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Abstract

Newborn screening (NBS) has evolved significantly since its inception, yet many treatable
rare diseases remain unscreened due to technical limitations. The BabyDetect study used
gene panel sequencing to expand NBS to treatable conditions not covered by conventional
biochemical screening. We present here the analytical validation of this workflow, assessing
sensitivity, precision, and reproducibility using dried blood spots from newborns. We
implemented strict quality control thresholds for sequencing, coverage, and contamination,
ensuring high reliability. Longitudinal monitoring confirmed consistent performance across
more than 5900 samples. Automation of DNA extraction improved scalability, and a panel
redesign enhanced the coverage and selection of targeted regions. By focusing on known
pathogenic/likely pathogenic variants, we minimized false positives and maintained
clinical actionability. Our findings demonstrate that gene panel sequencing-based NBS is
feasible, accurate, and scalable, addressing critical gaps in current screening programs.

Keywords: newborn screening; genomic; BabyDetect; dried blood spot; next generation
sequencing; analytical validation

1. Introduction
Newborn screening (NBS) has come a long way since its first introduction to the

public health system back in the 1960s [1]. The advent of new technologies has paved
the path for progressive inclusion of more metabolic and endocrine disorders, resulting
in the saving of thousands of children from severe disability and/or early death [2]. The
inclusion of a disease in NBS is driven by the criteria of Wilson and Jungner, that include
the existence of an efficient treatment. Moreover, early screening and diagnosis of diseases
are of primary importance to obtain the best effect of such treatments and to accelerate new
drug development. However, today, a set of rare diseases that completely match the criteria
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of Wilson and Jungner are not screened at birth. Among those diseases are congenital myas-
thenic syndromes [3], neurotransmitter diseases [4], pyridoxine- and pyridoxal-dependent
epilepsy [5], Brown–Vialetto–Von Laere syndrome [6], and Wilson disease [7]. Even though
there is substantial pre-clinical and clinical evidence that early treatment is much more
effective than late treatment, and that pre-symptomatically treated patients have a much
better prognosis than patients treated after the onset of symptoms, spinal muscular atrophy
(SMA) is only recently being screened at birth in Europe. The case of severe combined
immunodeficiency (SCID) constitutes another perfect example [8].

In many countries, comprehensive NBS programs have not yet been established as
standard practices in neonatal care. The main reasons for the absence of NBS for eligible
diseases are technical. All NBSs today are implemented as metabolic-based and for some
exceptions—DNA-based. As a consequence, diseases without a well-identified biomarker
or metabolite, measurable in excess or in default, are generally not screened.

Another issue is the time needed in several countries to introduce new diseases one
by one in the official programs. Spinal muscular atrophy constitutes an excellent example.
Indeed, this condition that now constitutes the paradigm of a “must-be-screened” has been
detected at birth since 2018 in Belgium [9] or Germany [10], but not yet in the UK [11].

Pilot initiatives in genomic newborn sequencing have been blossoming worldwide
over the past few years [12–18]. We have initiated a 3-year research project, BabyDetect
(ClinicalTrials.gov: NCT05687474; www.babydetect.com, accessed on 2 June 2025), using
targeted panel sequencing (tNGS). In this paper, we describe the workflow of BabyDetect
together with analytical validation. We highlight the importance of defining and imple-
menting the quality parameters for longitudinal monitoring of the routine genomic NBS
workflow. We demonstrate the potential and challenges of panel-based screening to be
implemented as an NBS program with the capacity to screen more diseases.

In this first implementation, no copy-number or structural variant (CNV/SV) analysis
was performed due to lack of sufficient positive controls for validation. The detection of
CNVs and other SVs is an essential component of comprehensive genetic screening, as
such variants can indeed be pathogenic and disease-causing. Here, we present a pragmatic
plan to enable CNV detection and analysis in future releases while preserving screening-
grade performance.

2. Materials and Methods
2.1. Samples

Parental-informed decision was taken before collection of newborns’ samples on
dedicated filter paper cards (LaCAR MDx, Liège, Belgium) designed for the BabyDetect
project [14,19]. These cards were used to keep research samples separate from the routine
NBS workflow and to streamline logistics and traceability. The project was approved by
the Institutional Review Board (CHU Liege ethics committee (n◦ 2021/239)) and complied
with the WMA Declaration of Helsinki.

2.2. Design of Validation Plates

Two microtiter plates of 88 samples were designed for method validation. Plates
contained DNA extracted from newborns’ dried blood spots (DBSs) and the DNA extracted
from whole blood. The outline of the validation plates is presented in Supplementary
Materials Table S1. The following samples were used for validation purposes:

• Eight positive newborn samples (NBPOS-1 to NBPOS-8, 3-plex of each), with
pathogenic (P) or likely pathogenic (LP) variants in PAH, ACADM, MMUT, G6PD,
CFTR, DDC genes, confirmed with screening and diagnostic methods.

• Eight negative newborn samples (NBNEG-1 to NBNEG-8, 3-plex of each).

www.babydetect.com
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• Four negative adult samples (ADNEG-1 to ADNEG-4, 4-plex of each). These are adult
whole blood samples with no reported conditions.

• Same four negative adult samples spotted on DBS (DBS-ADNEG-1 to DBS-ADNEG-4,
4-plex each).

• HG002-NA24385 Genome in a Bottle (GIAB) reference DNA (https://www.nist.gov/
programs-projects/genome-bottle, accessed on 22 September 2025, Coriell Institute,
Camden, NJ, USA), 8-plex.

2.3. DNA Extraction

DNA was extracted from DBS and whole blood manually using the QIAamp DNA
Investigator Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions
with modifications for plate-based extraction. Manual extraction was used for initial
validation samples as well as during the first year of screening.

After one year of screening, in order to ensure scalability of the population-based NBS
and to improve turnaround time (TAT), automated extraction was implemented using the
QIAsymphony SP instrument (Qiagen, Hilden, Germany) with the QIAsymphony DNA
Investigator Kit (Qiagen, Hilden, Germany). Both manual and automated methods were
validated and compared.

DNA yield was quantified using a Qubit fluorometer (Thermo Fisher Scientific,
Singapore), and DNA quality and fragment size were assessed by agarose gel electrophore-
sis and Agilent fragment analysis (Figure S1).

2.4. tNGS Panel Design and Sequencing

Eligible diseases were selected by performing a systematic literature review and having
discussions with local medical experts. Gene inclusion criteria were considered before
selecting genes of interest: early onset of disease (before age of 5), severe disease/disability
if not treated, available treatment, benefit from treatment, pathogenic mutation, phenotype–
genotype correlation, and standard of care (Table S3).

Firstly, a custom target panel covering 359 genes for 126 diseases was designed
(panel-v1) and it was later expanded to reach 405 genes for 165 diseases (panel-v2)
(Table S3) [14]. Twist Bioscience technology (San Francisco, CA, USA) was used for li-
brary preparation and the high-performing probes were selected for target enrichment.

For panel-v1, probes were designed to capture all coding regions of genes of interest,
including 3′UTRs and 5′UTRs. For 20 complex genes, introns were also targeted. Altogether,
targets of interest (TOIs) in panel-v1 encompassed 1.6M bases of genomic DNA.

To improve the quality and performance of the BabyDetect panel, we designed a
second version of the panel (panel-v2). The original design of panel-v1 was modified
to focus on only the coding regions and intron–exon boundaries (~50 base pairs from
the intronic borders) of selected genes. Deep intronic variants, promoter and UTRs, and
homopolymeric regions were not targeted. With panel-v2 approximately 1.5 Mb were
targeted for capture and sequencing. The primary technical rationale for redesigning
panel-v2 was to improve on-target capture efficiency. In panel-v1, intronic regions as well
as 3′ and 5′UTRs from 20 genes had been included in the target of interest (TOI), but these
noncoding regions were excluded in panel-v2 to enhance performance. In addition, the
redesign enabled the incorporation of newly curated genes of interest identified during a
second round of gene curation (Table S3).

Study samples were sequenced using Illumina technologies. Three validation runs
were realized: two independent runs with 2 × 100 bp reads on NovaSeq 6000 (20040719,
NovaSeq 6000 SP Reagent Kit v1.5, 200 cycles, San Diego, CA, USA) and one run with
2 × 75 bp on a High Output NextSeq 500/550 systems (20024907, NextSeq 500/550 High
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Output Kit v2.5, 150 Cycles, San Diego, CA, USA). Both sequencing platforms were ana-
lyzed with defined criteria.

2.5. Bioinformatic Analysis

The raw sequencing results were aligned to the reference genome GRCh37/hg19 using
a homemade pipeline (Humanomics v3.15, https://gitlab.uliege.be/bif-chu/humanomics,
accessed on 2 June 2025 [20]) that utilizes published algorithms: BWA-MEM for mapping
the reads, elPrep for filtering the reads and removing duplicates, HaplotypeCaller for
detecting variants, and GenotypeGVCFs for producing variant-calling format (VCF) files.
VCF files are used for the filtering and interpretation of variants. Humanomics allows
identification of single-nucleotide polymorphisms (SNPs) and short insertions and deletions
(indels, from 1 to 15 bp) located within exons or at the intron–exon boundary (~50 base
pairs of flanking regions). The workflow does not call copy-number variants (CNVs), large
deletions, mosaicism, or other structural variants; no CNV analysis was performed in this
study due to insufficient positive controls for validation.

2.6. Sensitivity and Precision of Sequencing

To estimate sensitivity and precision, we used GIAB sample. This sample was se-
quenced and analyzed within the same workflow as the DNA extracted from the DBS. The
generated VCFs were subsequently compared to publicly available data provided by the
GA4GH consortium [21]. These reference data consist of a VCF encompassing all variants
confidently identified in this sample, referred to as the GIAB gold standard, and a BED
file containing all regions fully characterized for this sample. These regions, known as
high-confidence regions (HCRs), cover approximately 85% of the genome (hg19) and serve
as the standard reference regions. Real-time genomic (RTG) tools v3.12 (vcfeval) were
used for VCF comparisons. Vcfeval from RTG tools serves as a tool for evaluating the
accuracy of genetic variant calls. It compares two sets of variants: one extracted from the
VCF being tested and another from a designated set file—the GIAB gold standard. The
analysis was restricted to TOI, looking only at variants (i) present in the HCR and (ii) at
positions covered with at least 30 reads. True positive (TP) represents variants found both
in GIAB gold standard and in our VCF; false negative (FN) represents variants from GIAB
gold standard that are missed in our VCF; and false positives (FPs) are variants present in
our VCF but not in GIAB gold standard. Sensitivity is defined as the fraction of GIAB gold
standard detected; hence, it is equal to TP/(TP + FN). Precision is defined as the fraction of
variants from our VCF present in GIAB gold standard; hence, it is equal to TP/(TP + FP).
These two metrics provide a quantitative measure of the reliability of variant calls.

2.7. Reproducibility of the Results

The pairwise comparison of samples from various groups was performed using RTG
tools, using one VCF as test sample and the other as a “truth” set. We assessed concordance
with the formula C/(A + B + C), where C corresponds to variants found in both VCF1 and
VCF2 (hence classified as TP by Vcfeval), A corresponds to variants exclusively inferred in
VCF1 (hence classified as FP by Vcfeval), and B corresponds to variants inferred only in
VCF2 (hence classified as FN by Vcfeval).

The analysis was limited to the TOI and HCRs and filtered to retain only those with a
minimum depth of 30 reads (DP ≥ 30).

2.8. Definition and Selection of Quality Metrics

To ensure the reliability and accuracy of our results, we check quality control (QC)
parameters that span various stages of sample processing, from library preparation,

https://gitlab.uliege.be/bif-chu/humanomics
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sequencing to variant calling. Among the numerous QC parameters provided by the
Picard tools suite [22], the ten have been chosen for longitudinal monitoring (Table S4).

2.9. Threshold Setting

For every sample processed, QC values generated by Picard tools are systematically
stored in a centralized database. While the complete set of metrics is extensive, only a
curated subset is required to validate the quality of an analysis under routine conditions. A
sample is flagged as potentially problematic when, for each retained metric, its inferred
value is outside a defined quality threshold.

To define QC thresholds, 34 independent runs were considered for panel-v1, and
43 independent runs were considered runs for panel-v2. Duplicate and triplicate samples
were excluded to avoid bias. For each metric, distribution plots were created to visualize
the interquartile range (IQR) and determine cutoff values, with most parameters adopting
a 1.5 × IQR threshold to identify potentially problematic samples.

For the longitudinal follow-up, we have adopted ChronQC as an integral tool for
monitoring the quality of our data over time [23]. Leveraging ChronQC’s capabilities,
we can efficiently track changes and trends in our datasets across multiple time points,
ensuring the reliability and consistency of our longitudinal analyses. All quality metrics are
monitored for each sequencing run. We have defined three very important metrics (VIPs):
Q30_pct, TARGET_BASES_30X_pct, and SNP_REFERENCE_BIAS. In the case of failure of
one of these VIPs, the whole workflow for that sample is repeated.

2.10. Variant Interpretation Pipeline

After the secondary analysis was completed and the sequencing quality was checked,
the VCFs were used for variant interpretation of asymptomatic neonates, where no phe-
notypic data was available for the variant selection process. Using the Alissa Interpreter
(Agilent), we have developed and validated the BabyDetect Variant Interpretation Pipeline.
The pipeline includes (a) the decision tree that has criteria for filtering variants with no
human phenotype ontology and (b) the information of genes in the panel [14].

In BabyDetect, we filter and report class 4 and 5 variants according to ACMG guide-
lines [24] from our knowledge-based database, as well as from ClinVar. Variants which
are not present in ClinVar were not reported. Filtered P/LP variants were assessed man-
ually using additional platforms of Franklin (https://franklin.genoox.com, accessed on
22 September 2025) and VarSome [25]. Variants with conflicting assertions of pathogenic-
ity between these three platforms (ClinVar, Franklin and VarSome) were not considered
for reporting.

3. Results
3.1. Workflow

The BabyDetect analysis was developed starting in 2020 and is now accredited under
ISO-15189:2022 [26] certification and IVDR-labeled. Its analytical workflow is defined from
sample punching at the laboratory facility up until clinical reporting (Figure 1). The mean
laboratory processing time for workflow is from 8 to 10 days.

Samples for the study and for analytical validation were collected, recorded, and
stored by trained personnel under conditions for clinical application. DBS cards were
delivered to our dispatching unit and encoded with a unique identifier in the information
management system.

https://franklin.genoox.com


Int. J. Neonatal Screen. 2025, 11, 91 6 of 22

 

Figure 1. Laboratory operational workflow of BabyDetect analysis. Green boxes represent working
steps in the flow from top to bottom. Blue diamonds represent quality control steps which lead to
decision points on how to proceed.

Following sample reception, the analytical workflow begins with the punching of the
DBS card. This step is followed by an initial QC evaluation; in the event of failure, due to
insufficient material or poor sample integrity, the corrective action is initiated, including
re-contacting the maternity ward or verifying the availability of an alternative card. If
the sample passes QC, it proceeds to DNA extraction, which is likewise subjected to QC
before advancing to library preparation. To optimize DNA yield, we initially incorporated
an overnight lysis of DBS punches at 30 ◦C, followed by manual DNA extraction using
the Qiagen column-based protocol. This approach was applied to validation samples and
one-year screening samples. As the study progressed and the need for scalability and
shorter TAT became evident, we validated and transitioned to automated extraction using
the QIAsymphony platform. This automated method was subsequently adopted for the
remaining study samples. Twist Bioscience technology is used for library preparation; the
average size of prepared libraries with ligated adapters is 350 bp, which allows sequencing
of fragments by both NovaSeq and NextSeq systems. At each stage, QC is systematically
applied. QC failure at any point triggers a loopback to the extraction phase, ensuring that
only high-quality input progresses through the workflow. This looped design not only
safeguards the fidelity of downstream analyses but also minimizes the risk of reporting
inaccurate findings. The final steps involve variant interpretation and clinical reporting.
When a positive result is identified, the workflow is repeated from the punching of DBS
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until variant interpretation. This allows us to confirm the positive screening result as well
as to check for inversion of the sample.

The workflow described in this section was used for analytical validation, whereas the
optimizations for DNA extraction as well as a panel redesign are presented in a dedicated
section below.

3.2. Variant Interpretation Pipeline

In BabyDetect, for conditions with autosomal-recessive inheritance, we report ho-
mozygote and compound heterozygote P and LP variants. Carriers of those variants are not
reported in the scope of our project. In case of autosomal-dominant diseases, the presence
of one P or LP variant is reported. For X-linked diseases, hemizygous identification of P or
LP variants in males and homozygous or possible compound heterozygous identification
of P or LP variants in females are reported [14]. The variants of uncertain significance
(VUSs) are not reported.

Our decision tree incorporates different filtering criteria, including quality, allelic
frequency, mutation type, and operates to decipher variants of clinical interest (Figure 2).
Briefly, after secondary analysis and sequencing quality verifications, VCFs are uploaded in
the interpretation pipeline. Variants are first filtered based on our gene panel. Then, variants
are filtered by read depth and variant confidence by depth. Filtering based on variant allele
and population frequency is then applied. Variants with population frequency <1% or any
variants in frequent genes are checked in our managed variant list (MVL). Variants that
match P and LP classification from MVL are selected for filtering based on X-linked genes
in the panel and subsequently filtered by their zygosity. Furthermore, variants are filtered
on published P and LP ClinVar variants, and matching variants are again filtered based
on X-linked genes and zygosity. All filtered homozygote, compound heterozygote, and
hemizygote variants are manually reviewed.

 

Figure 2. Decision tree for variant interpretation. Blue-marked boxes represent the filtering cri-
teria, ovals indicate that filtering is not continued, and orange-marked box indicates the end of
interpretation and manual review step.
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The filtering pipeline was designed with a semi-automatic approach; when there are
no variants of interest to review, the sample is automatically closed, whereas samples with P
and/or LP variants are flagged for manual review. Variants are reviewed independently by
three scientists and decisions on reporting are taken. Variants not registered in ClinVar or
in our MVL are not reported. Variants with conflicting interpretations in ClinVar, Franklin,
VarSome databases and relevant publications are checked. Consensus on reporting is taken
if supporting evidence is found in three databases.

3.3. Validation Samples

Initial validation was performed on a GIAB reference (HG002-NA24385) and on
eight positive samples previously identified by an alternative method. An additional
eight newborns’ negative samples and four adults’ negative samples were used for compar-
ative analysis of different parameters of the workflow. These adult whole blood samples
with no reported conditions were also spotted as DBS and included in the validation process,
to assess concordance between our DBS workflow and classical whole blood workflow.

Sample selection, included in the validation plate, is described in Section 2 Material
and Methods. For initial validation (panel-v1), we used the first eight positive samples
(NBPOS-1 to NBPOS-8) indicated in Table S5; these samples were selected by their availabil-
ity at the conventional NBS laboratory, which were positive based on biochemical marker
and/or identified P variants at diagnostic setting. A total of 88 samples, included in the
validation plates (Table S1), were sequenced twice in independent sequencing runs on
NovaSeq 6000 and 48 samples were sequenced on NextSeq 500/550.

After validation, 2600 newborn samples included in the project were processed with
the validated protocol in 34 independent batches (96 or 48 samples/batch). The protocol
with a redesigned panel (v2) was revalidated on a set of eight additional positive samples
(Table S5) and the same GIAB. These eight samples were sequenced on two independent
sequencing runs. This second protocol was then used for the remainder of the study
(3319 samples in 43 independent batches).

3.4. Performance of the Analysis
3.4.1. Sensitivity, Precision

Our results indicate that the initial validated workflow exhibits high sensitivity for
SNP detection, with values exceeding 97% and a precision of 94% (panel-v1); whereas for
the detection of indels, sensitivity is 81% and precision is estimated at 59% (Figure 3).

Our findings underscore the method’s high sensitivity and precision for SNP detection,
together with its reliable sensitivity but moderate precision for detecting small indels. Our
obtained results were in accordance with the number of accredited NGS analyses of the
diagnostic unit at the university hospital of Liege (CHU Liege, oral communications at
laboratory meetings and validation protocols), both for panel-based sequencing and whole-
exome sequencing (WES).

The redesign of our target panel (v2) and its improved performance are described in
the section “Optimizations” below.

The BabyDetect Variant Interpretation Pipeline was validated on positive and negative
samples (n = 216 sample). In the initial analytical validation, eight positive samples were
analyzed in triplicate in two NovaSeq runs (48 samples) and, in duplicates, in a NextSeq
run (16 samples). All disease-causing variants, identified by alternative methods, were
correctly selected by our variant decision tree which leads to a 100% sensitivity for P
variants of our workflow. Negative samples included in the validation plates were also
interpreted with the pipeline and no P variants were retained after interpretation (Novaseq
runs n = 112 samples, Nextseq run n = 24 samples) as expected.
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The eight positive samples used in revalidation (panel-v2) of the workflow were
sequenced in two runs (n = 16 samples) and interpreted with the interpretation pipeline;
the same P variants were identified in both runs with 100% sensitivity.

Figure 3. Performance metrics for SNPs and indels across sequencing panels and DNA inputs.
Sensitivity and precision are shown for SNPs and indels across different sequencing panels and DNA
input quantities. Upper part of the figure shows the Precision (left) and Sensitivity (right) metrics for
SNPs. Bottom part of the figure shows the Precision (left) and Sensitivity (right) metrics for indels.
Colors indicate the sequencing panel (red = Panel-v1, blue = Panel-v2), and shapes represent the
input DNA quantity in ng (the circle shape corresponds to 40 ng of DNA, and the triangle shape
corresponds to 50 ng of DNA). Facets separate metrics (columns) and variant types (rows). Y-axis
scales are adapted per variant type.

3.4.2. Intra-Run and Inter-Run Concordance

We have used the concordance as an estimation for the similarity between two repli-
cates of a sample within the workflow.

For GIAB, the estimated intra-run mean concordance between replicates of the same
batch was 93%. The concordance analysis was also performed for positive controls and the
control extracted from whole blood and DBS (intra-run mean concordance—90%).

Inter-run concordance between the two replicates passed in two independent batches
was used to estimate their similarity. Our results show an inter-run concordance close to
90% for SNPs for GIAB and positive controls. The majority of discordant variants (92%)
were FP with low allele frequencies, and are not relevant for clinical interpretation, as they
are systematically excluded by our variant filtering pipeline.

Overall, these results indicate a high reproducibility of our workflow.
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3.5. Quality Control

To ensure the reliability and accuracy of our sequencing data, we established a set
of QC thresholds. Samples that do not meet these thresholds are flagged for re-analysis,
ensuring data integrity and consistency. The quality metric thresholds for both panel-v1
and panel-v2 used in routine are presented in Figure S2.

3.5.1. Evaluating Sequencing Quality

To ensure the reliability of the sequencing data, we routinely monitor key quality met-
rics that reflect both yield and accuracy. We used core indicators PF_BASES and Q30_pct.

A minimum threshold of 85% (panel-v1) is applied for Q30_pct as recommended by
the instrument manufacturer. Based on revalidated panel-v2 and the rest of the sequenced
runs, the minimum threshold was raised to 90% to further increase the stringency of our
QC (Figure S2). All samples in our cohort exceeded these values, confirming the high
quality of our sequencing runs.

For PF_BASES, we established a lower limit based on inter-sample variability ob-
served across multiple validation runs. Using the IQR as a robust measure of spread, we
defined the threshold as 1.5 × IQR below the cohort median—an approach used to flag
statistical outliers.

Samples below this limit are flagged for review. If a sample fails Q30_pct it is excluded
from further analysis and is re-prepared from the newly punched DBS. This strategy helps
to ensure that only high-quality data is retained for downstream interpretation.

3.5.2. Evaluating Target Selection Quality

To monitor library preparation, we used TARGET_BASES_30X_pct and
MEAN_TARGET_COVERAGE metrics.

Initially, the TARGET_BASES_30X_pct metric had a lower threshold set at 93%. Samples
falling below this threshold exhibit insufficient coverage and are systematically reviewed
and the flow is repeated for that sample (Figure 1). When MEAN_TARGET_COVERAGE
also falls outside the acceptable range, this strongly indicates inadequate sequencing depth,
warranting review. The MEAN_TARGET_COVERAGE threshold is arbitrarily set at 100×,
ensuring robust depth across the targeted regions.

To evaluate the capture efficiency in library preparation, we follow the QC metrics of
SELECTED_BASES_pct. For initial panel -v1, the minimum threshold of this parameter was
set to 40% (Figure S2). The redesign of the panel (v2) allowed us to improve the on-target
capture (min. threshold 78%), and the details are described in the dedicated section below.

3.5.3. Evaluating Inversions and Contaminations

In our routine workflow, to control plate or sample inversion during manual prepara-
tion, we have introduced two risk mitigations:

Every 96-well plate includes in position H12 a control, containing P variants in
two genes (SERPINA1: c.1096G>A and ALDOB: c.448G>C). This sample serves as the
“internal control sample”.

Each positive case is completely reanalyzed from the original DBS to confirm the initial
sequencing finding.

Additionally, we use the SNP_REFERENCE_BIAS to detect potential contamination.
The upper threshold of the SNP_REFERENCE_BIAS is fixed at 0.56, corresponding to
1.5 × IQR above the median. Values exceeding the threshold suggest contamination and
are reviewed and re-prepared.

The “internal control sample” is monitored after each variant interpretation of the
batch to ensure that P variants are identified in every sequencing run with sufficient
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read and allelic depth, call and mapping quality, and true genotype. For each monitored
parameter, the Levey–Jennings chart is generated, and the values are plotted after each
batch interpretation. This monitoring allows us to confidently state that for that sample
both P variants are being identified with high confidence and uniformity (Chart S1).

3.5.4. Longitudinal Monitoring

We use ChronQC (Figure 4) to automate the monitoring and evaluation of the sequenc-
ing metrics over time, ensuring that the data consistently adheres to predefined quality
standards throughout the study. We monitor all the metrics outlined in the ChronQC report.
The samples failing the defined thresholds for the VIPs are being repeated from the start of
the laboratory workflow.

Figure 4. Sequencing quality metrics across runs for Panel v1 and Panel v2. Quality control metrics
are shown for sequencing runs performed using two capture panels: Panel v1 (left) and Panel v2
(right). Each subplot displays one of three VIPs (top to bottom): the proportion of bases with a quality
score ≥30 (Q30_pct), the percentage of target bases covered at ≥30× (TARGET_BASES_30X_pct),
and the SNP reference bias (SNP_REFERENCE_BIAS). Each dot (blue) corresponds to an individual
sample within a run, while horizontal dashed lines (pink) indicate the predefined quality threshold
for each metric and panel. On the x-axis, runs are labeled by their run date; on the y-axis, metric
values are shown.
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3.5.5. Decision Criteria for Sample Quality

Across the first year of the study using panel-v1 (2600 samples), 95.6% (n = 2486) of
samples passed all QC criteria without requiring the repeating of the workflow. The
remaining 4.4% (n = 114) failed at least one metric: 103 samples failed one metric,
10 samples failed two metrics, and 1 sample failed three. The most frequent failure was
SELECTED_BASES_pct (n = 82). By systematically integrating these thresholds into our
workflow, we enhanced both sequencing efficiency and downstream data accuracy.

3.6. Robustness to Workflow Variations

We have assessed whether variations in the standard conditions of the protocol for
library preparation have any influence on results quality.

3.6.1. Initial DNA Quantity

Initial DNA quantity can vary due to DNA extraction and manual manipulation. To
evaluate the robustness of our workflow to such DNA quantity variations, we estimated
sensitivity and precision for the detection of known GIAB variants using DNA quantities
of 40 ng and 50 ng for library preparation as recommended by Twist Bioscience. Our
results indicate that both DNA quantities lead to a similar sensitivity for SNP detection
(97.15%-40 ng and 97.21%-50 ng) and precision (94.08%-40 ng and 93.67%-50 ng). Sensitivity
and precision for indels are also similar between both DNA quantities (sensitivity at
81.58%-40 ng and 81.49%-50 ng, precision at 59.54%-40 ng and 58.92%-50 ng) (Figure 3).

Furthermore, to facilitate the manual workflow we did not quantify the amount of
DNA to be taken for library preparation but took 40 uL of extracted DNA for fragmentation.
Of note, extracted DNA concentration varied from 50 to 400 ng. We have tested the
robustness of the analysis by varying the DNA input of 40 ng vs. 50 ng and 40 µL of
extract vs. 40 ng. Results show that the concordance observed here does not differ from
the inter-run concordance (90%). The amount of DNA used for library preparation has
little impact on concordance. This demonstrates consistency and shows that our method is
robust to variations in initial DNA quantity.

3.6.2. Initial Material Variation: Whole Blood or Dried Blood Spot

Sensitivity and precision were evaluated on GIAB but our routine flow for neonatal
screening uses DNA extracted from DBS [27]. Therefore, we assessed concordance between
DNA extracted from whole blood and the same DNA extracted from DBS. Results show
that the concordance observed here does not differ from the concordance observed in the
inter-run concordance data (90%) and that results obtained from DBS are no different from
those of whole blood.

3.6.3. Sequencing Instrument

Depending on the number of samples to screen, we have used both NovaSeq
(96 samples) and NextSeq (48 samples) sequencers. To evaluate whether sequencing in-
struments influence the quality of obtained results, we calculated concordance, precision,
and sensitivity for the GIAB between NextSeq and NovaSeq, for DNA quantities of 40 and
50 ng. The sequencing runs on NovaSeq are referenced as NovaSeq_1 and NovaSeq_ 2, the
NextSeq run is referenced as NextSeq_1.

The results show that the concordance between NovaSeq and NextSeq fluctuates
approximately between 86 and 88% for the control samples, whereas the concordance for
the GIAB sample was lower, ranging between 83% and 85%, with no difference between
DNA input 40 and 50 ng.
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3.7. Optimizations
3.7.1. DNA Extraction Automation

To ensure scalability and to improve TAT, the automated QIAsymphony DNA extrac-
tion was validated and implemented in our workflow. It has since replaced the manual
extraction of our routine workflow, and 3319 samples have been screened.

For both extractions, the amounts of isolated DNA fluctuated between 50 and 400 ng,
with a DNA size greater than 20 kb with the manual column-based method (Figure S1-b)
and greater than 40 kb with the beads-based QIAsymphony (Figure S1-a) extractions. Con-
centrations obtained for selected DNA-plates are available in Figure S3. ANOVA test was
conducted, and it showed a p-value = 0.188 (p < 0.05), indicating that there is no significant
difference between DNA concentrations extracted by both methods. Additionally, after
running extracted samples with the entire analytical flow, pairwise concordance (per sam-
ple) was calculated between samples extracted manually and with QIAsymphony. Samples
were sequenced in different runs and the results are presented in Table S2. The mean
concordance between analyzed samples is 91.6. The comparisons of both methods allowed
us to integrate, with confidence, the QIAsymphony workstation into our further flow.

3.7.2. Target of Interest: Improving Performance and Clinical Impact

After the first year of this study, we re-evaluated the gene list of our targeted panel
and removed and added some genes (Table S3). The re-evaluation of gene list meant a
redesign of the panel. This opportunity of redesigning has allowed us to improve our
general performance by focusing on the two following aspects. First, we removed some
genes because they could not meet our quality control criteria due to technical limitations
(homologous regions, large rearrangements). Second, we reduced the number of targeted
regions (namely by removing large intronic regions) to reduce the number of off-target
reads. The initially validated panel of BabyDetect contained 359 genes and the redesigned
panel has 405 genes. Precisely, 15 genes were removed from the initial panel and 61 were
added to the redesigned panel.

Beyond its broader screening scope, the redesigned panel demonstrated improved
technical performance. A key indicator of this improvement is the significant reduction in
off-target sequencing: the average percentage of off-target reads decreased from 52.7% with
panel-v1 to 18.5% with panel-v2, representing a ~30% relative reduction (Figure 5). This
improvement in on-target efficiency is critical (SELECTED_BASES_pct), as off-target reads
can obscure variant interpretation and reduce overall data quality. By minimizing off-
target capture, panel-v2 not only improves hybridization specificity but also enhances the
reliability of downstream variant calling.

In line with these technical optimizations, we also observed a marked improvement in
variant detection performance with panel-v2. While the initial workflow using panel-v1
already demonstrated high sensitivity for SNP detection, >97%, and a precision of 94%,
the redesigned workflow with panel-v2 yielded even better results (Figure 3). Across all
replicates, SNP sensitivity reached 99%, with precision ranging from 95% to 97%, reflecting
more accurate identification of true positive variants. Although indel calling remained more
variable, slight improvements were also observed in panel-v2, with sensitivity ranging
from 79% to 83% and precision ranging from 56% to 64%.

These improvements at the panel design level complement the performance gains
observed during the revalidation of our workflow and contribute to a more robust and
clinically impactful screening tool.
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Figure 5. Distribution of off-target sequencing reads (% off bait) for exome capture panels v1 and
v2. Violin plots represent the full distribution of % off bait across samples for each panel. Box plots
indicate the median and interquartile range, and black dots denote the mean. Panel v2 (blue, right)
shows consistently lower off-target rates compared to panel v1 (red, left), reflecting improved target
enrichment performance.

It is important to indicate that, to further analyze the identified low precision of indels,
we have investigated false positive indels in a GIAB sample and provided results in the
Supplementary Materials (Table S6). Specifically, we identified and investigated 51 indel
variants from the HG002-NA24385 reference sample captured with panel-v2. Most variants
were located at exon–intron boundaries; a few were within the same gene and only a few
were annotated in databases. The majority of these variants had low allele frequencies
and/or were classified as benign with no clinical relevance for interpretation and thus
were systematically excluded by our variant filtering tree. For this reason, we accept the
relatively low precision values for indels.

4. Discussion
In the BabyDetect project, we currently employ a tNGS panel encompassing 405 genes

associated with 165 diseases (panel-v2). Our approach delivers high sensitivity and con-
sistent detection of SNPs across all replicates, with robust precision metrics. As expected,
detection of small insertions and deletions exhibits greater variability, particularly in re-
gions of low sequence complexity, capture inefficiency, or homopolymers—challenges
intrinsic to enrichment-based capture techniques. Indeed, indel calling remains technically
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more complex than SNP calling, as enrichment protocols introduce elevated indel error
rates, especially in A/T-rich homopolymer stretches.

A key limitation of the present manuscript is the absence of copy-number and struc-
tural variant analysis. We intentionally restricted scope to SNVs and short indels to maintain
screening-grade positive predictive value (PPV), batch-to-batch stability, and turnaround
time, given the lack of sufficient positive controls for pipeline validation. Indeed, SNVs
represent the predominant cause of genetic disease, accounting for an estimated 85% of
known pathogenic mutations [28,29]. In comparison, CNVs and other SVs contribute to
approximately 10–15% of genetic disorders [30]. CNVs, defined as gains or losses of DNA
segments, can markedly alter gene dosage and function. Although CNVs span 12–16% of
the human genome, only a subset are considered rare and clinically relevant [31]. These
rare CNVs account for approximately 10% of SVs implicated in rare diseases [32]. However,
not all rare pediatric disorders are equally enriched for pathogenic CNVs. Syndromic neu-
rodevelopmental disorders (e.g., intellectual disability/global developmental delay with
congenital anomalies or epilepsy) often exhibit high CNV yields (~20–30%), though SNVs
and small indels contribute majorly to disease [33,34]. Moreover, certain disorders, such as
Duchenne muscular dystrophy or Angelman syndrome, are CNV-driven by definition, with
CNVs representing the primary pathogenic mechanism (~70–80%). As such CNV-driven
conditions were excluded from our screening gene list, based on our eligibility criteria, we
have 17% of genes (68 out of 405 genes) that contain reported CNVs and other SVs, and in
most of them the estimated contribution of pathogenic CNVs/SVs is approximately 2–5%.

As a prerequisite to routine deployment, we will conduct a staged validation using
confirmed CNV-positive samples that reflect the diversity of events likely to occur in
our assay: (i) single-exon versus multi-exon deletions/duplications; (ii) small versus
large events in terms of the number of captured targets; (iii) loci with high homology or
pseudogene interference; (iv) GC-rich and GC-poor segments; and (v) exons at capture
boundaries. Acceptance criteria will include per-gene/region sensitivity estimates, PPV
compatible with population screening, a stable per-sample call burden, and inter-run
reproducibility. Upon meeting these criteria, CNV analysis will be activated in routine,
with MLPA or qPCR confirmation required for any putative screen-positive sample prior
to clinical reporting.

To mitigate the current scarcity of confirmed positives, we will also run a prospective,
off-line “shadow” CNV evaluation across all incoming samples under a research protocol
separate from routine screening and reporting. This will not affect turnaround time or
clinical outputs. Candidates will be restricted to high-confidence patterns (e.g., multi-exon
events in well-covered genes, consistent signal across QC checks with acceptable sample-
to-reference correlation and a non-inflated per-sample CNV burden). Any candidate
meeting the predefined triage criteria will undergo orthogonal testing on retained material
(MLPA/qPCR). Confirmed events will be used to refine thresholds, estimate gene-level
sensitivity/PPV, and lock a sufficiently large panel-of-normals for robust normalization.
Once screening-grade performance is demonstrated, CNV analysis will transition from
shadow evaluation to routine initially on a CNV-ready subset of genes.

Improving capture efficiency can enhance indel sensitivity in tNGS and WES. Yet,
whole-genome sequencing (WGS) offers a clear technical advantage by enabling more
uniform coverage of the genome, with estimates suggesting that 60× is needed to recover
95% of indels [35]. WGS further extends these capabilities by including both coding
and noncoding regions. This comprehensive view enables the detection of structural
variants, deep intronic and regulatory mutations, repeat expansions, and CNVs with higher
sensitivity and resolution than targeted- or exome-based approaches. Such breadth is
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particularly advantageous to increase diagnostic yield in neonatal screening programs,
especially in disorders characterized by heterogeneous genetic architectures [36,37].

The transition from our initial panel (v1) to panel v2 was driven by the need to
increase diagnostic yield by including newly validated disease genes and optimizing
capture performance. Each modification of the panel, whether the inclusion of additional
regions or the removal of poorly performing ones, requires extensive revalidation, which
is resource-intensive and time-consuming. These repeated validation cycles can create
bottlenecks in implementation and, in some cases, lead to sample backlogs. Retrospectively,
the use of WES or WGS could have accelerated this development phase by enabling
broader exploratory variant detection, reducing the need for iterative panel redesigns.
WES enables the analysis of nearly all protein-coding regions of the genome, which harbor
the majority of known disease-causing variants [38]. This allows for the detection of a
wider spectrum of pathogenic single-nucleotide variants (SNVs), small indels, and, with
appropriate bioinformatic tools, some larger CNVs [39]. Nevertheless, the high per-sample
cost and limited throughput of WES and WGS remain significant barriers to its use in
population-scale screening programs, while also considering the limitations associated
with sequencing a large number of samples on a single flow cell [40–42]. Additionally, the
costs of extrapolating WES or WGS on the national scale underscores the current economic
impracticality of these broader approaches for routine screening. Furthermore, beyond
cost, these genome-wide approaches also introduce significant challenges. First, they
generate a vast amount of data, increasing the burden of computational analysis, storage,
and interpretation, especially in a time-sensitive context such as neonatal care [36]. Second,
they yield a higher proportion of VUS, which complicates clinical decision-making and can
lead to ethical dilemmas regarding disclosure and follow-up [24]. Moreover, the incidental
identification of secondary findings, which are not related to the primary indication for
testing, raises additional ethical and logistical concerns regarding consent, counseling,
and long-term follow-up [43]. In contrast, targeted panels allow for streamlined analysis,
reduced turnaround time, and alignment with established clinical actionability frameworks,
making them more immediately implementable in public health settings.

Therefore, while WES and WGS hold promises for future implementation, especially
in cases where a broader genetic investigation is warranted, current evidence supports
the continued use of targeted panels as a pragmatic and scalable solution for population-
wide neonatal screening. Strategic integration of CNV detection into panel-based methods,
through algorithmic enhancements or supplemental assays, may further improve diagnostic
performance without compromising operational feasibility.

It is important to note that although second-generation short-read sequencing is
efficient and cost-effective, it lacks capacity to phase pathogenic variants without parental
samples to assess segregation (cis or trans). The need to request parental samples can
prolong the diagnostic process and cause anxiety for families while results are pending.
Third-generation long-read sequencing platforms offer a solution to this challenge. A
major advantage of long-read sequencing is its ability to provide phasing information
directly from a single individual, linking variants located on the same DNA strand. This
approach removes the requirement for parental DNA to determine variant inheritance in
recessive conditions, thereby reducing diagnostic delays, alleviating parental anxiety, and
streamlining laboratory workflows. Moreover, long-read sequencing enables more accurate
detection of CNVs and other structural variants.

Variant filtering and interpretation remain challenging for genomic NBS, especially
in the case of neonatal screening in a considerably healthy population where no phe-
notypic data is accounted. Our developed filtering strategy and conservative approach,
which reported only known pathogenic and likely pathogenic variants, enabled us to
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identify 1.8% of screened cases as positives, with 0.8% not identified by conventional
screening [14]. Filtering of pathogenic and likely pathogenic variants based on only known
databases (ClinVar, Franklin, VarSome) and our own MVL may increase the number of
clinical false negatives (1 false negative out of 71 positives [14] and 2 false negatives out of
114 positives—BabyDetect unpublished data). Alternatively, reporting VUS still remains
challenging and is a subject of debate. In the context of newborn screening, overloading
the variant interpretation pipeline with VUS variants and reviewing them manually can
cause increase in screening TAT, whereas reporting of VUS can cause anxiety among the
screened population. Our developed filtering pipeline allows us to keep VUS in a separate
location in the database while not reviewing and not reporting them. The VUS datasets
could be used for future re-classification in case of available proof of pathogenicity and/or
new scientific projects.

To define an appropriate balance between false negatives and false positives in Baby-
Detect, we assessed the trade-off between variant review workload and TAT, especially
critical for the early onset of treatable conditions. A higher number of variants flagged for
manual review, especially VUS, would drastically increase the TAT, potentially delaying
clinical intervention during the neonatal window where treatment timing is essential. Con-
versely, overly stringent filtering reduces the number of variants to review but increases
the risk of false negatives. We therefore adopted a filtering strategy that minimizes manual
burden without compromising sensitivity for known actionable conditions. This compro-
mise was refined through retrospective analysis of early cohorts and benchmarking against
conventional screening results, allowing us to calibrate filters to optimize both diagnostic
yield and operational feasibility. Manual review is strictly limited to variants meeting
defined pathogenicity criteria, and VUSs are stored for future re-analysis, preserving both
clinical rigor and workflow efficiency.

The main challenge for variant interpretation associated with asymptomatic newborns
undergoing newborn screening is the absence of symptoms that can be predictive for any
suspected disease. In BabyDetect, we implemented a structured variant filtering tree, not
considering the human phenotype ontology, which provides a standardized vocabulary of
phenotypic abnormalities encountered in human disease. Our standardized framework
integrates automated filtering, pathogenicity scoring based on ACMG/AMP guidelines,
and manual curation steps. Each node of the decision tree was carefully designed to
incorporate both objective evidence (e.g., variant frequency, gene–disease association, and
expert-driven judgment). This architecture ensures reproducibility while preserving clinical
oversight, especially for conflicting variants near the classification boundary between VUS
and the likely pathogenic.

There is another challenge associated with variant interpretation pipelines, such as
the use of artificial intelligence (AI)-based tools. Not underestimating the benefits associ-
ated with the implementation and use of AI in variant filtering (exp. Franklin platform,
https://franklin.genoox.com, accessed on 22 September 2025), it is important to have suf-
ficient knowledge to correctly consider and analyze, evidence-based, the classification
provided by AI tools for each filtered variant. In addition, as AI tools become more widely
adopted in genomics, the field of explainable AI (XAI) has emerged as essential, partic-
ularly in clinical contexts where understanding the rationale behind a prediction is as
important as the prediction itself. In variant interpretation, XAI approaches can enhance
transparency by highlighting which features contributed most to a classification—such as
functional annotations, conservation scores, or population data—thus allowing human
experts to validate or challenge the output. This is especially relevant in NBS, where
decisions must be timely, ethically sound, and clinically actionable. Recent efforts have

https://franklin.genoox.com
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underscored the importance of interpretable models in healthcare applications [44] and in
variant classification workflows [45].

For laboratories aiming to implement newborn genomic screening, the integration of
explainable AI into decision-support systems offers a promising path forward, but it must
be coupled with domain expertise, rigorous validation, and transparent governance struc-
tures. Defining thresholds for actionability, clarifying roles of AI outputs, and preserving
the option for expert override are critical safeguards to ensure that automation enhances,
rather than replaces, clinical judgment.

In the context of population-level screening, where clinical sensitivity and specificity
are paramount, the bioinformatics pipeline must not only be accurate but also stable, au-
ditable, and reproducible across time and environments [46]. Our current bioinformatics
pipeline is under strict revision control with in-silico revalidation of every major release,
and execution is run on a dedicated high-performance cluster with containerized software
tools under revision control as well. Our pipeline is implemented using a series of Bash
scripts. While this legacy approach has been carefully maintained and regularly updated,
it lacks features such as integrated workflow management, native scalability, and envi-
ronment portability. As part of our continuous improvement strategy, and in line with
our practices for other genomic workflows, we are planning to migrate this pipeline to
a workflow manager framework. This transition will improve modularity, reproducibil-
ity, containerization, and long-term maintainability, particularly critical in the context of
clinical deployment at scale. We thus advocate for a modular, containerized architecture
built with workflow managers such as Nextflow [47] or Snakemake [48], which allow
explicit version control of all steps, tools, and reference files. Containerization (e.g., via
Singularity [49,50] or Docker [51]) ensures computational reproducibility by isolating the
runtime environment and avoiding hidden system-level dependencies. Each step in the
pipeline—from base calling and demultiplexing to alignment, variant calling, annotation,
and report generation—should be fully logged, traceable, and testable.

Our experience in deploying in-house pipelines under ISO 15189 accreditation has
underscored the importance of rigorous development practices and traceability. All tools
and custom scripts are versioned using Git, and changes are tracked through pull requests
and structured code review. Every production release is associated with a changelog,
and all parameter settings and reference files used during clinical runs are archived in
immutable configurations. The use of containerization, primarily via Singularity, which
is compatible with HPC environments, has proven essential for ensuring identical results
across environments, which is a prerequisite for re-accreditation and external audits.

To support continuous integration and deployment, we have implemented auto-
mated test suites covering both unit-level validation of individual pipeline modules and
integration-level checks using synthetic and well-characterized reference datasets. This ap-
proach allows us to detect regressions early, validate infrastructure updates, and minimize
downtime during production transitions. Promoting pipeline changes from development
to clinical production is governed by a formal approval workflow, which includes perfor-
mance benchmarking, documentation updates, and review by a multidisciplinary team.

Importantly, we propose:

• Immutable configuration tracking, where every analysis run is associated with a fixed
pipeline version, tool versions, and parameters.

• Automated unit and integration testing for all pipeline components, ensuring that
updates or infrastructure changes do not introduce regressions.

• Reference dataset benchmarking to regularly evaluate the pipeline against synthetic or
known truth sets (e.g., Genome in a Bottle, synthetic mixtures), thereby safeguarding
analytical performance.
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• Clear separation between development and production environments, with a formal
promotion workflow when pipeline changes are validated and ready for deployment.

• Data provenance mechanisms (e.g., checksums, sample lineage tracking) to ensure
that outputs can be backtracked to raw data and initial parameters.

• Furthermore, harmonization with external clinical guidelines should be embedded
where applicable, particularly at the variant filtration and prioritization stages.

5. Conclusions
The BabyDetect project demonstrates that tNGS-based newborn screening is a reliable

and scalable approach to detect treatable rare diseases not covered by conventional methods.
Our validated workflow achieves high sensitivity and precision, with robust QC ensuring
reproducibility across thousands of samples. Automation and panel optimization have
improved efficiency and coverage. By focusing on clinically actionable variants, we balance
diagnostic yield with manageable interpretation workload. While CNV/SV analyses were
beyond the scope of the present work, we have outlined a staged plan for their integration
in future studies: accrue positive controls for validation, establish a robust normalization
cohort, and activate CNV calling with mandatory orthogonal confirmation once screening-
grade acceptance criteria are satisfied.
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