the genotype of females heterozygous for a G6PD normal and a G6PD deficient allele cannot be
unambiguously phenotypically classified as their blood enzyme activities can range between 20–80%
of a normal value, with the majority close to the 50% normal activity range. Regardless, it can
be anticipated that G6PD genotyping will increase in screening programs through next-generation
sequencing assays [26–28].

The G6PD phenotype is primarily described in terms of G6PD activity normalized for hemoglobin
or red blood cell count. It has been challenging to define a single universal normal (100%) G6PD activity
value, so that classification of the G6PD status of an individual is defined as the percentage of a normal
value determined locally. G6PD phenotype classifications for purposes of test performance evaluation
were recently described by the WHO [29]. Males with less than 30% activity are considered as deficient
and males with greater than 30% activity should be considered as normal [29]. Females with less
than 30%, 30–80%, and greater than 80% G6PD activity are considered G6PD deficient, intermediate,
and normal, respectively [29]. Another way of defining the phenotype is by cytochemistry, wherein
individual red blood cells are labeled for G6PD activity levels, and then, typically either by eye (if by
microscopy) or by gating (if by flow cytometry), cells are dichotomously classified as deficient or
normal and the ratio of the two can then inform a phenotypic classification (Table 1). While extremely
informative, this latter approach is primarily used as a research tool and will not be further described
here. From a clinical perspective, it is the G6PD phenotype that informs the risk of someone developing
G6PD deficiency–related pathologies.

The biochemical assays that measure enzyme activity include two categories of G6PD tests,
qualitative and quantitative. By convention, a G6PD deficient individual is considered a true positive,
and a G6PD normal individual a true negative, such that sensitivity refers to the ability of a test to
identify all true G6PD deficient individuals and specificity is the ability of the test to identify all true
G6PD normals. A quantitative test is used as the reference standard [29,30]. The qualitative tests
can only really discriminate G6PD deficient individuals from intermediate and normal individuals,
and as such, heterozygous females with G6PD activity 30–40% of normal are typically classified as
normal even though they have very low G6PD activity levels [30,31]. The qualitative tests have a
discriminatory threshold for deficient and normal at the 30–40% activity level and can display good
sensitivity for deficient males, and females with two G6PD deficient alleles, as they typically have
G6PD activity below 30% normal. If there is a need to differentiate heterozygous females with low
intermediate activity levels (40–50%) from G6PD normal individuals, or in other words raise the
threshold G6PD activity level, the sensitivity of the qualitative test then begins to drop [31]. However,
with a quantitative test, as long as there is good correlation with the reference assay, and with a gradient
close to unity, the sensitivity can be kept high along the whole dynamic G6PD activity range. The most
widely used qualitative test and the clinical standard of care in most hospitals is the fluorescent
spot test (FST), which consists of observing nicotinamide adenine dinucleotide phosphate (NADPH)
production under a long wave ultraviolet light source [32]. In newborns, the above-described limitation
of the qualitative test combined with the high reticulocyte counts typically leads to a misdiagnosis of
females with low G6PD activity levels at risk of developing G6PD-associated complications as normals.
In other words: the sensitivity drops. There is an increasing recognition that the thresholds for defining
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newborns at risk of G6PD-associated complications need to be higher than the discriminatory cutoffs
used by qualitative tests such as the FST [33–36].

In the context of G6PD screening, the most common approach has been to include G6PD screening
within other screening programs that are typically congenital hypothyroidism screening. In these
programs, the specimen source is often the heel stick (in some cases, cord blood), stored and transferred
via dried blood spots (DBS), commonly known as the Guthrie card. Samples are assessed primarily via
qualitative or quantitative biochemical methods, although genotyping is also performed. Screening
typically utilizes high throughput instrumentation. Several strong external quality assurance systems
have been put in place to assure the quality of these large volume testing facilities [37,38].

Table 1. Association between genotype and phenotype. Two methods of measuring phenotype
are shown: (1) by cytochemical staining, where red blood cells (RBC) are arbitrarily assigned as
having high glucose-6-phosphate dehydrogenase (G6PD) activity or low G6PD activity [5] and (2) by
spectrophotometric G6PD enzyme activity measurement in whole blood. The activity is described in
terms of percentage of a population’s normal value [39,40].

Genotype
Phenotype

% RBC with High G6PD
Activity (Cytometry)

% Normal G6PD Activity
(Spectrophotometry)

Males

hemizygous normal (+) >85% >30%
hemizygous deficient (−) <10% ≤30%

Females

homozygous normal (+1/+1)
>85% >70%heterozygous normal (+1/+2)

heterozygous
normal/deficient (+/−) 10–85% ~20–80%

heterozygous deficient (−1/−2)
<10% ≤30%homozygous deficient (−1/−1)

3. Newborn Screening Practices for G6PD Deficiency

A recent review focusing on G6PD deficiency testing within newborn screening (NBS) practices
highlights a heterogeneity in practices that are not directly correlated to the prevalence of G6PD
deficiency within a country [41]. Africa and the Middle East present the highest prevalence of G6PD
deficiency; however, these regions have the lowest coverage of newborn screening for G6PD deficiency.
Newborn screening coverage for G6PD deficiency is the highest in the Asia Pacific region, with at least
six countries providing full coverage and several also providing this service to sub-populations or
access to private-sector services [41]. Additionally, in many countries that conduct newborn screening
for G6PD deficiency, screening is primarily accessible to urban populations near facilities that provide
the service.

Expert guidance from neonatologists has outlined key considerations when deciding whether
or not to adopt or scale newborn screening for G6PD deficiency [42]. Key questions are: (1) whether
testing should take place before babies leave the hospital, (2) whether screening should be universal
or targeted toward babies at greatest risk and (3) what screening method should be used [43].
Additional considerations include the cost-effectiveness of screening, the frequency and severity
of G6PD deficiency in a specific population, availability and efficacy of appropriate diagnostics
options, and the capacity of the health system to provide appropriate counseling to parents and
providers [44,45]. Sections 3.1 and 3.2 below describe practices in some countries in the context of
these considerations and are by no means comprehensive.
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3.1. Newborn Screening for G6PD Deficiency in the United States and Europe

In the United States, screening for G6PD deficiency is only routinely done through the newborn
screening programs in two states: Pennsylvania and DC [41,46,47]. Facilities outside of those states
may choose to adopt universal or targeted screening practices independently [41,47]. In Europe,
newborn screening guidelines vary widely with little consensus on what should be included. Greece is
the only country with nationwide coverage, while Italy has partial coverage and other countries
have targeted programs [41,48]. However, in both the United States and Europe, migration makes it
increasingly complicated to predict the prevalence of G6PD deficiency, the specific genotype, and the
risk that certain newborn complications are related to G6PD status [49].

The American Academy of Pediatrics recommends that newborns with jaundice are screened for
G6PD deficiency when family history or background suggests a likelihood of G6PD deficiency or when
the response to phototherapy is poor [50–52]. Multiple methods are used for newborn screening with
varying performance [53,54]. In the United States, some reports have concluded that fluorescent spot
test (FST) methods are sufficient, while others indicate they are inadequate, particularly for females,
due to the lack of an accurate quantitative measurement [55–58].

There is some concern that among clinicians practicing in the United States, the prevalence
and clinical implications of G6PD deficiency are underappreciated [59]. Nonetheless, it is evident
that American clinicians support newborn screening for G6PD [60–62]. There is some evidence to
suggest that hospital-based G6PD deficiency screening is feasible and that, when paired with parental
education around risk factors and triggers, the negative health impacts from hyperbilirubinemia are
limited [9,47,63]. In Greece, an assessment of the national screening program from 1977–1989 was
deemed justified in areas of high G6PD prevalence [64,65]. Similarly, a robust G6PD newborn screening
program paired with health education programs implemented in the Sassari district of Sardinia, Italy,
was associated with a 75% decline in clinical complications associated with G6PD deficiency. Notably,
this decline was disproportionally observed among boys, suggesting that the intervention is less
effective in girls, possibly driven by inadequacies in the screening method for female populations [66].

3.2. Newborn Screening for G6PD Deficiency in the Asia Pacific

The prevalence of G6PD deficiency is close to or more than 5% throughout the Asia Pacific
region, but many countries do not have NBS programs, and for countries that do, the programs
are often inefficient, with many excluding screening for G6PD deficiency. Countries of the Greater
Mekong subregion where G6PD deficiency is high (Thailand, Myanmar, Laos, Vietnam and Cambodia)
currently have no NBS programs despite evidence indicating a need otherwise [67].

For example, in Thailand, several studies have shown a high prevalence of G6PD deficiency [68,69]
as well as an association of the deficiency with neonatal hyperbilirubinemia; however, a national
NBS program for G6PD deficiency has not been set up [70–72]. Similarly, an NBS program for
G6PD deficiency in Indonesia has not been implemented; a few private hospitals may screen for
G6PD deficiency in newborns, while others will screen for G6PD deficiency only when there is an
indication of non-physiological jaundice. While NBS in Indonesia started in 1999, it was only for
congenital hypothyroidism using a heel stick sample, and coverage is <1% despite this being a national
program [73], indicating a large systemic obstacle that would need to be addressed prior to G6PD
deficiency screening implementation.

In the Philippines, where the prevalence of G6PD deficiency ranges from 4.5% to 25.7%, testing
for G6PD deficiency is included in its newborn screening program, which is carried out within 24 h
of birth; however, coverage remains low at 28% [74]. Both the Philippines and Taiwan implemented
national NBS programs in 1998 and 1987, respectively. These programs utilize FST and have
developed follow-up systems for G6PD-deficient individuals to receive follow-up confirmatory testing
using spectrophotometry. In Taiwan, the follow-up system also includes medical care and genetic
counseling [67].
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Examples of successful G6PD deficiency newborn screening are Malaysia and Singapore. Malaysia
has been conducting G6PD NBS since the 1970s from cord blood, and the coverage is >95% in the
population and funded by the government [67]. Similarly, Singapore recognized the important role
of G6PD deficiency in kernicterus and started NBS for G6PD deficiency in 1965 using cord blood as
well [75]. The reported nationwide coverage for NBS is >99%. The government subsidized about
40–60% of the cost of NBS within public hospitals and has since eradicated kernicterus due to G6PD
deficiency [67]. The current policy is to keep G6PD-deficient babies longer in hospitals to avoid
hemolytic triggers from the environment [76].

4. G6PD Testing for Malaria Case Management

In contrast, G6PD testing to inform malaria case management using primaquine has typically not
been possible due to the complexity of current G6PD test methods, which are not compatible with
the remote and under-resourced clinical and laboratory settings where a majority of malaria patients
seek care (Figure 1). In recent years, there has been an increase in the availability of point-of-care tests
for G6PD deficiency. The CareStart G6PD (Access Bio, Somerset, NJ, USA) rapid diagnostic test is
perhaps most aligned with these clinical settings, however, as a qualitative test it has some inherent
limitations compared to quantitative tests (Table 2) [77–79]. The SD Biosensor STANDARD G6PD test
(Suwon, Korea) represents a new point-of-care product that brings quantitative G6PD measurement
normalized for hemoglobin capabilities to lower-tier clinical and laboratory settings [80]. Several other
point-of-care tests for G6PD deficiency are also in development on different platforms, such as the
Access Bio CareStart G6PD Biosensor (Somerset, NJ, USA) and the FINDER platform from Baebies
(Durham, NC, USA) [56,81]. The benefit of the instrumented quantitative products is that they can
address the inherent enzyme temperature variance through temperature correction, sustaining their
accuracy and therefore utility over a broader temperature range, in contrast to the qualitative tests.
More critically, just as for neonatal screening, quantitative testing is increasingly relevant for providing
equal access to both males and females to both high-dose primaquine and the recently FDA- and
TGA-cleared antimalarial drug tafenoquine [39]. However, there is an added level of complexity and
cost to requiring an instrument to run G6PD tests in each facility where G6PD testing may be required.
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Table 2. Characteristics of qualitative and quantitative point-of-care G6PD tests.

Qualitative Quantitative

Accurately classifies males Accurately classifies males
Females with intermediate G6PD activity classified as normal Accurately classifies females

Does not require an instrument Requires an instrument
Cannot correct for operating temperature, typically resulting in

a more limited operating temperature range
Corrects for temperature allowing for a broader

operating temperature range
Time-to-result < 10 min Time-to-result < 10 min

Low to moderate complexity Moderate complexity

5. New Opportunities for G6PD Screening: Synergies and Considerations

The advent of these new G6PD testing technologies raises new opportunities to address inequity
in access to newborn screening in countries with high G6PD deficiency prevalence. Additionally,
the overlap in epidemiology for G6PD deficiency and P. vivax provides a synergistic need for testing
that may warrant supporting the intervention. Yet, there are several considerations that should be
taken into account when assessing what technology should be included when testing is implemented.

5.1. Overlap in Desired Product Characteristics

Point-of-care G6PD tests are designed to provide fast turnaround, typically within ten minutes.
This is an essential characteristic for malaria case management because patients are lost to follow-up if
they are asked to return for their G6PD test result several days later. Fast turnaround is also essential
for neonatal clinics in low-resource settings, as the mother and child rarely stay in the hospital longer
than 24 h and systems for remote testing and test result return are highly inefficient. A limitation is that
the throughput required for newborn testing is likely to be significantly higher than that for malaria
testing in some settings. Additionally, the time it takes for high throughput tests to provide results may
not be quick enough to inform the care of sick newborns, making a point-of-care test that can provide
results within ten minutes a preferred option, even when routine screening methods are available.

5.2. Work Flow and Sample Type

The point-of-care tests that are on the market have been designed and validated for use with
fresh whole blood specimens, with or without anticoagulant; however, they have not been shown to
be compatible with dried blood spots, the primary specimen used in newborn screening programs.
Alternatively, operations research would need to assess the feasibility of incorporating the point-of-care
tests, as is, into the current workflow in delivery wards using capillary samples directly from the heel
stick. In some contexts, validating the products with cord blood may be useful.

5.3. External Quality Assurance

Newborn screening programs have significantly invested in quality assurance systems, which are
compatible with high throughput testing facilities but are not compatible with more decentralized
lower throughput testing facilities. Quality control reagents formulated to support high throughput
facilities can be amortized over many samples, which would not be the same for lower throughput
facilities, resulting in significantly increasing the price of testing. Pragmatic solutions that address
these differences, such as new formulations for control reagent presentation, will need to be thought
out and tested.

5.4. Record Keeping

The return-on-investment or value proposition for G6PD testing at birth is highly dependent on
the reliability of diagnosis done at birth and the ability of the test result to stay with the individual
and individual’s caretakers, which minimizes the need to retest the individual later in life. Record
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keeping can be very challenging in many malaria-endemic settings, which means setting- and
population-specific solutions are often required.

5.5. Awareness and Sensitization

Record keeping is key for determining value proposition but is only valuable itself if the parties
involved are sensitized to the implications of G6PD deficiency. This would include understanding how
to prevent exposure to triggers for hyperbilirubinemia and hemolysis in G6PD-deficient individuals as
well as how to identify and react according to the early onset of associated symptoms.

5.6. Cost-Effectiveness

In many low-resource settings, the priority for incorporating G6PD deficiency testing over other
interventions will be hard to justify in the context of the many competing health system limitations
and priorities. A series of factors will contribute to the overall value proposition in those settings,
which include the prevalence of G6PD deficiency in the local population served, the likelihood that a
G6PD-deficient individual will suffer associated pathologies later in life and the ability for the test
result at birth to be associated with the individual throughout their life. Cost-effectiveness assessments
that focus only on the short-term benefits of G6PD testing at birth are unlikely to support prioritizing
the intervention. A framework for assessing the cost-effectiveness for G6PD testing at birth in settings
with high prevalence of G6PD deficiency and other triggers for G6PD deficiency–associated hemolysis
should be considered. These triggers can include antibiotics, certain foods, and several medications.
In populations where there is also a high prevalence of P. vivax malaria, and radical treatment with
8-aminoquinolines is provided, the significant health benefit of preventing malaria relapse versus the
costs of hospitalization of patients reacting to the drugs should be included. Cost-effectiveness models
for G6PD testing for a radical cure have been developed; however, these do not integrate the use of
tests at birth to avoid complications, or beyond that, of malaria case management.

6. Summary

New quantitative point-of-care technologies that address both the need for immediate results
to mitigate the risk of hyperbilirubinemia and the need to provide reliable and actionable results
for management of newborns or patient treatment decisions may help spur stronger and more
comprehensive newborn screening efforts for G6PD deficiency in settings that do not have practical
access to centralized screening programs. Testing must be accompanied with community awareness of
and sensitization to G6PD deficiency along with robust record keeping such that the investments are
maximized beyond the first days of life. In malaria-endemic regions, G6PD testing will provide access
to the best standard of care, which is a radical cure of P. vivax malaria. Operations research is required
to assess the feasibility and effectiveness of G6PD testing with these new point-of-care tests at birth.
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