Journal of Mind and Medical Sciences—A Journal of Bidirectional Emergence in Health and Disease
Abstract
1. Introduction
2. Discussion
2.1. Upward Emergence in Biology
2.2. Downward Emergence in Biology
2.3. Cancer as a Pathological Expression of Supracellular Downward Emergence
3. Conclusions
Conflicts of Interest
References
- Jay, R.; Davenport, C.; Patel, R. Clinical reasoning-the essentials for teaching medical students, trainees and non-medical healthcare professionals. Br. J. Hosp. Med. 2024, 85, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Weisz, G.; Cambrosio, A.; Keating, P.; Knaapen, L.; Schlich, T.; Tournay, V.J. The emergence of clinical practice guidelines. Milbank Q. 2007, 85, 691–727. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ginsburg, G.S.; Phillips, K.A. Precision Medicine: From Science To Value. Health Aff. 2018, 37, 694–701. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perry, G.; Castellani, R.J.; Moreira, P.I.; Lee, H.G.; Zhu, X.; Smith, M.A. Pathology’s new role: Defining disease process and protective responses. Int. J. Clin. Exp. Pathol. 2008, 1, 1–4. [Google Scholar] [PubMed] [PubMed Central]
- Barnett, K.; Mercer, S.W.; Norbury, M.; Watt, G.; Wyke, S.; Guthrie, B. Epidemiology of multimorbidity and implications for health care, research, and medical education: A cross-sectional study. Lancet 2012, 380, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Coresh, J. Chronic kidney disease. Lancet 2012, 379, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, T.; Howick, J.; Maskrey, N.; Evidence Based Medicine Renaissance Group. Evidence based medicine: A movement in crisis? BMJ 2014, 348, g3725. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gupta, S.; Tomar, A.; Singh, R. Personalized medicine in oral cancer. Crit. Rev. Oncol. Hematol. 2025, 209, 104670. [Google Scholar] [CrossRef] [PubMed]
- Truini, A.; Barbanti, P.; Pozzilli, C.; Cruccu, G. A mechanism-based classification of pain in multiple sclerosis. J. Neurol. 2013, 260, 351–367. [Google Scholar] [CrossRef]
- De Herdt, V. From bedside to bench and back. Eur. J. Neurol. 2021, 28, 3547. [Google Scholar] [CrossRef] [PubMed]
- Austin, C.P. Opportunities and challenges in translational science. Clin. Transl. Sci. 2021, 14, 1629–1647. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krakauer, J.W.; Ghazanfar, A.A.; Gomez-Marin, A.; MacIver, M.A.; Poeppel, D. Neuroscience Needs Behavior: Correcting a Reductionist Bias. Neuron 2017, 93, 480–490. [Google Scholar] [CrossRef] [PubMed]
- Noble, D. Biophysics and systems biology. Philos. Trans. A Math. Phys. Eng. Sci. 2010, 368, 1125–1139. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van Regenmortel, M.H. Reductionism and complexity in molecular biology. Scientists now have the tools to unravel biological and overcome the limitations of reductionism. EMBO Rep. 2004, 5, 1016–1020. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Funkhouser, W.K. Pathology: The clinical description of human disease. Essent. Concepts Mol. Pathol. 2020, 177–190. [Google Scholar] [CrossRef] [PubMed Central]
- Bojar, D. Structure determines function-the role of topology in the functionality of gene circuits. Synth. Biol. 2020, 5, ysaa008. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Flück, M. Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli. J. Exp. Biol. 2006, 209 Pt 12, 2239–2248. [Google Scholar] [CrossRef] [PubMed]
- Noble, R.; Tasaki, K.; Noble, P.J.; Noble, D. Biological Relativity Requires Circular Causality but Not Symmetry of Causation: So, Where, What and When Are the Boundaries? Front. Physiol. 2019, 10, 827. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Okasha, S. Emergence, hierarchy and top-down causation in evolutionary biology. Interface Focus 2012, 2, 49–54. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Petersen, A.F. On downward causation in biological and behavioural systems. Hist. Philos. Life Sci. 1983, 5, 69–86. [Google Scholar] [PubMed]
- Sniderman, A.D.; LaChapelle, K.J.; Rachon, N.A.; Furberg, C.D. The necessity for clinical reasoning in the era of evidence-based medicine. Mayo Clin. Proc. 2013, 88, 1108–1114. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.M. Guidelines for standardizing and increasing the transparency in the reporting of biomedical research. J. Thorac. Dis. 2017, 9, 2697–2702. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hayran, M. Appropriate analysis and presentation of data is a must for good clinical practice. Acta Neurochir. Suppl. 2002, 83, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Begley, C.G.; Ioannidis, J.P. Reproducibility in science: Improving the standard for basic and preclinical research. Circ. Res. 2015, 116, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Kitano, H. Systems biology: A brief overview. Science 2002, 295, 1662–1664. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Prinz, F.; Schlange, T.; Asadullah, K. Believe it or not: How much can we rely on published data on potential drug targets? Nat. Rev. Drug Discov. 2011, 10, 712. [Google Scholar] [CrossRef] [PubMed]
- Noble, D. A theory of biological relativity: No privileged level of causation. Interface Focus 2012, 2, 55–64. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ligon, B.L. Penicillin: Its discovery and early development. Semin. Pediatr. Infect. Dis. 2004, 15, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Matz, R. The Discovery of Insulin. BMJ 2000, 321, 1418. [Google Scholar] [CrossRef] [PubMed Central]
- Link, K.P. The discovery of dicumarol and its sequels. Circulation 1959, 19, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, I.; Burnett, A.L.; Rosen, R.C.; Park, P.W.; Stecher, V.J. The Serendipitous Story of Sildenafil: An Unexpected Oral Therapy for Erectile Dysfunction. Sex. Med. Rev. 2019, 7, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, B.M.; Andersen, R.S.; Nicholson, B.D.; Ziebland, S.; Smith, C.F. Cultivating Doctors’ Gut Feeling: Experience, Temporality and Politics of Gut Feelings in Family Medicine. Cult. Med. Psychiatry 2022, 46, 564–581. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Kaneko, M.; Watson, J.; Irving, G. Gut feeling for the diagnosis of cancer in general practice: A diagnostic accuracy review. BMJ Open 2023, 13, e068549. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dehaene, S.; Changeux, J.P. Experimental and theoretical approaches to conscious processing. Neuron 2011, 70, 200–227. [Google Scholar] [CrossRef] [PubMed]
- Zatorre, R.J.; Fields, R.D.; Johansen-Berg, H. Plasticity in gray and white: Neuroimaging changes in brain structure during learning. Nat. Neurosci. 2012, 15, 528–536. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Noble, D. Physiology is rocking the foundations of evolutionary biology. Exp. Physiol. 2013, 98, 1235–1243. [Google Scholar] [CrossRef] [PubMed]
- Turkheimer, F.E.; Hellyer, P.; Kehagia, A.A.; Expert, P.; Lord, L.D.; Vohryzek, J.; De Faria Dafflon, J.; Brammer, M.; Leech, R. Conflicting emergences. Weak vs. strong emergence for the modelling of brain function. Neurosci. Biobehav. Rev. 2019, 99, 3–10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, D.X.; Glass, C.K. Towards an understanding of cell-specific functions of signal-dependent transcription factors. J. Mol. Endocrinol. 2013, 51, T37–T50. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alber, A.B.; Suter, D.M. Dynamics of protein synthesis and degradation through the cell cycle. Cell Cycle 2019, 18, 784–794. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Takeichi, M. Dynamic contacts: Rearranging adherens junctions to drive epithelial remodelling. Nat. Rev. Mol. Cell Biol. 2014, 15, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Le, H.A.; Mayor, R. Cell-matrix and cell-cell interaction mechanics in guiding migration. Biochem. Soc. Trans. 2023, 51, 1733–1745. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parker, J. Organ Evolution: Emergence of Multicellular Function. Annu. Rev. Cell Dev. Biol. 2024, 40, 51–74. [Google Scholar] [CrossRef] [PubMed]
- Andrews, T.G.R.; Priya, R. The Mechanics of Building Functional Organs. Cold Spring Harb. Perspect. Biol. 2025, 17, a041520. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Castillo-Armengol, J.; Fajas, L.; Lopez-Mejia, I.C. Inter-organ communication: A gatekeeper for metabolic health. EMBO Rep. 2019, 20, e47903. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patel, N.; Chong, K.; Baydur, A. Methods and Applications in Respiratory Physiology: Respiratory Mechanics, Drive and Muscle Function in Neuromuscular and Chest Wall Disorders. Front. Physiol. 2022, 13, 838414. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xie, C.; Lin, Y.; Qi, C.; Wang, W.; Yuan, Y.; Song, D.; Wang, Z.; Liu, H.; Feng, X.; Gao, H. Neuro-endocrine-immune regulation of metabolic homeostasis. Cytokine Growth Factor Rev. 2025, 85, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Merchant, J.S.; Glaros, S.; Edakoth, E.; Harris, R.; Tchangalova, N.; Redcay, E. Brain bases of real-time social interaction: A meta-analytic investigation of human neuroimaging studies. Apert. Neuro 2025, 5, 10.52294/001c.138339. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thompson, N.M.; Uusberg, A.; Gross, J.J.; Chakrabarti, B. Empathy and emotion regulation: An integrative account. Prog. Brain Res. 2019, 247, 273–304. [Google Scholar] [CrossRef] [PubMed]
- Castellani, J.W.; Young, A.J. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure. Auton. Neurosci. 2016, 196, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Ellis, G.F. Top-down causation and emergence: Some comments on mechanisms. Interface Focus 2012, 2, 126–140. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dodig-Crnkovic, G. Anticipation, memory, and top-down causation in living systems. Biosystems 2025, 259, 105640. [Google Scholar] [CrossRef] [PubMed]
- Pezzulo, G.; Levin, M. Top-down models in biology: Explanation and control of complex living systems above the molecular level. J. R. Soc. Interface 2016, 13, 20160555. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beloussov, L.V. Morphogenesis as a macroscopic self-organizing process. Biosystems 2012, 109, 262–279. [Google Scholar] [CrossRef] [PubMed]
- Discher, D.E.; Smith, L.; Cho, S.; Colasurdo, M.; García, A.J.; Safran, S. Matrix Mechanosensing: From Scaling Concepts in ‘Omics Data to Mechanisms in the Nucleus, Regeneration, and Cancer. Annu. Rev. Biophys. 2017, 46, 295–315. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pijuan-Sala, B.; Griffiths, J.A.; Guibentif, C.; Hiscock, T.W.; Jawaid, W.; Calero-Nieto, F.J.; Mulas, C.; Ibarra-Soria, X.; Tyser, R.C.V.; Ho, D.L.L.; et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 2019, 566, 490–495. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound repair and regeneration. Nature 2008, 453, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.Y.; Qi, L.S. Reversing the Central Dogma: RNA-guided control of DNA in epigenetics and genome editing. Mol. Cell. 2023, 83, 442–451. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nijhout, H.F. The Importance of Context in Genetics. Am. Sci. 2003, 91, 416–423. [Google Scholar] [CrossRef]
- Nelson, C.M.; Bissell, M.J. Of extracellular matrix, scaffolds, and signaling: Tissue architecture regulates development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 2006, 22, 287–309. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Simi, A.K.; Pang, M.F.; Nelson, C.M. Extracellular Matrix Stiffness Exists in a Feedback Loop that Drives Tumor Progression. Adv. Exp. Med. Biol. 2018, 1092, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Feng, M.; Yao, Z.; Zhang, Z.; Zhang, K.; Zhou, L. Hypoxia promotes thyroid cancer progression through HIF1α/FGF11 feedback loop. Exp. Cell Res. 2022, 416, 113159. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xie, C.; Yue, J.; Jiang, Z.; Zhou, R.; Xie, R.; Wang, Y.; Wu, S. Cancer-associated fibroblasts mediated chemoresistance by a FOXO1/TGFβ1 signaling loop in esophageal squamous cell carcinoma. Mol. Carcinog. 2017, 56, 1150–1163. [Google Scholar] [CrossRef] [PubMed]
- Levin, M. Morphogenetic fields in embryogenesis, regeneration, and cancer: Non-local control of complex patterning. Biosystems 2012, 109, 243–261. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sivanesan, I.; Nayeem, S.; Venkidasamy, B.; Kuppuraj, S.P.; Rn, C.; Samynathan, R. Genetic and epigenetic modes of the regulation of somatic embryogenesis: A review. Biol. Futur. 2022, 73, 259–277. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Q.; Zhao, L. Impact of mechanical stress and tension-stress on angiogenesis in wound healing. Chin. J. Traumatol. 2006, 9, 118–124. [Google Scholar] [PubMed]
- Dunn, M.G.; Silver, F.H.; Swann, D.A. Mechanical analysis of hypertrophic scar tissue: Structural basis for apparent increased rigidity. J. Investig. Dermatol. 1985, 84, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jia, L.; Zheng, Y.; Li, W. Bone remodeling induced by mechanical forces is regulated by miRNAs. Biosci. Rep. 2018, 38, BSR20180448. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aguilar-Agon, K.W.; Capel, A.J.; Martin, N.R.W.; Player, D.J.; Lewis, M.P. Mechanical loading stimulates hypertrophy in tissue-engineered skeletal muscle: Molecular and phenotypic responses. J. Cell Physiol. 2019, 234, 23547–23558. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Soni, J.; Sinha, S.; Pandey, R. Understanding bacterial pathogenicity: A closer look at the journey of harmful microbes. Front. Microbiol. 2024, 15, 1370818. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fenner, F.; Bachmann, P.A.; Gibbs, E.P.J.; Murphy, F.A.; Studdert, M.J.; White, D.O. Structure and Composition of Viruses. Vet. Virol. 1987, 3–19. [Google Scholar] [CrossRef] [PubMed Central]
- Font, M.D.; Thyagarajan, B.; Khanna, A.K. Sepsis and Septic Shock—Basics of diagnosis, pathophysiology and clinical decision making. Med. Clin. N. Am. 2020, 104, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Blanpain, C.; Fuchs, E. Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration. Science 2014, 344, 1242281. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perrimon, N.; Pitsouli, C.; Shilo, B.Z. Signaling mechanisms controlling cell fate and embryonic patterning. Cold Spring Harb. Perspect. Biol. 2012, 4, a005975. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- May, M. Cell Division, Life, and Cancer: Novel Fundamental Insights. Crit. Rev. Eukaryot. Gene Expr. 2025, 35, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Li, X.; Feng, Y.; Wang, J.; Yao, W. The role of kinesin family members in hepatobiliary carcinomas: From bench to bedside. Biomark. Res. 2024, 12, 30. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Trigos, A.S.; Pearson, R.B.; Papenfuss, A.T.; Goode, D.L. How the evolution of multicellularity set the stage for cancer. Br. J. Cancer 2018, 118, 145–152. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bissell, M.J.; Hines, W.C. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med. 2011, 17, 320–329. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Soto, A.M.; Sonnenschein, C. The tissue organization field theory of cancer: A testable replacement for the somatic mutation theory. Bioessays 2011, 33, 332–340. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature 2000, 407, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Joyce, J.A.; Fearon, D.T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 2015, 348, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Kim, K.B.; Lee, B.E.; Kim, G.H.; Lee, M.W.; Joo, D.C. Rare Case of Spontaneous Regression in Primary Gastric Diffuse Large B Cell Lymphoma. Korean J. Gastroenterol. 2025, 85, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Weaver, V.M.; Petersen, O.W.; Wang, F.; Larabell, C.A.; Briand, P.; Damsky, C.; Bissell, M.J. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 1997, 137, 231–245. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hero, B.; Simon, T.; Spitz, R.; Ernestus, K.; Gnekow, A.K.; Scheel-Walter, H.G.; Schwabe, D.; Schilling, F.H.; Benz-Bohm, G.; Berthold, F. Localized infant neuroblastomas often show spontaneous regression: Results of the prospective trials NB95-S and NB97. J. Clin. Oncol. 2008, 26, 1504–1510. [Google Scholar] [CrossRef] [PubMed]
- Hoek, K.S.; Goding, C.R. Cancer stem cells versus phenotype-switching in melanoma. Pigment. Cell Melanoma Res. 2010, 23, 746–759. [Google Scholar] [CrossRef] [PubMed]
- Zou, R.; Jiang, S.; Mei, J.; Chen, C.; Yu, J.; Fu, Y.; Chen, S. High-ammonia microenvironment promotes stemness and metastatic potential in hepatocellular carcinoma through metabolic reprogramming. Discov. Oncol. 2025, 16, 182. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghasemian-Irani, M.; Babaei, S.; Kazemi, T. Exosomes in hepatocellular carcinoma: Involvement in reprogramming the tumor microenvironment for immune evasion, metastasis, angiogenesis, and drug resistance. Cell Cycle 2025, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Tsoi, J.; Robert, L.; Paraiso, K.; Galvan, C.; Sheu, K.M.; Lay, J.; Wong, D.J.L.; Atefi, M.; Shirazi, R.; Wang, X.; et al. Multi-stage Differentiation Defines Melanoma Subtypes with Differential Vulnerability to Drug-Induced Iron-Dependent Oxidative Stress. Cancer Cell. 2018, 33, 890–904.e5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Powell, D.R.; Blasky, A.J.; Britt, S.G.; Artinger, K.B. Riding the crest of the wave: Parallels between the neural crest and cancer in epithelial-to-mesenchymal transition and migration. Wiley Interdiscip. Rev. Syst. Biol. Med. 2013, 5, 511–522. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Holtan, S.G.; Creedon, D.J.; Haluska, P.; Markovic, S.N. Cancer and pregnancy: Parallels in growth, invasion, and immune modulation and implications for cancer therapeutic agents. Mayo Clin. Proc. 2009, 84, 985–1000. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Draganski, B.; Gaser, C.; Busch, V.; Schuierer, G.; Bogdahn, U.; May, A. Neuroplasticity: Changes in grey matter induced by training. Nature 2004, 427, 311–312. [Google Scholar] [CrossRef] [PubMed]
- Gage, F.H. Structural plasticity of the adult brain. Dialogues Clin. Neurosci. 2004, 6, 135–141. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McEwen, B.S.; Morrison, J.H. The brain on stress: Vulnerability and plasticity of the prefrontal cortex over the life course. Neuron 2013, 79, 16–29. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
| Item | Upward Interpretation | Downward Interpretation |
|---|---|---|
| Cancer cell condition | The cause of malignancy | The effect/expression of malignancy |
| Interpretation of increased cell mitosis | Uncontrollable | Controllable, as cells are responsive to supracellular directives, even when inappropriate |
| Cause of malignancy | A cellular disease (genetic and epigenetic mutations) | A supracellular disease (inadequate supracellular control of proliferation) |
| Effect of malignancy | Uncontrolled mitosis/multiplication | Sustained supracellular coordination of cell proliferation, matrix formation, angiogenesis, immunosuppression, etc. |
| Role of the genome | The genome belongs to the cell and becomes the driver of uncontrolled multiplication | The genome is of the organism, generating supracellular instructions to cells, extracellular matrix, etc. |
| Analogy with other pathologies | Cancer cell multiplication cannot explain the complex biology of cancer | Gestational trophoblastic disease: trophoblastic invasion, with angiogenesis and immunosuppression. The cells lose their aggressive behavior after pregnancy. |
| Explanation of complex phenomena | Associated phenomena are addressed individually (angiogenesis, invasion, immunosuppression, etc.). | The phenomena are interrelated, being an integral expression of the deviated supracellular process. |
| Tumor heterogeneity | Result of mutation accumulation and clonal selection. | Manifestation of the flexibility and plasticity of a deregulated supracellular program. |
| The role of the tumor microenvironment | Secondary component that favors progression. | Integral part of supracellular process, supracellular remodeling. |
| The origin of angiogenesis, invasion, metastasis | Result of local hypoxia and distinct mutations in cells. | Behaviors emerging from dysregulation of supracellular control, including angiogenesis. |
| The vision of cancer | Local disease, with distant dissemination | Systemic disease, caused by dysregulation of a supracellular program (embryogenesis, regeneration, development or adaptation) |
| Therapeutic implications | Targeting cellular pathways. | Restoring normal supracellular control or reprogramming it towards a benign evolution program |
| Literature Data | Finding |
|---|---|
| Melanoma re-expresses embryonic genes and stem programs | Melanoma cells exhibit an “embryonic-stem phenotype”, re-expressing developmental programs and embryonic genes. |
| Melanoma pluripotency (differentiation into multiple tissue lineages) | Melanoma can mimic carcinoma, sarcoma, lymphoma, stromal tumors, osseocartilaginous tumors, etc., a phenomenon specific to embryonic stem cells. |
| Melanoma behaves as a deviated embryogenetic program | Melanoma combines features of embryoblast and trophoblast, suggesting a reactivated ancestral embryogenetic program. |
| Trophoblastic behavior: invasion, immune evasion, angiogenesis | Invasive capacity and immunosuppression are characteristics of trophoblasts; melanoma expresses trophoblastic factors. |
| Expression of trophoblast antigens (HLA-G, 5T4) | Melanoma expresses HLA-G and oncofetal antigen 5T4, which are physiologically used for gestational immunosuppression. |
| Gestational-type immunosuppression | Melanoma expresses HLA-G and activates CTLA-4/PD-1 pathways similar to pregnancy, generating immunological tolerance. |
| Melanoma is one of the most common cancers in pregnancy | Melanoma’s access to embryogenetic and gestational immunosuppression mechanisms. |
| Melanoma can become benign during pregnancy or in the newborn | Complete regressions of metastases in contexts where embryological high-order guidance becomes dominant. |
| Complete reprogramming in the embryonic microenvironment | The embryonic environment overrides the malignant phenotype, leading to reduced clonogenicity and tumorigenicity, with a return to the benign phenotype. |
| Blastocyst cloning using melanoma nucleus leads to embryonic stem cells | The nucleus from melanoma can support the formation of embryonic stem cells that differentiate normally. |
| Melanoma is derived from neural crest cells | Melanocytes originate from the neural crest; melanoma retains this embryological program. |
| Nodal signaling (embryonic morphogen) reactivated in melanoma | Nodal signaling, absent in normal skin, is reactivated and drives melanoma invasiveness; inhibition leads to reversion to the melanocytic phenotype. |
| Activation of the neural crest migration program (Wnt, NGF, Sox10, Rac1) | Melanoma reactivates embryological neural crest signals, including those that determine embryological migration. |
| Migration along neural crest routes in the embryo | Melanoma cells injected into zebrafish embryos become non-neoplastic and migrate along normal neural crest routes. |
| Zebrafish model: melanomas express neural crest identity at initiation | Animal models show the emergence of neural crest identity in melanoma initiation. |
| Evolutionary compatibility between the neural crest program and melanoma | Reprogramming to an embryonic program common to all vertebrates explains the systemic behavior of melanoma. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Published by MDPI on behalf of the JMMS. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motofei, I.G. Journal of Mind and Medical Sciences—A Journal of Bidirectional Emergence in Health and Disease. J. Mind Med. Sci. 2025, 12, 44. https://doi.org/10.3390/jmms12020044
Motofei IG. Journal of Mind and Medical Sciences—A Journal of Bidirectional Emergence in Health and Disease. Journal of Mind and Medical Sciences. 2025; 12(2):44. https://doi.org/10.3390/jmms12020044
Chicago/Turabian StyleMotofei, Ion G. 2025. "Journal of Mind and Medical Sciences—A Journal of Bidirectional Emergence in Health and Disease" Journal of Mind and Medical Sciences 12, no. 2: 44. https://doi.org/10.3390/jmms12020044
APA StyleMotofei, I. G. (2025). Journal of Mind and Medical Sciences—A Journal of Bidirectional Emergence in Health and Disease. Journal of Mind and Medical Sciences, 12(2), 44. https://doi.org/10.3390/jmms12020044

