Deep Caries Lesions Revisited: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
- Inclusion Criteria
- Exclusion criteria
3. Results
4. Discussion
4.1. Current Trends in Carious Dentine Excavation
4.2. Position Statements in Deep Caries Management
4.3. Endpoint of Carious Dentine Excavation
4.4. Indirect Pulp Capping
4.5. Adjunctive Antimicrobial and Anti-Enzymatic Therapies
4.6. Biomimetic Concept in Deep Caries
4.7. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ORCA | Organization for Caries Research |
ESE | European Society of Endodontology |
ICCC | International Caries Consensus Collaboration |
FDI | World Dental Federation |
ART | atraumatic restorative treatment |
PBRN | National Dental Practice-Based Research Network |
ADA | American Dental Association |
IPC | indirect pulp capping |
SW | stepwise technique |
AAE | American Association of Endodontics |
MTA | mineral trioxide aggregate |
Apdt | antimicrobial photodynamic therapy |
ROS | reactive oxygen species |
LED | light emitting diode |
MMPs | matrix metalloproteinases |
ICTP | cross-linked telopeptide of type I collagen |
CTX | C terminal crosslinking telopeptide |
TIMPs | tissue inhibitors of metalloproteinases |
BRD | biomimetic restorative dentistry |
EDTA | ethylenediaminetetraacetic acid |
References
- Pitts, N.B.; Twetman, S.; Fisher, J.; Marsh, P.D. Understanding dental caries as a non-communicable disease. Br. Dent. J. 2021, 231, 749–753. [Google Scholar] [CrossRef] [PubMed]
- Gill, K.; Stevenson, R.G. Navigating through caries excavation and pulp capping techniques in permanent teeth. Dent. Rev. 2024, 4, 100078. [Google Scholar] [CrossRef]
- Veneri, F.; Vinceti, S.R.; Filippini, T. Fluoride and caries prevention: A scoping review of public health policies. Ann. Ig. 2024, 36, 270–280. [Google Scholar] [CrossRef]
- Widbiller, M.; Weiler, R.; Knüttel, H.; Galler, K.M.; Buchalla, W.; Scholz, K.J. Biology of selective caries removal: A systematic scoping review protocol. BMJ Open 2022, 12, e061119. [Google Scholar] [CrossRef]
- Machiulskiene, V.; Campus, G.; Carvalho, J.C.; Dige, I.; Ekstrand, K.R.; Jablonski-Momeni, A.; Maltz, M.; Manton, D.J.; Martignon, S.; Martinez-Mier, E.A.; et al. Terminology of dental caries and dental caries management: Consensus report of a workshop organized by ORCA and cariology research group of IADR. Caries Res. 2020, 54, 7–14. [Google Scholar] [CrossRef]
- Giacaman, R.A.; Fernandez, C.E.; Munoz-Sandoval, C.; Leon, S.; Garcia-Manriquez, N.; Echeverria, C.; Valdes, S.; Castro, R.J.; Gambetta-Tessini, K. Understanding dental caries as a non-communicable and behavioral disease: Management implications. Front. Oral Health 2022, 3, 764479. [Google Scholar] [CrossRef]
- Spatafora, G.; Li, Y.; He, X.; Cowan, A.; Tanner, A.C.R. The Evolving Microbiome of Dental Caries. Microorganisms 2024, 7, 121. [Google Scholar] [CrossRef]
- Warreth, A. Dental Caries and Its Management. Int. J. Dent. 2023, 2023, 9365845. [Google Scholar] [CrossRef]
- Bjørndal, L.; Simon, S.; Tomson, P.L.; Duncan, H.F. Management of deep caries and the exposed pulp. Int. Endod. J. 2019, 52, 949–973. [Google Scholar] [CrossRef]
- Maldupa, I.; Al-Yaseen, W.; Giese, J.; Elagami, R.A.; Raggio, D.P. Recommended procedures for managing carious lesions in primary teeth with pulp involvement—Scoping review. BDJ Open 2024, 10, 74. [Google Scholar] [CrossRef]
- Taha, N.A.; Ali, M.M.; Abidin, I.Z.; Khader, Y.S. Pulp survival and postoperative treatment needs following selective vs. total caries removal in mature permanent teeth with reversible pulpitis: A randomized clinical trial. J. Dent. 2024, 151, 105408. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Chen, M.; Zheng, S.; Wei, X.; Liu, H. Efficacy of vital pulp therapy for carious pulp injury in permanent teeth: A study protocol for an open-label randomized controlled noninferiority trial. Trials 2024, 25, 700. [Google Scholar] [CrossRef]
- Duncan, H.F.; Galler, K.M.; Tomson, P.L.; Simon, S.; El-Karim, I.; Kundzina, R.; Krastl, G.; Dammaschke, T.; Fransson, H.; Markvart, M.; et al. European Society of Endodontology position statement: Management of deep caries and the exposed pulp. Int. Endod. J. 2019, 52, 923–934. [Google Scholar] [CrossRef]
- Gonzalez-Gil, D.; Flores-Fraile, J.; Vera-Rodriguez, V.; Martin-Vacas, A.; Lopez-Marcos, J. Comparative meta-analysis of minimally invasive and conventional approaches for caries removal in permanent dentition. Medicina 2024, 60, 402. [Google Scholar] [CrossRef]
- Jurasic, M.M.; Gillespie, S.; Sorbara, P.; Clarkson, J.; Ramsay, C.; Nyongesa, D.; McEdward, D. Deep caries removal strategies: Findings from the national dental PBRN. J. Am. Dent. Assoc. 2022, 153, 1078–1088. [Google Scholar] [CrossRef]
- Barros, M.M.A.F.; Rodrigues, M.I.Q.; Muniz, F.W.M.C.; Rodrigues, L.K.A. Selective, stepwise, or nonselective removal of carious tissue: Which technique offers lower risk for the treatment of dental caries in permanent teeth? A systematic review and meta-analysis. Clin. Oral. Investig. 2020, 24, 521–532. [Google Scholar] [CrossRef]
- Ferreira, L.A.Q.; Anestino, T.A.; Branco, N.T.T.; Diniz, L.A.; Diniz, M.G.; de Magalhães, C.S.; Peixoto, R.T.R.D.C.; Moreira, A.N.; Dias, D.R.; Madeira, M.F.M.; et al. Adjunctive therapies for in vitro carious lesions: Antimicrobial activity, activation of dentin metalloproteinases and effects on dental pulp cells. Photodiagnosis. Photodyn. Ther. 2022, 40, 103168. [Google Scholar] [CrossRef]
- Edwards, D.; Stone, S.; Bailey, O.; Tomson, P. Preserving pulp vitality: Part one—Strategies for managing deep caries in permanent teeth. Br. Dent. J. 2021, 230, 77–82. [Google Scholar] [CrossRef]
- Iliescu, A.-A.; Gheorghiu, I.M.; Tănase, M.; Iliescu, A.; Mitran, L.; Mitran, M.; Perlea, P. Reactionary versus reparative dentine in deep caries. ARS Medica Tomitana 2019, 25, 15–21. [Google Scholar] [CrossRef]
- Veiga Faria, L.; de Oliveira Fernandes, T.; Silva Guimaraes, L.; Rodrigues Cajazeira, M.R.; Santos Antunes, L.; Azeredo Alves Antunes, L. Does selective caries removal in combination with antimicrobial photodynamic therapy affect the clinical performance of adhesive restorations of primary or permanent teeth? A systematic review with meta-analysis. J. Clin. Pediatr. Dent. 2022, 46, 1–14. [Google Scholar] [CrossRef]
- Jardim, J.J.; Mestrinho, H.D.; Koppe, B.; de Paula, L.M.; Alves, L.S.; Yamaguti, P.M.; Almeida, J.C.F.; Maltz, M. Restorations after selective caries removal: 5-year randomized trial. J. Dent. 2020, 99, 103416. [Google Scholar] [CrossRef] [PubMed]
- Iliescu, A.-A.; Perlea, P.; Gheorghiu, I.M.; Mitran, M.; Mitran, L.; Moraru, I.; Scarlatescu, S.; Erdoğan, S.; Iliescu, A. Molecular mechanisms of dentine-pulp complex response induced by microbiome of deep caries. ARS Medica Tomitana 2019, 25, 53–60. [Google Scholar] [CrossRef]
- Schwendicke, F.; Walsh, T.; Lamont, T.; Al-yaseen, W.; Bjørndal, L.; Clarkson, J.E.; Fontana, M.; Gomez Rossi, J.; Göstemeyer, G.; Levey, C.; et al. Interventions for treating cavitated or dentine carious lesions. Cochrane Database Syst. Rev. 2021, 7, CD013039. [Google Scholar] [CrossRef]
- Careddu, R.; Plotino, G.; Cotti, E.; Duncan, H.F. The management of deep carious lesions and the exposed pulp amongst members of two European endodontic societies: A questionnaire-based study. Int. Endod. J. 2021, 54, 366–376. [Google Scholar] [CrossRef]
- Chevalier, V.; Le Fur, B.A.; Duncan, H.F. Frightened of the pulp? A qualitative analysis of undergraduate student confidence and stress during the management of deep caries and exposed pulp. Int. Endod. J. 2021, 54, 130–146. [Google Scholar] [CrossRef]
- Edwards, D.; Bailey, O.; Stone, S.J.; Duncan, H. How is carious pulp exposure and symptomatic irreversible pulpitis managed in UK primary dental care? Int. Endod. J. 2021, 54, 2256–2275. [Google Scholar] [CrossRef]
- Duncan, H.F.; Tomson, P.L.; Simon, S.; Bjørndal, L. Endodontic position statements in deep caries management highlight need for clarification and consensus for patient benefit. Int. Endod. J. 2021, 52, 2145–2149. [Google Scholar] [CrossRef]
- Hirschberg, C.S.; Bogen, G.; Galicia, J.C.; Lemon, R.R.; Peters, O.A.; Ruparel, N.B.; Tay, F.R.; Whiterspoon, D.E. AAE position statement on vital pulp therapy. J. Endod. 2021, 47, 1340–1344. [Google Scholar] [CrossRef]
- Arroyo-Bote, S.; Ribas-Perez, D.; Bennasar Verges, C.; Rodriguez Menacho, D.; Villalva Hernandez-Franch, P.; Barbero Navarro, I.; Castano Seiquer, A. Influence of academic training and professional experience on the management of deep caries lesions. Healthcare 2024, 12, 1907. [Google Scholar] [CrossRef]
- Demant, S.; Dabelsteen, S.; Bjørndal, L. A macroscopic and histological analysis of radiographically well-defined deep and extremely deep carious lesions: Carious lesion characteristics as indicators of the level of bacterial penetration and pulp response. Int. Endod. J. 2021, 54, 319–330. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Dong, B.; Zhai, Y.; Zhou, L.; Sun, S.; Li, X.; Wu, L. Prediction and validation of microbial community function from normal pulp to pulpitis caused by deep dentinal caries. Int. Endod. J. 2023, 56, 608–621. [Google Scholar] [CrossRef] [PubMed]
- Selvakumar, D.R.; Krishnamoorthy, S.; Venkatesan, K.; Ramanathan, A.; Abbott, P.V.; Rajasekaran, P.K.A. Active bacteria in carious dentin of mandibular molars with different pulp conditions: An in vivo study. J. Endod. 2021, 47, 1883–1889. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, S.; Dong, Y. Regeneration of pulp-dentine complex-like tissue in a rat experimental model under an inflammatory microenvironment using high phosphorus-containing bioactive glasses. Int. Endod. J. 2021, 54, 1129–1141. [Google Scholar] [CrossRef]
- Shayegan, A.; Zucchi, A.; De Swert, K.; Balau, B.; Truyens, C.; Nicaise, C. Lipoteichoic acid stimulates the proliferation, migration and cytokine production of adult dental pulp stem cells without affecting osteogenic differentiation. Int. Endod. J. 2021, 54, 585–600. [Google Scholar] [CrossRef]
- Wen, B.; Huang, Y.; Qiu, T.; Huo, F.; Xie, L.; Liao, L.; Tian, W.; Guo, W. Reparative dentin formation by dentin matrix proteins and small extracellular vesicles. J. Endod. 2021, 47, 253–262. [Google Scholar] [CrossRef]
- Ricucci, D.; Siqueira, J.F.; Rộças, I.N.; Lipski, M.; Shiban, A.; Tay, F.R. Pulp and dentine responses to selective caries excavation: A histological and histobacteriological human study. J. Dent. 2020, 100, 103430. [Google Scholar] [CrossRef]
- de Farias, J.O.; da Costa Sousa, M.G.; Martins, D.C.M.; de Oliveira, M.A.; Takahashi, I.; de Sousa, L.B.; da Silva, I.G.M.; Correa, J.R.; Carvalho, A.E.S.; Saldanha-Araujo, F.; et al. Senescence on dental pulp cells: Effects on morphology, migration, proliferation, and immune response. J. Endod. 2024, 50, 362–369. [Google Scholar] [CrossRef]
- Yang, C.; Gao, Q.; Yang, K.; Bian, Z. Human dental pulp stem cells are subjected to metabolic reprogramming and repressed proliferation and migration by the sympathetic nervous system via α1B-adrenergic receptor. J. Endod. 2023, 49, 1641–1651. [Google Scholar] [CrossRef]
- Galler, K.M.; Weber, M.; Korkmaz, Y.; Widbiller, M.; Feuerer, M. Inflammatory response mechanisms of the dentine-pulp complex and the periapical tissues. Int. J. Mol. Sci. 2021, 22, 1480. [Google Scholar] [CrossRef]
- Hanna, S.N.; Perez Alfayate, R.; Prichard, J. Vital pulp therapy an insight over the available literature and future expectations. Eur. Endod. J. 2020, 5, 46–53. [Google Scholar] [CrossRef]
- Cushley, S.; Duncan, H.F.; Lundy, F.T.; Nagendrababu, V.; Clarke, M.; El Karim, I. Outcomes reporting in systematic reviews on vital pulp treatment: A scoping review for the development of a core outcome set. Int. Endod. J. 2022, 55, 891–909. [Google Scholar] [CrossRef] [PubMed]
- Pandya, J.K.; Wheatley, J.; Bailey, O.; Taylor, G.; Geddis-Regan, A.; Edwards, D. Exploring deep caries management and barriers to the use of vital pulp treatments by primary care dental practitioners. Int. Endod. J. 2024, 57, 1453–1464. [Google Scholar] [CrossRef]
- Par, M.; Cheng, L.; Camilleri, J.; Lingström, P. Applications of smart materials in minimally invasive dentistry—Some research and clinical perspectives. Dent. Mater. 2024, 40, 2008–2016. [Google Scholar] [CrossRef]
- Chou, Y.F.; Pires, P.M.; Alambiaga-Caravaca, A.M.; Spagnuolo, G.; Hibbits, A.; Sauro, S. Remineralisation of mineral-deficient dentine induced by experimental ion-releasing materials in combination with a biomimetic dual-analogue primer. J. Dent. 2025, 152, 105468. [Google Scholar] [CrossRef]
- Schwendicke, F.; Badakksh, P.; Gomes Marques, M.; Medeiros Demarchi, K.; Ramos Rezende Brant, A.; Moreira, C.L.; Dias Ribeiro, A.P.; Coelho Leal, S.; Hilgert, L.A. Subjective versus objective, polymer bur-based selective carious tissue removal: 2-year randomized clinical trial. J. Dent. 2023, 138, 104728. [Google Scholar] [CrossRef]
- Ali, A.H.; Thani, F.B.; Foschi, F.; Banerjee, A.; Mannocci, F. Self-limiting versus rotary subjective carious tissue removal: A randomized controlled clinical trial—2-year results. J. Clin. Med. 2020, 9, 2738. [Google Scholar] [CrossRef]
- Choudhary, K.; Gouraha, A.; Sharma, M.; Sharma, P.; Tiwari, M.; Chouksey, A. Clinical and Microbiological Evaluation of the Chemomechanical Caries Removal Agents in Primary Molars. Cureus. 2022, 12, e31422. [Google Scholar] [CrossRef]
- Saber, A.M.; El-Housseiny, A.A.; Alamoudi, N.M. Atraumatic restorative treatment and interim therapeutic restoration: A review of the literature. Dent. J. 2019, 7, 28. [Google Scholar] [CrossRef]
- Kunert, M.; Lukomska-Szymanska, M. Bio-inductive materials in direct and indirect pulp capping—A review article. Materials 2020, 13, 1204. [Google Scholar] [CrossRef]
- Alovisi, M.; Baldi, A.; Comba, A.; Gamerro, R.; Paolone, G.; Mandurino, M.; Dioguardi, M.; Roggia, A.; Scotti, N. Long-term evaluation of pulp vitality preservation in direct and indirect pulp capping: A retrospective clinical study. J. Clin. Med. 2024, 13, 3962. [Google Scholar] [CrossRef]
- Chansaenroj, A.; Kornsuthisopon, C.; Suwittayarak, R.; Rochanavibhata, S.; Loi, L.K.; Lin, Y.C.; Osathanon, T. IWP-2 modulates the immunomodulatory properties of human dental pulp stem cells in vitro. Int. Endod. J. 2024, 57, 219–236. [Google Scholar] [CrossRef] [PubMed]
- Harrell, C.R.; Djonov, V.; Volarevic, V. The cross-talk between-mesenchymal stem cells and immune cells in tissue repair and regeneration. Int. J. Mol. Sci. 2021, 22, 2472. [Google Scholar] [CrossRef] [PubMed]
- Bucchi, C.; Bucchi, A.; Martinez-Rodriguez, P. Biological properties of dental pulp stem cells isolated from inflamed and healthy pulp and cultured in an inflammatory microenvironment. J. Endod. 2023, 49, 395–401. [Google Scholar] [CrossRef]
- Sun, Q.; Shu, C.; Wang, C.; Shi, M.; Zu, J.; Luo, Q.; Wu, M.; Chen, Y.; Li, X. Bonding effectiveness of the universal adhesive on caries-affected dentin of deciduous teeth. Materialia 2020, 14, 100885. [Google Scholar] [CrossRef]
- Steiner, R.; Edelhoff, D.; Stawarczyk, B.; Dumfahrt, H.; Lente, I. Effect of Dentin Bonding Agents, Various Resin Composites and Curing Modes on Bond Strength to Human Dentin. Materials 2019, 17, 3395. [Google Scholar] [CrossRef]
- Forville, H.; Wendlinger, M.; Cochinski, G.D.; Favoreto, M.W.; Wambier, L.M.; Chibinski, A.C.; Loguercio, A.D.; Reis, A. Re-evaluating the role of moist dentin of adhesive systems used in the etch-and-rinse bonding strategy. A systematic review and meta-analysis. J. Dent. 2025, 152, 105495. [Google Scholar] [CrossRef]
- Naupari-Villasante, R.; Falconi-Paez, C.; Castro, A.S.; Gutierez, M.F.; Mendez-Bauer, M.L.; Aliaga, P.; Davilla-Sanchez, A.; Arrais, C.; Reis, A.; Loguercio, M.F. Clinical performance of posterior restorations using a universal adhesive over moist and dry dentin: A 36-month double-blind split-mouth randomized clinical trial. J. Dent. 2024, 147, 105080. [Google Scholar] [CrossRef]
- Bahrami, R.; Pourhajibagher, M.; Nikparto, N.; Bahador, A. The impact of antimicrobial photodynamic therapy on pain and oral health-related quality of life: A literature review. J. Dent. Sci. 2024, 19, 1924–1933. [Google Scholar] [CrossRef]
- Coelho, A.; Amaro, I.; Rascao, B.; Marcelino, I.; Paula, A.; Saraiva, J.; Spagnuolo, G.; Ferreira, M.M.; Marto, C.M.; Carilho, E. Effect of cavity disinfectants on dentin bond strength and clinical success of composite restorations—A systematic review of in vitro, in situ and clinical studies. Int. J. Mol. Sci. 2021, 22, 353. [Google Scholar] [CrossRef]
- Santos, G.M.; Pacheco, R.L.; Bussadori, S.K.; Santos, E.M.; Riera, R.; de Oliveira Cruz Latorraca, C.; Mota, P.; Benavent Caldas Belloto, E.F.; Martimbianco, A.L.C. Effectiveness and safety of ozone therapy in dental caries treatment: Systematic review and meta-analysis. J. Evid. Based Dent. Pract. 2020, 20, 101472. [Google Scholar] [CrossRef]
- Alrahlah, A.; Niaz, M.O.; Abrar, E.; Vohra, F.; Rashid, H. Treatment of caries affected dentin with different photosensitizers and its adhesive bond integrity to resin composite. Photodiagnosis Photodyn. Ther. 2020, 31, 101865. [Google Scholar] [CrossRef] [PubMed]
- Anumula, L.; Ramesh, S.; Kolaparthi, V.S.K. Matrix metalloproteinases in dentin: Assessing their presence, activity and inhibitors—A review of current trends. Dent. Mater. 2024, 40, 2051–2073. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.; Feitosa, V.P.; Chibinski, A.C.; Favoreto, M.W.; Gutierez, M.F.; Loguercio, A.D. Biomimetic restorative dentistry: An evidence-based discussion of common myths. J. Appl. Oral Sci. 2024, 32, e20240271. [Google Scholar] [CrossRef]
- Peumans, M.; Politano, G.; Van Meerbeek, B. Effective protocol for daily high-quality direct posterior composite restorations. Cavity preparation and design. J. Adhes. Dent. 2020, 22, 581–596. [Google Scholar] [CrossRef]
- Elhennawy, K.; Finke, C.; Paris, S.; Reda, S.; Jost-Brinkmann, P.G.; Schwendicke, F. Selective vs stepwise removal of deep carious lesions in primary molars: 24 months follow-up from a randomized controlled trial. Clin. Oral Investig. 2021, 25, 645–652. [Google Scholar] [CrossRef]
- Dreweck, F.; Burey, A.; Dreweck, M.O.; Fernandez, E.; Loguercio, A.D.; Reis, A. Challenging the concept that OptiBond FL and Clearfil SE Bond in NCCLs are gold standard adhesives: A systematic review and meta-analysis. Oper. Dent. 2021, 46, E276–E295. [Google Scholar] [CrossRef]
- de Albuquerque, E.G.; Warol, F.; Calazans, F.S.; Poubel, L.A.; Marins, S.S.; Matos, T.; de Souza, J.J.; Reis, A.; Barceleiro, M.O.; Loguercio, A.D. A new dual-cure universal simplified adhesive: 19-month randomized multicenter clinical trial. Oper. Dent. 2020, 45, e255–e270. [Google Scholar] [CrossRef]
- de Albuquerque, E.G.; Warol, F.; Tardem, C.; Calazans, F.S.; Poubel, L.A.; Matos, T.P.; Souza, J.J.; Reis, A.; Barceleiro, M.O. Universal simplified adhesive applied under different bonding techniques; 36-month randomized multicenter clinical trial. J. Dent. 2022, 122, 104120. [Google Scholar] [CrossRef]
- Barceleiro, M.O.; Lopes, L.S.; Tardem, C.; Calazans, F.S.; Matos, T.; Reis, A.; Calixto, L.; Loguercio, A.D. Thirty-six-month follow-up of cervical composite restorations placed with MDP-free universal adhesive system using different adhesive protocols: A randomized clinical trial. Clin. Oral Investig. 2022, 26, 4337–4350. [Google Scholar] [CrossRef]
- Naupari-Villasante, R.; Matos, T.P.; de Albuquerque, E.G.; Warol, F.; Tardem, C.; Calazans, F.S.; Poubel, L.A.; Reis, A.; Barceleiro, M.O.; Loguercio, A.D. Five-year clinical evaluation of universal adhesive applied following different bonding techniques: A randomized multicenter clinical trial. Dent. Mater. 2023, 39, 586–594. [Google Scholar] [CrossRef]
- Cascales, A.F.; Moscardo, A.P.; Toledano, M.; Banerjee, A.; Sauro, S. An in-vitro investigation of the bond-strength of experimental ion-releasing dental adhesive to caries-affected dentine after 1 year of water storage. J. Dent. 2022, 119, 104075. [Google Scholar] [CrossRef]
- Adams, K.R.; Savett, D.A.; Lien, W.; Raimondi, C.; Vandewalle, K.S. Evaluation of a novel “Quad” wavelength light curing unit. J. Clin. Exp. Dent. 2022, 14, e815–e821. [Google Scholar] [CrossRef]
- Montoya, C.; Babariya, M.; Ogwo, C.; Querido, W.; Patel, J.S.; Melo, M.A.; Orrego, S. Synergistic effects of bacteria, enzymes, and cyclic mechanical stresses on the bond strength of composite restorations. Biomater. Adv. 2025, 166, 214049. [Google Scholar] [CrossRef]
- Yang, Q.; Zheng, W.; Zhao, Y.; Shi, Y.; Wang, Y.; Sun, H.; Xu, X. Advancing dentin remineralisation: Exploring amorphous calcium phosphate and its stabilizers in biomimetic approaches. Dent. Mater. 2024, 40, 1282–1295. [Google Scholar] [CrossRef]
- Maciel Pires, P.; Ionescu, A.C.; Perez-Garcia, M.T.; Vezzoli, E.; Soares, I.P.M.; Brambilla, E.; de Almeida Neves, A.; Sauro, S. Assessment of the remineralisation induced by contemporary ion-releasing materials in mineral-depleted dentine. Clin. Oral Investig. 2022, 26, 6195–6207. [Google Scholar] [CrossRef]
- Alambiaga-Caravaca, A.M.; Chou, Y.F.; Moreno, D.; Aparicio, A.; Lopez-Castellano, A.; Feitosa, V.P.; Tezvergil-Mutluay, A.; Sauro, S. Characterization of experimental flowable composite containing fluoride-doped calcium phosphates as promising remineralising materials. J. Dent. 2024, 143, 104906. [Google Scholar] [CrossRef]
- Sauro, S.; Spagnuolo, G.; Del Giudice, C.; Neto, D.M.A.; Fechine, P.B.A.; Chen, X.; Rengo, S.; Chen, X.; Feitosa, V.P. Chemical, structural and cytotoxicity characterization of experimental fluoride-doped calcium phosphates as promising remineralising materials for dental applications. Dent. Mater. 2023, 39, 391–401. [Google Scholar] [CrossRef]
- Pires, P.M.; Nunes Monteiro, A.S.; de Accioly Costa, P.H.; Silva, A.S.; Lopes, R.T.; Yoshihara, K.; Sauro, S.; de Almeida Neves, A. Dentine mineral changes induced by polyalkenoate cements after different selective caries removal techniques: An in vitro study. Caries Res. 2023, 57, 21–31. [Google Scholar] [CrossRef]
- Valizadeh, S.; Kamangar, S.H.; Nekoofar, M.H.; Behroozibakhsh, M.; Shahidi, Z. Comparison of dentin caries remineralization with four bioactive cements. Eur. J. Prosthodont. Restor. Dent. 2022, 30, 223–229. [Google Scholar] [CrossRef]
- Giannini, M.; Sauro, S. Bioactivity in restorative dentistry: Standing for the use of innovative materials to improve the longevity of restorations in routine dental practice. J. Adhes. Dent. 2021, 23, 176–178. [Google Scholar] [CrossRef]
- Braga, R.R.; Fronza, B.M. The use of bioactive particle and biomimetic analogues for increasing the longevity of resin dentin interface. A literature review. Dent. Mater. J. 2020, 39, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Sauro, S. Dental materials—Future active resins? Br. Dent. J. 2024, 236, 460–461. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.Q.; Courchesne, N.D.; Duraj-Thatte, A.; Praveschotinunt, P.; Joshi, N.S. Engineered living materials: Prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 2018, 30, e1704847. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the JMMS. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gheorghiu, I.M.; Ciobanu, S.; Roman, I.; Păunică, S.; Dumitriu, A.S.; Iliescu, A.A. Deep Caries Lesions Revisited: A Narrative Review. J. Mind Med. Sci. 2025, 12, 37. https://doi.org/10.3390/jmms12010037
Gheorghiu IM, Ciobanu S, Roman I, Păunică S, Dumitriu AS, Iliescu AA. Deep Caries Lesions Revisited: A Narrative Review. Journal of Mind and Medical Sciences. 2025; 12(1):37. https://doi.org/10.3390/jmms12010037
Chicago/Turabian StyleGheorghiu, Irina Maria, Sergiu Ciobanu, Ion Roman, Stana Păunică, Anca Silvia Dumitriu, and Alexandru Andrei Iliescu. 2025. "Deep Caries Lesions Revisited: A Narrative Review" Journal of Mind and Medical Sciences 12, no. 1: 37. https://doi.org/10.3390/jmms12010037
APA StyleGheorghiu, I. M., Ciobanu, S., Roman, I., Păunică, S., Dumitriu, A. S., & Iliescu, A. A. (2025). Deep Caries Lesions Revisited: A Narrative Review. Journal of Mind and Medical Sciences, 12(1), 37. https://doi.org/10.3390/jmms12010037