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Abstract: Electrical Impedance Tomography (EIT) is a non-invasive bedside imaging technique that
provides real-time lung ventilation information on critically ill patients. EIT can potentially become
a valuable tool for optimising mechanical ventilation, especially in patients with acute respiratory
distress syndrome (ARDS). In addition, EIT has been shown to improve the understanding of
ventilation distribution and lung aeration, which can help tailor ventilatory strategies according
to patient needs. Evidence from critically ill patients shows that EIT can reduce the duration of
mechanical ventilation and prevent lung injury due to overdistension or collapse. EIT can also
identify the presence of lung collapse or recruitment during a recruitment manoeuvre, which may
guide further therapy. Despite its potential benefits, EIT has not yet been widely used in clinical
practice. This may, in part, be due to the challenges associated with its implementation, including
the need for specialised equipment and trained personnel and further validation of its usefulness in
clinical settings. Nevertheless, ongoing research focuses on improving mechanical ventilation and
clinical outcomes in critically ill patients.

Keywords: acute respiratory distress syndrome; COVID-19; electrical impedance tomography;
end-expiratory lung volume; ventilation inhomogeneity; ventilatory monitoring; personalized
ventilation; positive end-expiratory pressure; prone positioning

1. Introduction

Mechanical ventilation is used in intensive care units to support patients with res-
piratory failure. However, this intervention has potential adverse effects, referred to as
ventilator-associated lung injury (VALI). Over the past two decades, extensive research
has focused on lung-protective ventilation for mitigating VALI. ARDSNet investigators
published influential work in 2000 highlighting the importance of avoiding high tidal
volumes in patients with acute respiratory distress syndrome (ARDS) [1]. Subsequent
studies investigating high vs. low levels of positive end-expiratory pressure (PEEP) have
consistently failed to demonstrate a reduction in mortality or have been refuted by other
studies [2–4]. Various ventilation strategies, such as stress index [5,6], transpulmonary
pressure [7,8], and pressure–volume curves, have been explored to determine the optimal
PEEP setting [9,10]. Other frequently used bedside parameters to evaluate the effect of
recruitment manoeuvres and PEEP settings are variables that reflect changes in respiratory
system compliance or oxygenation [11–14]. However, these parameters are all based on
global pulmonary function and do not provide regional information. Therefore, an indi-
vidualised patient-centred approach for the adjustment of tidal volume and PEEP setting
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seems favourable. Depending on the heterogeneous distribution of the fluid-filled and
atelectatic alveoli, different lung regions are prone to collapse or overdistension. Even with
low driving pressure, a low tidal volume can generate local high lung strain [15].

Electrical impedance tomography (EIT) is a non-invasive, radiation-free, bedside mon-
itoring tool that provides functional images of the lung with a relatively low spatial but
very high temporal resolution. It was invented nearly 40 years ago [16] and uses small
alternating currents to generate images that represent the regional distribution of resistivity
within a body. The term tomography refers to imaging the volume within the body by
penetrating energy from the outside. Impedance is a complex quantity that specifically
applies to alternating current circuits. It includes both a real part (resistance) and an
imaginary part (reactance). In clinically available chest EIT systems, 16–32 electrodes are
attached around the patient’s chest circumferences, small alternating currents are applied
between pairs of electrodes, and the resulting voltage differences are recorded by the
other electrodes. The internal conductivity distribution within the chest was estimated
using the measured voltages in an iterative process to determine the internal conductivity
distribution that best matches the measured voltages. According to the incorporated image
reconstruction algorithm, this process results in a two-dimensional tomogram. One EIT
frame generates one reconstructed image, usually with a 32 × 32-pixel matrix, at a given
time point during breathing. EIT allows clinicians to monitor the lung response to any
ventilator setting adjustment on a breath-by-breath basis, enabling visualisation of regional
alveolar overdistension and collapse, ventilation delay, and flow [17–19]. By determining
the regional ventilation distribution, EIT can individually optimise the ventilator settings
and probably improve patient outcomes. This review focuses on the clinical applicability,
indices, diagnostic applications, and limitations of lung EIT in adults, including its use dur-
ing the COVID-19 pandemic. EIT’s technical operating principles of the EIT are described
in detail [20–23]. This review focuses on lung ventilation solely, not on perfusion.

2. Clinical Applications
2.1. Positive End-Expiratory Pressure and Tidal Volume Settings
2.1.1. Calculation of Alveolar Overdistension and Collapse

The optimal PEEP for individual patients at a particular time within the treatment
period remains disputed [24,25]. Assessment of proxy parameters such as oxygenation,
best compliance, stress index, and low-flow pressure–volume curves may be misleading,
as they are all based on global measures that exclude regional overdistension, collapse,
or atelectrauma, especially in patients with ARDS because it is a heterogeneous process.
Different regions of the lung have varying degrees of disease. According to Gattinoni et al.,
optimal PEEP is defined as the best compromise between regional overdistension and
collapse. On the other hand, he stated that one “optimal” PEEP for the whole lung does
not exist [26]. Regional overdistension and alveolar collapse can be visualised using EIT
by calculating the regional compliance [17]. During mechanical ventilation, compliance
can be calculated by dividing tidal volume by driving pressure. Electrical impedance
tomography can monitor local impedance changes; in this way, local volume changes
can be estimated by regional changes in lung impedance. Regional compliance can then
be calculated by dividing regional tidal impedance variation by driving pressure [27,28].
In clinical practice, the most widely used method for titrating PEEP and tidal volume
with EIT is the regional compliance-based approach [17]. The practical approach includes
performing a decremental PEEP trial starting from the highest clinically acceptable PEEP
level and then reducing the PEEP in small steps (e.g., 2 cmH2O) until the lowest clinically
acceptable PEEP level is reached [29]. With this approach, the EIT can assess derecruitment
and end-inspiratory overinflation within the two-dimensional electrode plane during a
decremental PEEP trial.
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Titrating PEEP based on regional compliance measurements is difficult because both
overdistension and collapse can result in decreased compliance but would require opposite
titration strategies. However, optimal regional compliance at different PEEP settings differs
between the cranial and caudal levels for dependent and non-dependent lung regions [30].
Nevertheless, this method has been successfully applied in several studies [31–37]. Based
on this method, PEEP is frequently set at the “crossover point”, representing the “best
compromise” between alveolar overdistension and alveolar collapse [38–41]. Hsu et al.
showed that selecting PEEP according to this method resulted in a lower PEEP, lower
driving pressure, and higher survival rate compared with PEEP set at the pressure where
maximal hysteresis was reached during a low-flow pressure–volume loop in moderate-to-
severe ARDS [42]. However, the best balance between alveolar overdistension and collapse
could result in a large amount of overdistension in combination with a large amount of
alveolar collapse (i.e., overdistension and collapse coexist), particularly in patients with
ARDS because of the heterogeneity of the diseased lung [33]. Therefore, others have defined
optimal EIT-guided PEEP as alveolar collapse ≤ 5% [29,30] (Figure 1). Simultaneously, if a
large amount of overdistension exists, the tidal volume (driving pressure) can decrease.
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Figure 1. Regional compliance changes during the decremental positive end-expiratory pressure
(PEEP) trial. Panel (A): Time course of the global impedance signal during an incremental and
decremental PEEP trial. The decremental PEEP trial started from a PEEP of 24 cmH2O until a PEEP of
11 cmH2O. The last breaths of each PEEP step were averaged and used to analyse regional compliance.
The green line represents the PEEP level, and the pink line represents the end-inspiratory pressure.
Panel (B): Visualisation of relative compliance loss toward higher PEEP levels (CL HP, orange),
which could be interpreted as relative alveolar overdistension, and compliance loss towards lower
PEEP levels (CL LP, white), which could be interpreted as relative alveolar collapse. Panel (C): Time
course of CL HP (orange) and CL LP (white). The PEEP level closest to the intersection of both lines
represents the “best compromise” between alveolar overdistension (12%), collapse (13%), and PEEP
of 14 cmH2O. The PEEP level with a CL LP of ≤5% would result in a PEEP of 18 cmH2O, resulting in
a CL HP of 18%; in this case, the tidal volume would be reduced.

The debate regarding optimal PEEP remains unresolved, and using proxy parame-
ters such as oxygenation and compliance may be misleading due to the heterogeneous
nature of ARDS. The most reliable method for titrating PEEP is the regional compliance-
based approach using EIT, which can visualise and calculate regional overdistension and
alveolar collapse.
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2.1.2. Positive End-Expiratory Pressure Based on Changes in End-Expiratory Lung Impedance

Another way to titrate PEEP and quantify lung recruitment is by measuring changes
in end-expiratory lung impedance (EELI) [43]. Changes in tidal impedance have been
correlated with regional tidal volumes [44,45]. Therefore, changes in EELI may be used to
quantify regional changes in end-expiratory lung volume [46,47]. However, when EIT is
measured at only one thoracic level, there is only moderate agreement between changes
in EELI and end-expiratory lung volume during a PEEP trial [48]. As shown in Figure 1,
an increase in PEEP resulted in higher EELI (end-expiratory lung volume). During a
decremental PEEP trial, a gradual decrease in EELI at a fixed PEEP level may indicate loss
of end-expiratory lung volume, which can be interpreted as derecruitment (Figure 2). In this
case, PEEP can be set to a higher level where a decrease in EELI does not occur [31,49,50].
However, this method is less accurate; changes in the EELI at the bedside are global or
divided into a few regions of interest and not pixel-wise. Furthermore, changes in EELI
are sensitive to artefacts. Currently, alternating-pressure mattresses are commonly used
in intensive care to prevent pressure ulcers. These can cause substantial changes in EELI,
which cannot be explained by changes in end-expiratory lung volume [51].

Tomography 2023, 9, FOR PEER REVIEW 4 
 

 

2.1.2. Positive End-Expiratory Pressure Based on Changes in End-Expiratory  
Lung Impedance 

Another way to titrate PEEP and quantify lung recruitment is by measuring changes 
in end-expiratory lung impedance (EELI) [43]. Changes in tidal impedance have been cor-
related with regional tidal volumes [44,45]. Therefore, changes in EELI may be used to 
quantify regional changes in end-expiratory lung volume [46,47]. However, when EIT is 
measured at only one thoracic level, there is only moderate agreement between changes 
in EELI and end-expiratory lung volume during a PEEP trial [48]. As shown in Figure 1, 
an increase in PEEP resulted in higher EELI (end-expiratory lung volume). During a dec-
remental PEEP trial, a gradual decrease in EELI at a fixed PEEP level may indicate loss of 
end-expiratory lung volume, which can be interpreted as derecruitment (Figure 2). In this 
case, PEEP can be set to a higher level where a decrease in EELI does not occur [31,49,50]. 
However, this method is less accurate; changes in the EELI at the bedside are global or 
divided into a few regions of interest and not pixel-wise. Furthermore, changes in EELI 
are sensitive to artefacts. Currently, alternating-pressure mattresses are commonly used 
in intensive care to prevent pressure ulcers. These can cause substantial changes in EELI, 
which cannot be explained by changes in end-expiratory lung volume [51]. 

A simple way to counteract this problem is to set the mattress to static mode before 
starting the EIT measurement. Unfortunately, these artefacts also occur during patient 
movement [52], which may be more difficult or impossible to address in clinical practice. 
Intravenous fluid admission can cause substantial changes in EELI [53,54]. Positive end-
expiratory pressure titration based on the EELI trend suggests higher PEEP settings than 
the regional compliance method [55], which may be because, in contrast to the latter, it 
only assesses lung recruitment and derecruitment but provides no information about re-
gional lung overdistension. Furthermore, it was impossible to compare changes in EELI 
using repeated measures at different time points. Skin conditions, electrode position, and 
environmental conditions influence the baseline frames and corresponding EELI values. 
Therefore, EELI values are not comparable at different time points when the electrode belt 
is detached and reattached to a patient [56]. 

However, measuring end-expiratory lung impedance changes (EELI) can provide in-
formation on lung recruitment but may not be accurate for detecting lung overdistension. 
It is also challenging to interpret and compare changes over time due to the global or 
regional nature of the changes and the presence of artefacts. 

 
Figure 2. Changes in end-expiratory lung impedance (EELI): A decrease in EELI at different decre-
mental PEEP levels reflects a stepwise decrease in end-expiratory lung volume with lower PEEP. At 
a PEEP level of 10 mbar (H:10), there was a gradual decrease in EELI (red line), reflecting alveolar 
derecruitment. (EIP = End Inspiratory Pressure; PEEP = Positive End Expiratory Pressure). 

  

Figure 2. Changes in end-expiratory lung impedance (EELI): A decrease in EELI at different decre-
mental PEEP levels reflects a stepwise decrease in end-expiratory lung volume with lower PEEP. At
a PEEP level of 10 mbar (H:10), there was a gradual decrease in EELI (red line), reflecting alveolar
derecruitment. (EIP = End Inspiratory Pressure; PEEP = Positive End Expiratory Pressure).

A simple way to counteract this problem is to set the mattress to static mode before
starting the EIT measurement. Unfortunately, these artefacts also occur during patient
movement [52], which may be more difficult or impossible to address in clinical practice.
Intravenous fluid admission can cause substantial changes in EELI [53,54]. Positive end-
expiratory pressure titration based on the EELI trend suggests higher PEEP settings than
the regional compliance method [55], which may be because, in contrast to the latter, it
only assesses lung recruitment and derecruitment but provides no information about
regional lung overdistension. Furthermore, it was impossible to compare changes in EELI
using repeated measures at different time points. Skin conditions, electrode position, and
environmental conditions influence the baseline frames and corresponding EELI values.
Therefore, EELI values are not comparable at different time points when the electrode belt
is detached and reattached to a patient [56].

However, measuring end-expiratory lung impedance changes (EELI) can provide
information on lung recruitment but may not be accurate for detecting lung overdistension.
It is also challenging to interpret and compare changes over time due to the global or
regional nature of the changes and the presence of artefacts.

2.1.3. Setting PEEP in Patients with Spontaneous Breathing Activity

In mechanically ventilated patients, early restoration of spontaneous breathing is
beneficial for improving oxygen delivery and shortening the duration of mechanical ven-
tilation. Excessive spontaneous breathing efforts, however, may cause additional harm
via a variety of mechanisms that are nowadays referred to as “patient self-inflicted lung
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injury” (P-SILI) [57]. The pendelluft phenomenon, which is the movement of air within the
lung from non-dependent to dependent regions without change in tidal volume, can be
visualised by EIT. This phenomenon can cause cyclic alveolar recruitment and can result in
local trauma, mainly in the dependent lung fields [58]. Applying higher PEEP levels may
decrease the magnitude of spontaneous effort and improve lung ventilation homogeneity
by opening up partially closed alveoli, suggesting that this may lead to less injurious
ventilation [59,60]. In contrast, healthy lung tissue may be overdistended when PEEP levels
are too high, inducing ventilator-associated lung injury [61]. Thus, determining the optimal
PEEP level is challenging for patients undergoing assisted mechanical ventilation.

The drawback of most currently available algorithms for titrating PEEP is that their
use is limited to patients on controlled mechanical ventilation. The regional compliance-
based approach for calculating the level of alveolar overdistension and collapse is not
readily feasible during assisted mechanical ventilation or spontaneous breathing. A reliable
assessment of respiratory system compliance is required to obtain valid results. Elimination
of spontaneous breathing requires neuromuscular paralysis or deep sedation. A funda-
mental assumption of the EIT respiratory system compliance measurement is that pressure
changes are uniform throughout the lung when the flow reaches zero after inspiration and
expiration. Within spontaneous breathing, the negative inspiratory pleural pressure swing
following diaphragmatic contraction is not evenly distributed across the lungs because it
acts mainly on the dorsal (dependent) lung regions, which could result in inaccurate quan-
tification of the regional respiratory system compliance calculation during spontaneous
breathing [62].

A promising new algorithm was recently developed for quantifying regional lung
mechanics, independent of a stable plateau pressure phase, based on the regional peak flow
using EIT. The highest regional peak flow was calculated during a decremental PEEP trial
(similar to the regional compliance-based approach), and regional alveolar overdistension
and collapse were calculated in patients undergoing assisted mechanical ventilation or
spontaneous breathing efforts (Figure 3). This method was validated in a prospective cohort
of mechanically ventilated patients with COVID-19 ARDS in a controlled mechanical venti-
lation mode. There was a good correlation between the levels of alveolar overdistension
and collapse based on the highest regional peak flow and alveolar overdistension and
collapse based on the regional compliance-based approach [19].
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with the lowest level of alveolar collapse and alveolar overdistension. The cumulative collapse and
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Although end-expiratory lung impedance can be used to titrate PEEP and quantify
lung recruitment, it is less accurate and sensitive to artefacts. Furthermore, most PEEP titra-
tion algorithms are limited to mechanically ventilated patients. However, a new algorithm
based on regional peak flow using EIT shows promise for quantifying regional lung me-
chanics in patients undergoing assisted mechanical ventilation or spontaneous breathing.

3. Measures of Ventilation Distribution
3.1. Anterior-to-Posterior Ventilation Ratio (Impedance Ratio)

A standard and easy-to-use measure of anterior–posterior ventilation distribution
is the anterior-to-posterior ventilation ratio (A/P ratio) [63,64]. This ratio was initially
called the Impedance Ratio (IR) [65], which is still used in the literature sometimes. The
tidal impedance difference (the impedance change between the end and the beginning of
inspiration) in the non-dependent part of the lung was divided by the tidal impedance
difference in the dependent part of the lung. A decrease in the A/P ratio indicates an
increase in ventilation in the dependent part of the lung above the non-dependent part and
a ventilation distribution shift from the ventral to the dorsal parts of the lung. An A/P
ratio of “1” indicates equal ventilation distribution in the ventral part of the lung compared
to that in the dorsal part. As the ventral and dorsal halves of the lung are not identical, the
A/P ratio is not expected to be equal to one, even in the case of healthy lungs. In ARDS
patients, a higher PEEP results in a decrease in the A/P ratio [66].

In addition to a higher PEEP level, enhanced spontaneous breathing may increase the
proportion of tidal ventilation reaching the dependent lung regions in patients with ARDS,
likely indicating a higher efficiency of the posterior diaphragm that leads to a decrease
in the A/P ratio [67]. In neonates, the A/P ratio has been used to select the “optimal
PEEP” by choosing a PEEP level in which the A/P ratio is closest to “1” [63]. Another
study on patients with early mild ARDS compared the optimal PEEP guided by the open
lung concept strategy with the ARDS network protocol [1,68]. The anterior-to-posterior
ventilation ratio was used to indicate the effect of the open-lung concept, and the PEEP
selected for the open-lung concept was significantly higher than that of the ARDS network
table. The A/P ratio decreased after applying the open-lung concept. The A/P ratio has
been widely used; however, this measure is less robust than other measures, such as the
centre of ventilation, and its specificity of ventilation shift is much smaller than that of the
conventional centre of ventilation [23].

In short, the A/P ratio (A/P ratio) is a standard and easy-to-use measure of ventilation
distribution in the lungs. An A/P ratio of “1” indicates equal ventilation distribution
between the ventral and dorsal parts of the lung. Higher PEEP decreased the A/P ratio in
patients with ARDS, indicating more homogeneous ventilation. However, the A/P ratio
was less robust than other measures, such as the centre of ventilation.

3.2. Centre of Ventilation

The centre of gravity was used synonymously with the centre of ventilation (CoV)
introduced by Frerichs et al. [69]. The term centre of gravity is not recommended because it
is used in mechanics and is defined as the average location of the weight of an object [23].
CoV describes the distribution of ventilation between the ventral and dorsal lung regions.
This calculation can be performed separately for the right and left lungs. In this case, the
weighted mean was also calculated (considering the possible differences in the ventilation
magnitudes for the left and right sides). A value of 50% represents equally distributed ven-
tilation between ventral and dorsal regions. Higher values represent a shift of ventilation
distribution towards the dorsal regions (Figure 4, bottom of the image), and lower values
represent a shift towards the ventral regions. This may be confusing because in some papers,
the values are inverted, meaning that 100% is the most ventral region [70]. CoV was first
introduced to describe the ventilation distribution during spontaneous breathing before
and after surgery and its difference compared with mechanically ventilated patients [69]. It
is a sensitive index that describes alveolar recruitment during a decremental PEEP trial.
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Luepschen et al. showed that during a decremental PEEP trial, although respiratory system
compliance was still increasing, CoV shifted to the ventral lung regions, coinciding with
a decrease in PaO2 [71]. CoVs have been used as a measure of ventilation distribution in
both experimental and clinical studies [72–79].
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Figure 4. Centre of ventilation (CoV): The CoV examines the right and left halves of the ventilated
area separately. Each half was divided into equally spaced horizontal regions of interest (ROI). The
sum of the ventilation-related impedance changes for each ROI was calculated and presented as a
bar. The results are displayed as two histograms: the right histogram represents the left lung (and
vice versa). The location of CoV is indicated by a white horizontal line that divides the ventral
and dorsal lung regions with equal impedance changes. Two percentages separated by a comma
were specified. These percentages represent the dorsal-to-ventral ventilation distributions. The first
percentage represents the left histogram (right lung), and the second is the right histogram (left
lung). A percentage higher than 50 represents a shift in the ventilation distribution towards the
dorsal regions.

In short, the anterior-to-posterior ventilation ratio (A/P ratio) and centre of ventilation
(CoV) are measures used to describe lung ventilation distribution, with CoV being more
sensitive to alveolar recruitment and derecruitment during PEEP trials.

3.3. The Global Inhomogeneity Index

The most frequently used measure of ventilation inhomogeneity is the global inhomo-
geneity index (GI). It provides information on the overall degree of ventilation inhomogene-
ity without information on how it is distributed in the lungs [80]. Global inhomogeneity
was calculated as the sum of the absolute differences between the median value of tidal vari-
ation and every pixel value divided by the sum of all impedance values for normalisation.
Higher values denote a greater degree of inhomogeneity in the ventilation distribution.
Extrapulmonary regions should not be included in the calculation; however, if only the ven-
tilated area is included, areas belonging to the lung that are overdistended or not ventilated
due to atelectasis will be missed, leading to erroneous results [81]. Therefore, it is crucial
to define the lung area within a tidal image [82,83]. The GI is reliable for inter-individual
comparisons [80]. GI has been used for PEEP titration in patients with healthy lungs, and
no significant differences were found between the GI method and the best dynamic respira-
tory system compliance method or between GI and the compliance volume curve method
(stress index). The optimal PEEP level for each patient was determined according to the
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lowest GI index, corresponding to the most homogeneous lung ventilation distribution. GI
is superior to dynamic lung mechanics in spontaneously breathing patients, where reliable
lung mechanics are difficult to obtain [82,84].

The GI can also be used during spontaneous breathing trials. Patients with diaphrag-
matic dysfunction have larger increments in the inhomogeneities of lung aeration than
those without diaphragmatic dysfunction [85]. GI is highly correlated with lung recruit-
ment; the percentage of recruitable lung regions decreases with a decrease in GI [86]. A
high tidal volume may lead to a lower GI index, especially at a low PEEP, probably because
of tidal recruitment [87]. After a recruitment manoeuvre in patients with ARDS, the GI did
not change in non-responders to recruitment; however, in responders, the GI improved.
Thus, GI can help identify responders to recruitment manoeuvres [50].

It should be noted that homogenisation of lung ventilation became synonymous
with protective ventilation, assuming that reopened lung units can improve ventilation
distribution by accommodating part of the tidal volume, thus minimising hyperinflation.
However, in normal lungs with minimal collapse, the heterogeneity of lung ventilation is a
physiological phenomenon mirrored by the heterogeneity of lung perfusion [88]. Therefore,
the measures of ventilation inhomogeneity should be interpreted with caution. Solely
trying to minimise inhomogeneity without limiting the upper level of PEEP may cause
severe overdistension and is potentially harmful [89].

The global inhomogeneity index (GI) is a commonly used measure of ventilation inho-
mogeneity that reflects the degree of inhomogeneity in the overall ventilation distribution.
However, caution should be exercised when interpreting these results, as homogenisation
of lung ventilation should not be the only goal of protective ventilation.

4. Regional Ventilation Delay

The regional ventilation delay (RVD) is the calculation of the delay between the global
start of inspiration and the point in time at which the regional impedance curve reaches
a certain impedance change threshold (Figure 5). Thus, RVD is used to identify lung
regions with late opening, which could indicate the presence of cyclic opening and closing
of the alveoli. Regional ventilation delay calculations have been applied during normal
spontaneous breathing and conventional ventilation [90–92]. However, this calculation has
not been validated for conventional control or support ventilation, where the inspiration
time is short. Regional ventilation delay is determined during a low-flow manoeuvre, and
the threshold for the inspiratory phase can be modified [18]. Global function tests such as a
low-flow manoeuvre can only assess the overlapping information of several ventilatory
units of different lung regions that differ in mechanical behaviour. Slow-flow inflation
should promote sequential filling of different lung regions caused by alveolar recruitment
of regions with different opening pressures. Regional ventilation delays during low-flow
manoeuvres are useful in determining regional recruitment [18]. Regional ventilation delay
inhomogeneity, therefore, provides a good estimate of the amount of tidal recruitment and
may be useful for individualising ventilatory settings, such as PEEP [93–96]. The greatest
drawback of performing a low-flow manoeuvre is that respiratory muscles must be inactive.
Therefore, the patient needs to be deeply sedated and preferably paralysed [97,98]. To
increase clinical applicability, reducing the volume delivered during a low-flow manoeuvre
has been proposed [99]. More recently, there has been a trend of using lower doses of
sedatives in intensive care patients to prevent muscle weakness, depression, and post-
intensive care syndrome, all of which markedly affect patients’ quality of life after they
leave the unit [100], making the usability of a slow-flow manoeuvre less applicable.

In short, the regional ventilation delay (RVD) measures the delay between the global
start of inspiration and the regional impedance curve reaching a certain impedance change
threshold, identifying regions with cyclic opening and closing. However, deep sedation
and paralysis are required for low-flow manoeuvres.
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Figure 5. Regional Ventilation Delay (RVD). Upper panel: tidal image representing ventilation
distribution (grey surrounding line of the ventilated area). The black regions indicate the beginning
of inspiration simultaneously compared to the global beginning of inspiration; the yellow regions
indicate a delayed and green region at the early beginning of regional inspiration compared to global
inspiration. Lower panel: Delay in regional impedance change with a cutoff value of 40% set by
the user. The white waveform represents the global start and end of inspiration, and the yellow
waveform represents the start and end of inspiration of the pixel.

5. Posture

Postural therapy has been widely accepted in critically ill patients to support ventila-
tion redistribution towards the dependent lung areas, thus facilitating recruitment [101].
Electrical impedance tomography has the potential to guide physicians in positioning
their patients according to their disease and lung condition [102]. Regional information on
aeration in specific pulmonary regions by EIT might allow the discrimination of patients
who will benefit from postural therapy, such as prone positioning, from those who will
not. In the latter case, it could lead to a decrease in the delay in the initiation of other
therapies, such as extracorporeal membrane oxygenation. The effect of body positioning
on intrapulmonary tidal volume distribution can be easily assessed using EIT. The timing
of the termination of prone positioning and lowering the PEEP setting was determined to
prevent dorsal derecruitment as seen by EIT [103]; however, Spaeth et al. demonstrated that
a higher PEEP level is required to prevent alveolar collapse in the prone position compared
to the supine position [104]. A prolonged prone position in patients with ARDS results in
a more homogeneous ventilation distribution and better oxygenation, probably because
of better dorsal ventilation [105]. Homogenisation of ventilation distribution is much less
dependent on the PEEP level in the prone position than in the supine position [106]. It
has also been demonstrated that alveolar recruitment manoeuvres are more effective in
the prone position [107]. Some investigators have also examined the changes in EELI
when changing from supine to prone positioning [108]. However, these findings should be
interpreted cautiously because changes in body position influence changes in EELI and are
unrelated to changes in end-expiratory lung volume [52,56].

In the supine position, the electrodes on the back are pressed onto the skin because
of the body weight, causing the skin–electrode resistance to be lower. When the patient
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is turned, the resistance of the dorsal electrodes increases, whereas the ventral electrodes
have better contact and, thus, a lower resistance. This leads to changes in EELI but not in
lung volume. However, the ventilation distribution can be reliably compared before and
after prone positioning using two different baselines, thereby ignoring changes in EELI,
and allowing only changes in ventilation distribution to be visualised. Reifferscheid et al.
showed that posture significantly affected the distribution of regional tidal volume com-
pared with the supine to sitting and right-lateral positions. More importantly, they showed
that the reproducibility of regional ventilation determined by EIT, even after eight days,
was good. For reproducibility during different measurements, they recommended carefully
choosing the EIT examination location on the chest (note the intercostal space of the belt on
the parasternal line and document typical anatomical landmarks) [109]. It must be consid-
ered that one needs to take some time is required for the regional ventilation distribution
to stabilise after changing the position. It has been described that a 15 min stabilisation
period should be allowed following any change in position before acquiring data in healthy
volunteers (in both the anterior–posterior and left–right directions) [110]. Patients with
pulmonary pathology are likely to require longer stabilisation times. The distribution of
tidal ventilation is highly variable and influenced by body and neck position [111–113]. The
prone position is the most commonly used therapy for posture to improve oxygenation and
has been extensively used in patients with severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection.

In short, postural therapy in critically ill patients can be guided by electrical impedance
tomography (EIT) to improve ventilation redistribution and prone positioning has been
shown to improve ventilation homogenisation and recruitment in patients with acute
respiratory distress syndrome (ARDS).

6. Belt Position

It is evident that if the patient has wounds or needs dressings where the belt has to
be placed, EIT measurement is impossible because the electrodes must be in contact with
the patient’s skin. However, contact with all the electrodes is unnecessary, depending on
the device used. Electrical impedance tomography measurements are sometimes possible
without contact with any electrodes. However, the quality of the measurements is reduced.
Correct belt placement is crucial. If the belt is placed too low, the diaphragm can enter the
EIT measurement field, inadvertently changing the ratio between the impedance change
(delta Z) and the tidal volume. Such a change in delta-Z/mL tidal volume will result in
an erroneous determination of lung volume change (changes in EELI reflecting changes
in end-expiratory lung volume) if unrecognised [48]. During breathing, especially if the
belt is placed in a more cranial position, the electrodes can move up and down the skin,
resulting in negative impedance changes during inhalation due to changes in the electrode
position (artefact). Therefore, it is important to select the appropriate electrode plane size,
body position, and region of interest for analysis [114]. When EIT is used to estimate global
parameters such as tidal volume or changes in end-expiratory lung volume, the belt is
best placed around the patient’s chest at the fourth or fifth intercostal space measured
at the parasternal line, resulting in the highest correlation between volume changes and
impedance changes [44].

In patients with a known high intra-abdominal pressure, the belt could already be
placed in a more cranial position. It is advisable to begin EIT measurements with a
lower PEEP. If the belt is placed too low, it is recognised from the beginning. If the EIT
measurement started with a high PEEP level and a decremental PEEP trial was performed,
the diaphragm could enter the measurement field if the belt was placed caudally, which, in
this case, would only be noticed at the end of the measurement. The PEEP level with the
best regional compliance was different for the dependent and non-dependent lung regions,
as well as for the caudal and cranial lung regions. The importance of the measurement
location must be realised during clinical PEEP titration. Measuring EIT at different thoracic
levels provides additional information on ventilation distribution in a larger part of the
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lung [30,115]. Although tidal volume and delta-Z correlate well [116], the volume-to-
impedance ratio is not constant when volume or airway pressure is altered [117,118].
Therefore, electrode belt placement in the fifth intercostal space is not always ideal [119].
The repeated EIT measurements over time showed good reproducibility. However, the
location of the belt attached to the chest must be carefully selected and marked [109].

In short, proper placement of the EIT belt on the patient’s chest is crucial because it
can affect the quality and accuracy of measurements and contact with all electrodes may
not always be necessary.

7. Diagnostic Applications
7.1. Airway Clearance Techniques

Electrical impedance tomography was used to evaluate the effects of airway clearance
techniques. Endotracheal suctioning, which promotes derecruitment, is the most commonly
used method. However, EIT has shown that a closed suctioning system only partially
prevents derecruitment [120,121]. The dorsal regions are most affected by disconnection
and suctioning, with a marked decrease in regional compliance. Another airway clearance
technique is high-frequency percussive ventilation superimposed on mechanical ventilation,
which promotes alveolar recruitment, as demonstrated by EIT [122].

7.2. Tube Misplacement and One-Lung Ventilation

Endobronchial intubation is one of the most common complications of endotracheal
intubation during anaesthesia [123]. EIT may be useful for early diagnosis of untoward
endobronchial intubation [124]. The feasibility of EIT for confirming the correct placement
of a double-lumen tube (DLT) was studied by Steinmann et al. [125]. They concluded that
EIT could be used for non-invasive online recognition of the misplacement of left-sided
DLTs in the contralateral main bronchus. However, as EIT did not allow the detection of
wrongly positioned endobronchial cuffs, it could not replace fibre optic bronchoscopy in the
routine control of the DLT position. Nevertheless, since EIT allows reliable online diagnosis
of grossly malpositioned DLT immediately after intubation, it could be of considerable
clinical relevance since the incidence of initially misplaced left-sided DLTs into the right
main bronchus was 12.5% in their study and varied between 7% and 24% [126,127]. Thus,
EIT could also be useful for monitoring one-lung ventilation during closed chest condi-
tions, especially if prolonged, such as during one-lung ventilation in intensive care. Tube
displacement after changing the patient’s position during standard ICU care using a DLT is
common, and detection and correction of DLT displacement, in this case, are crucial [128].

7.3. Detection of Pleural Effusion and Monitoring of Lung Re-Aeration after Aspiration of
Pleural Effusion

EIT can detect pleural effusion by analysing phase-inverted impedance changes in
dorsal lung areas. These are caused by step changes in the conductivity between the
non-conductive lung and the highly conductive pleural fluid [129]. Furthermore, EIT can
be used to evaluate re-aeration and re-ventilation after aspiration of pleural effusions. Re-
aeration occurred immediately and was heterogeneous. Relief of compression after pleural
aspiration creates higher transpulmonary pressure, favouring an increase in ventilation. If
the ventilation at the side of the aspiration did not improve, the effusion was probably not
compressing the lung or was caused by dysfunction of the diaphragm after a long period
of compression due to pleural effusion. Occasionally, aeration decreases, as described
by Alves et al. [130]. They hypothesised that this was due to the small airway opening
and closing caused by the decrease in surfactant due to the chronically collapsed lungs.
Small airway closure can result in trapped air (intrinsic PEEP) during expiration, leading to
hyperinflation that would cause vigorous re-aeration but not re-ventilation. However, the
effect of pleural effusion evacuation on lung aeration in mechanically ventilated patients
cannot be evaluated effectively using EIT alone. In addition to the effects of reaeration,
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the increase in EELI due to pleural effusion evacuation may also be caused by the loss of
conductive electrolytes (i.e., pleural effusion) adjacent to the EIT belt [131].

7.4. Early Detection of Pneumothorax

Costa et al. were the first to demonstrate the possibility of detecting the development
and location of pneumothorax in quasi-real time using EIT in an experimental pig model.
Pneumothoraces as small as 20 mL were detected, with a sensitivity of 100% and specificity
of 95%. However, pneumothorax must develop or enlarge during EIT monitoring [132].
A rapid increase in local EELI can be an early sign of pneumothorax before all clinical
signs. This indicates non-ventilated air in that specific region, followed by decreased
ventilation distribution [133,134]. Patients with pneumothorax have a higher difference
in ventilation distribution in the affected ventral quadrant than in the whole lung or
dorsal part of the lung. Furthermore, ventilation distribution is more inhomogeneous in
patients with pneumothorax than without [135]. Thus, EIT can be a useful warning tool
to detect pneumothorax during high-risk procedures such as bronchoscopic biopsies or
endobronchial lung-volume reduction valve placement.

7.5. Quantification of Pulmonary Oedema

The EIT can determine extravascular lung water during lateral body rotation by
calculating the tidal variation differences between the left and right lungs in an experimental
model. The extravascular lung water from the dependent part of the lungs is redistributed
when the body position is changed. Thus, EIT can quantify pulmonary oedema at the
bedside and differentiate between healthy and injured lungs [136]. However, this method
cannot be used in human subjects with ARDS. None of the EIT measures correlated with
lung oedema measures determined by transpulmonary thermodilution [137].

7.6. Monitoring Chronic Lung Diseases

There is the potential to evaluate the degree of airflow limitation in patients with
chronic obstructive lung diseases, not only globally but also at the regional level. Pulmonary
function testing can be performed at the bedside using EIT to evaluate progress and
therapeutic effects in patients with pulmonary diseases [138]. It has been demonstrated that
it is possible to show the response of bronchodilator therapy to regional EIT-derived lung
function measures [139,140]. Regional lung function was more homogenous in healthy
subjects than in those with chronic lung disease. Moreover, in patients with asthma,
the regional ventilation distribution improves after bronchodilator administration, as
demonstrated by EIT [141]. In addition, in patients with cystic fibrosis, EIT has been shown
to deliver global and regional information on airway obstruction [142]; these findings are
reliable and comparable with those of high-resolution computed tomography [143].

Assessing regional respiratory time constants using EIT is a promising approach
for monitoring airflow obstruction in mechanically ventilated patients with COPD and
ARDS [144]. In the future, it may become a useful tool for adjusting the ventilator settings
in patients with clinically relevant expiratory airflow obstruction.

In short, EIT can be used to evaluate the effect of airway clearance techniques, monitor
tube misplacement and one-lung ventilation, evaluate re-aeration and re-ventilation after
aspiration of pleural effusion, detect pneumothorax, quantify pulmonary oedema, and
monitor airflow obstruction in acute and chronic lung diseases. These applications range
from the early diagnosis of complications to monitoring therapy progress in patients with
pulmonary diseases. An overview of the key studies on the clinical use of EIT is presented
in Table 1.
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Table 1. Overview of key studies on the clinical use of electrical impedance tomography.

Aim Method Author, Year Study Design Sample Size Population Intervention Main Findings Limitations Future Directions

Best PEEP Compliance-based
approach [17]

Hsu et al.,
2021 [42]

Prospective
randomised

controlled trial

EIT: n = 42
PV curve: n = 45

Moderate-to-severe
ARDS

EIT guided PEEP at the
intercept point of cumulated

alveolar overdistension
and collapse.

PV curve guided PEEP at the
point of maximal hysteresis.

Lower driving
pressure and higher
surviving rate in the

EIT group (69% versus
44.4%).

The selected PEEP
was fixed for the first
48 h; more frequent

PEEP titration might
be valuable.

What is the effect of
PEEP titration over a
longer period of time

Compliance-based
approach

He et al.,
2021 [40]

Prospective
randomized

controlled trial

EIT: n = 61
Lower

PEEP/FiO2-
table: n =

56

ARDS

EIT guided PEEP at the
intercept point of cumulated
alveolar overdistension and
collapse. If the intercept was
between two PEEP steps, the
PEEP level with the lowest GI

was selected.
Control group: lower

PEEP/FiO2-table

A non-significant
decrease of 6%
mortality and a

significant
improvement in organ
function at day 2 in the

EIT group.

The effect of prone
positioning on the

results and outcomes
was not analysed.

Could early
EIT-guided PEEP

setting significantly
decrease mortality in

ARDS

Compliance-based
approach

Heines et al.,
2019 [31]

Retrospective
analysis N = 39 ARDS

PEEP set at the intercept point
of cumulated alveolar

overdistension and collapse,
compared to the ARDS

network PEEP/FiO2-table
and clinician-based PEEP.

In approximately
two-thirds of the

patients, EIT-guided
PEEP differed from

physicians’ set PEEP
and from the ARDS

network
PEEP/FiO2-table.

Retrospective
analysis without

outcome data

Is EIT-guided PEEP
superior to

physicians’ set PEEP
or the ARDS

network table on
oxygenation and

respiratory
mechanics

EELI Eronia et al.,
2017 [49] Feasibility study N = 16 Acute hypoxic

respiratory failure

PEEP was set after
recruitment manoeuvres until

EELI maintained stability
over time.

EIT-guided PEEP was
feasible and led to a
higher PEEP level

compared to the ARDS
network PEEP/FiO2

table, resulting in
improved oxygenation.

and a decrease in
driving pressure

EELI tracing could
not successfully

detect the PEEP level
associated with

sustained
recruitment in 2 out
of the 16 patients.

Does this strategy of
titrating PEEP result

in a decrease in
ventilator-induced

lung injury

Regional
peak-flow

de Jongh et al.,
2023 [19]

An observational
validation study in a
prospective cohort

N = 78 COVID-19 ARDS

Cumulative overdistension
and cumulative collapse rates

are calculated based on the
highest regional peak flow

and validated with the
compliance-based approach

to use in spontaneously
breathing patients.

The regional peak-flow
approach showed

good agreement with
the compliance-based

approach and,
therefore, might be a

valid method to
quantify regional lung

mechanics in
spontaneously

breathing patients.

Validation was only
performed in

COVID-19 patients.

Would ventilator
settings based on

this algorithm
improve patients’

outcomes and
reduce the weaning

duration
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Table 1. Cont.

Aim Method Author, Year Study Design Sample Size Population Intervention Main Findings Limitations Future Directions

Inhomogeneity A/P ratio Mauri et al.,
2013 [67]

Prospective
randomised

cross-over study
N = 10 Mild-to-moderate

ARDS

Evaluating ventral to dorsal
changes in ventilation

distribution while
increasing/decreasing PEEP

and/or PS.

Higher PEEP and
lower PS increased the

fraction of tidal
ventilation reaching

dependent lung
regions.

The results may not
apply to patients

with severe ARDS.

What is the
mechanism at the

basis of the observed
redistribution of
ventilation (e.g.,

alveolar recruitment,
increased

diaphragm activity)

CoV Frerichs et al.,
1998 [69]

Prospective
observational study N = 10

Patients scheduled
for elective
laparotomy

The CoV was calculated
during spontaneous breathing

and different modes of
mechanical ventilation.

There are differences in
ventilation distribution
between spontaneous

breathing and different
ventilation modes.

Ventilation distribution
was larger in the dorsal

lung during
spontaneous breathing.

Only patients with
healthy lungs were

studied.

How does the CoV
change in injured

lungs and with
different PEEP levels

GI Zhao et al., 2014
[86]

Retrospective
analysis

ARDS: n = 18
Lung-healthy
patients: n = 8

ARDS and
lung-healthy

A constant low-flow inflation
manoeuvre was performed.
Recruited lung regions were

identified where local
impedance amplitudes

exceeded 10% of the
maximum amplitude during

the manoeuvre.

GI highly correlates
with lung recruitability.

The gold standard
for identifying
collapsed lung

regions (CT) was
missing.

Correlates GI also
with alveolar
recruitment in

standard
recruitment
manoeuvres

GI Becher et al.,
2015 [87]

Retrospective
analysis N = 9 ARDS

Lower and higher tidal
volume was used at a PEEP

level of 2 cmH2O below and 5
cmH2O above the lower

inflexion point.

High tidal volumes
may lead to a lower GI,
especially at low PEEP

settings.

Two different EIT
devices were used,
which may have

influenced the
results.

What is the influence
of respiratory rate
and posture on GI

Prevent
atelectrauma RVD Wrigge et al.,

2008 [18]

Randomised
prospective

experimental study
N = 16

Pigs with direct,
indirect acute lung
injury (n = 10) and

healthy lungs (n = 6)

During slow inflation,
simultaneous measurements
of regional ventilation by EIT

and dynamic CT.

RVD correlated well
with recruited volume

as measured by CT.

Experimental model,
comparison with

patients with lung
injury should be

made with caution.
Control group was
measured later in

time and was,
therefore, not
randomised.

Develop a method to
detect atelectrauma

during normal
(ongoing)

mechanical
ventilation
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Table 1. Cont.

Aim Method Author, Year Study Design Sample Size Population Intervention Main Findings Limitations Future Directions

Oxygenation
improvement using

posture
Prone position Spaeth et al.,

2016 [104]
Prospective clinical

study N = 45

Patients with healthy
lungs undergoing

lumbar spine
surgery

Patients were examined in the
supine and prone position at a
PEEP of 6, 9, and 12 cmH2O.

Commonly measured
Crs do not reflect the

differences in
respiratory mechanics
between supine and

prone posture.
Intra-tidal compliance

profile revealed
substantial differences

in lung condition
between both postures.

In prone position,
chest and pelvis

were supported with
pads, which allows
free movement of
the abdomen and
lower chest wall,

causing lower
intra-abdominal and

intra-thoracic
pressure. These

findings only apply
when free abdominal

movements are
ensured.

Is higher PEEP
needed in prone

position in affected
lungs

Prone position Wang et al.,
2022 [105]

Prospective
physiological study N = 10 ARDS

EIT evaluation at ignition of
prone positioning, 3 h after
and at the end of the first

prone session

Increased ventilation
in the dorsal regions

without affecting
ventral regions early
after prone position.

Resulting in increased
PaO2/FiO2 ratio

The EIT assessment
was only measured

at 3 time points
during prone

position. Changes in
ventilation

distribution were
not compared after

turning to the supine
position again.

What is the effect on
ventilation

distribution and
oxygenation after
prolonged prone
positioning after

turning back to the
supine position

Prone position
and alveolar
recruitment

Martinsson
et al., 2021 [107]

Randomised
controlled trial N = 30

Patients after
uncomplicated
cardiac surgery

Alveolar recruitment
manoeuvre in either the

supine or the prone position.

Early after cardiac
surgery, a lung

recruitment
manoeuvre in prone
position improves

oxygenation, dorsal
ventilation and dorsal
end-expiratory lung
volume compared to
the supine position.

There is a lack of
FRC measurement
after extubation.

What is the
difference in effect
on end-expiratory
lung volume and

oxygenation after a
recruitment

manoeuvre in
patients with

diseased lungs,
comparing prone

versus supine
position
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Table 1. Cont.

Aim Method Author, Year Study Design Sample Size Population Intervention Main Findings Limitations Future Directions

Diagnostic
applications Airway clearance Garofalo et al.,

2023 [122]
Physiological pilot

study N = 15

Tracheostomised
patients undergoing

mechanical
ventilation

Use short HFPV cycles to
investigate the effect on lung
aeration and gas exchange.

Short cycles of HFPV
superimposed on

mechanical ventilation
promoted alveolar

recruitment and
improved oxygenation

in tracheostomised
patients with high load

of secretion.

Small sample size
and a heterogeneous

population. The
definition of a
hypersecretive

patient is arguable.

Does HFPV increase
oxygenation and

ventilation in
patients with

atelectasis

Tube placement Steinmann et al.,
2008 [125] Feasibility study N = 40

Patients requiring
insertion of
left-sided

double-lumen tubes
for one-lung

ventilation during
thoracic surgery

EIT was recorded during
two-lung ventilation before

induction of anaesthesia and
after double-lumen tube
placement and during

one-lung ventilation in the
supine and subsequently in

the lateral position.

EIT enables online
recognition of

misplacement of
left-sided

double-lumen tubes in
the contralateral main
bronchus. However, as

distribution of
ventilation did not

correlate with
endobronchial cuff

placement, EIT cannot
replace fibreoptic

bronchoscopy.

EIT was only used in
the presence of

left-sided
double-lumen tubes.

Does EIT in
right-sided

double-lumen tube
placement require

additional
definitions to

account for the
regional ventilation
of the right upper

lobe

Pleural effusion Rara et al.,
2020 [131]

Prospective
interventional study

N = 19
(6 excluded)

Ventilated patients
with indication for

pleural effusion
drainage

Compare changes in EELI and
EELV in response to the

pleural effusion evacuation

The increase in EELI
overestimated the
increase in EELV,

probably due to the
removal of conductive

effusion fluid

EELV is a global
ventilation

parameter, while EIT
measurements are

focused only on the
cross-section within

the wide plane of the
belt

Estimating the
amount of pleural

fluid

Pneumothorax Yang et al.,
2023 [135]

Retrospective cohort
study

N = 203
(25 with PTX)

Mechanically
ventilated patients
who received EIT

measurements in the
supine position

Tidal impedance variation
images were divided into four

quadrants of equal size to
track ventilation distribution

in different regions of interest.

Regional ventilation
defects can be
observed in

mechanically
ventilated patients

with PTX, requiring
further diagnostics to

confirm.

The baseline EIT in
patients with a PTX
before the onset was

not recorded.
Furthermore, the

dynamic evolution
of the PTX was not

monitored.

Developing an
algorithm that

provides an alert in
the presence of a

PTX



Tomography 2023, 9 1919

Table 1. Cont.

Aim Method Author, Year Study Design Sample Size Population Intervention Main Findings Limitations Future Directions

Pulmonary
oedema

Zhao et al.,
2019 [137]

Prospective
observational study N = 14 ARDS

Patients were rotated laterally
along their longitudinal axis
from the supine position to

45-degree left and right tilt to
induce gravity-dependent

redistribution of pulmonary
oedema.

Postural changes did
not reflect total

extra-vascular lung
water content.

Non-reproducible
results may be
introduced by

measurement error
of the

trans-pulmonary
thermodilution

technique. No other
reference technique

was used.

Develop advanced
measures to assess

the level of
pulmonary oedema

Chronic lung
diseases

Zhao et al.,
2020 [140]

Prospective
observational study N = 25 Exacerbation of

COPD and asthma

EIT measurements were
conducted before and one

hour after inhaling
medication on

two consecutive days.

Regional
end-expiratory flow

characterises air
trapping, providing

diagnostic information
for monitoring the
treatment of COPD

and asthma patients.

No systematic
clinical intervention
was used to reduce

air trapping.

What is the most
effective way of

medication
nebulisation, and

with which device

A/P ratio, anterior-to-posterior ventilation ratio; ARDS, acute respiratory distress syndrome; COPD, chronic obstructive pulmonary disease; CoV, centre of ventilation; Crs, respiratory
system compliance; CT, computed tomography; EELI, end-expiratory lung impedance; EELV, end-expiratory lung volume; EIT, electrical impedance tomography; FiO2, fraction of
inspired oxygen; FRC, functional residual capacity; GI, global inhomogeneity index; HFPV, high-frequency percussive ventilation; PaO2/FiO2 ratio, oxygen arterial partial pressure on
inspired fraction of oxygen ratio; PEEP, positive end-expiratory pressure; PS, pressure support; PTX, pneumothorax; PV curve, pressure–volume curve; RVD, regional ventilation delay.
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8. Limitations

The constraints and challenges associated with electrode belts were extensively de-
scribed. EIT is not recommended in patients with cardiac pacemakers and electrically active
implants such as implantable cardioverter-defibrillators.

Electrical impedance tomography signals can be inverted (out-of-phase impedance
changes) in patients with pleural effusions. These are characterised by a paradoxical
decrease in impedance during inspiration, followed by an increase during expiration. This
might lead to an inaccurate interpretation of the EIT findings. Therefore, pleural effusion
may affect the quantitative evaluation of regional lung ventilation using the EIT. Delta-Z
cannot be used to estimate tidal volume in extremely heterogeneous states of pulmonary
diseases such as unilateral empyema [145]. However, out-of-phase impedance changes
can trigger further examination of pleural effusion and, in that way, may have a high
diagnostic value [129]. Most EIT studies on lung pathology involve ARDS or experimental
acute lung injury in animals, and only a few studies have been published on EIT and
excessive fluid in the pleural space. During pleural fluid aspiration, increased electrical
resistivity has been observed in patients with pleural effusion of cardiac origin [146,147].
Hahn et al. described a local decrease in resistivity during the installation of Ringer solution
into the pleural cavity on regional lung ventilation in an experimental study [148]. An
airless state may indicate alveolar collapse but may also be caused by pleural effusion [149].
Furthermore, fast intravenous administration of a saline bolus causes a significant decrease
in EELI, which is not correlated with changes in end-expiratory lung volume and may be
misleading. This limits the ability of critically ill patients to perform measurements over
a longer period of time. However, fast intravenous saline administration does not affect
regional lung ventilation distribution [53,54].

Electrical impedance tomography is precise when looking at regional ventilation and
not overall lung volume because it only measures slices of the lung where the electrode
plane is situated. Impedance changes were measured using lens-shaped chest slices. Its
thickness increases towards the central region of the body (up to a thickness of approx-
imately 12 cm). The assumption of a linear relationship between the change in global
tidal impedance and tidal volume cannot be used to calculate the EELV when the EIT is
measured at only one level just above the diaphragm [48]. Erlandsson et al. described a
good agreement between impedance variation and tidal volume [43]. The slope between
delta volume and delta impedance was very similar in a heterogeneous group of patients
with different causes of respiratory failure. Although the correlation of impedance changes
with changes in volume may be good, it may not be exact [47]. When EIT estimates global
parameters such as tidal volume, the electrode plane should be placed between the fourth
and fifth intercostal spaces for the highest correlation between tidal volume and tidal
impedance difference (TID) [44]. It is calculated from the impedance change between
the end and the beginning of inspiration (i.e., the tidal variation). Electrical impedance
tomography reflects changes in the impedance of the lungs but not the absolute values.

EIT technology offers bedside visualisation of lung ventilation and dynamic changes
in regional ventilation distribution instead of the static image from computed tomogra-
phy (CT) [18]. CT is a high-resolution imaging technique that allows the visualisation of
anatomical structures. However, this is not possible with EIT owing to its low spatial reso-
lution. As mentioned above, the EIT visualises impedance changes. When no impedance
changes occur in a certain lung area, this may be due to various causes, such as extreme
overdistension, pneumothorax, atelectasis, or one-sided ventilation. These causes cannot
be easily differentiated when considering EIT-based ventilation distribution alone.

Thus, EIT is not recommended for patients with pacemakers or electrically active
implants. EIT signals can be inaccurate in patients with pleural effusion, and EIT can
only measure regional ventilation rather than the overall lung volume. EIT offers bedside
visualisation of lung ventilation but has a lower spatial resolution than CT. The number of
electrodes used for EIT is limited, which affects resolution.
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9. Electrical Impedance Tomography during the COVID-19 Pandemic

Severe acute respiratory syndrome coronavirus 2 is a strain of coronavirus that causes
COVID-19 and is responsible for the COVID-19 pandemic that struck the world from 2019
onwards [150]. Some patients develop severe hypoxic respiratory failure, requiring ICU
admission for respiratory support and mechanical ventilation. Gattinoni et al. described
two phenotypes of COVID-19 patients: Type L, characterised by low elastance (high lung
compliance), low ventilation/perfusion ratio, and low alveolar recruitment and Type H,
defined by high elastance (low lung compliance), high right-to-left shunt, high lung weight,
and high recruitability [151]. However, vigilance for premature phenotyping has been
advocated because the disease and pulmonary interaction might change the appearance
of the phenotype over time [152]. Therefore, it is crucial to adapt ventilatory support
on a case-by-case basis over time. Electrical impedance tomography can detect different
characteristics of the regional ventilation profile; therefore, EIT can be a helpful bedside
tool for understanding the aetiology of hypoxaemia [153]. In an expert opinion in the
Netherlands in 2020, the recommendation was to select the right level of PEEP using EIT,
among other methods [154].

Our research group performed a unique number of EIT measurements in 80 patients
during the first pandemic wave (analysing 334 EIT measurements) at the population level,
showing that EIT-guided PEEP (the regional compliance-based approach [17]), alveolar
overdistension (OD), alveolar collapse (CL), and dynamic respiratory system compliance
(Cdyn) changed over the course of mechanical ventilation during SARS-CoV-2 infection
in a prospective observational study. The focus was on serial EIT measurements, and we
reported the EIT-derived pulmonary parameters over the course of mechanical ventilation
in these patients. Optimal EIT-guided PEEP was determined at a level of CL ≤ 5% during
a decremental PEEP trial. We showed that using EIT-guided PEEP, OD, CL, and Cdyn
changes during mechanical ventilation for SARS-CoV-2 infection, suggesting that the
whole population develops decreased compliance after a while. These changes were more
unfavourable in non-survivors than in survivors. They demonstrated that PEEP titration is
important both individually and over time [32].

Others used PEEP titration at the lowest PEEP above the intercept of curves rep-
resenting the relative OD and CL in COVID-19 patients. They found that EIT-guided
PEEP corresponded better with a high PEEP-FiO2 ALVEOLI table [13]. However, EIT-
guided PEEP was lower in many cases and higher than that in the PEEP-FiO2 table [41,155].
Therefore, they concluded that PEEP should be personalised. No correlation was found
between EIT-guided PEEP and FiO2 [156]. This was also the conclusion of a study com-
paring optimal PEEP based on the PEEP-FiO2 ALVEOLI [13], EIT, and transpulmonary
pressure-FiO2 tables [157]. They found a poor agreement for the optimal PEEP. The optimal
PEEP guided by EIT was based on the best balance between the OD and CL. Electrical
impedance tomography-guided PEEP results in lower plateau pressure, mechanical power,
transpulmonary pressure, higher static respiratory compliance, and homogeneity of venti-
lation [158]. The regional compliance-based approach for the EIT-guided PEEP setting was
also used in a patient on venovenous extracorporeal membrane oxygenation during the
pandemic [159,160]. Patients with severe COVID-19-related ARDS had respiratory charac-
teristics compared to those without non-COVID-19 ARDS. However, in COVID-19-related
ARDS patients, a higher PEEP level was required and had lower levels of overdistension
compared with non-COVID-19 ARDS.

Patients with ARDS have been shown to benefit from early prone positioning if
hypoxemia is severe and refractory [161,162]. Before the COVID-19 pandemic, the prone
position remained remarkably underused [163,164]. Prone positioning is often used in
COVID-19 patients, even in those who do not fulfil the usual (local) indications [165]. Perier
et al. compared optimal PEEP based on the interception of the OD and CL curves in the
supine and prone positions in patients with COVID-19 ARDS and non-COVID-19 ARDS.
They found that the optimal PEEP in COVID-19 patients was similar in the supine and
prone positions. However, in the supine and prone positions, the optimal PEEP was higher
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in COVID-19 patients than in non-COVID patients with ARDS. Furthermore, the response
to PEEP on the PaO2/FiO2 ratio was similar in COVID-19 patients with high versus low
respiratory system compliance [166]. The prone position has become a novel treatment for
patients with COVID-19 who are awake and spontaneously breathing [167–169]. In awake,
non-intubated patients, the prone position did not decrease lung ventilation inhomogeneity
despite an improvement in oxygenation [170].

In addition, there was no difference in the regional ventilation distribution between
the prone and supine positions during non-invasive ventilation. However, for patients
under invasive ventilation, prone positioning led to a redistribution of ventilation to the
dorsal regions, as demonstrated by the EIT. Oxygenation improved in the prone position
with both invasive and non-invasive ventilation. They are likely to be governed by several
underlying mechanisms [171]. Prone positioning with conventional oxygen therapy also
increased oxygenation and improved global and regional end-expiratory lung impedance
within less than 5 h [172]. Although awake proning appears to reduce the risk of tracheal
intubation, it does not reduce mortality. However, clinicians are concerned that awake
proning may worsen patient outcomes by increasing self-inflicted lung injury [173,174]
or delaying tracheal intubation and invasive mechanical ventilation. However, there is
a strong recommendation for a trial of awake proning in adult patients with COVID-19-
related hypoxaemic respiratory failure who are not invasively ventilated [175]. It has
also been described that in COVID-19 patients, the prone position decreased CL at low
PEEP levels compared to the supine position. On the other hand, it increased the OD at
a PEEP greater than 10 cmH2O [176]. Electrical impedance tomography was also used
to evaluate the effects of different body positions on the regional lung mechanics and
ventilation distribution. Sequential lateral positioning showed increased regional lung
compliance and alveolar recruitment without increased airway pressure [177]. Furthermore,
lateral positioning decreases overdistension in COVID-19-associated ARDS [178]. How-
ever, the ventilation distribution and response to lateral positioning vary among patients
with spontaneous breathing. Individualised positioning should be customised using the
EIT [179].

In spontaneously breathing patients, EIT is also used to evaluate or predict the effects
of various therapies on lung mechanics in COVID-19 patients. For example, in a patient
with a high-flow nasal cannula, the EIT was used to monitor changes in the EELI using
different flows. The highest-end EELI resulted in the highest patient comfort level and the
lowest respiratory rate [180]. Rauseo et al. used changes in EELI to predict the recruitment
and failure of non-invasive continuous positive pressure ventilation (CPAP). Changes of
less than 40% EELI during a single PEEP decrease in the supine position seemed to be a
good predictor of poor recruitment and CPAP failure [181]. De Jongh et al. developed an
algorithm using regional peak flow during a PEEP trial to titrate PEEP in COVID-19 patients
on pressure support or CPAP [19]. This agrees well with the regional compliance-based
approach for patients on controlled mechanical ventilation [17].

During the COVID-19 pandemic, EIT has also been used as a diagnostic tool, for
example, for real-time visualisation of barotrauma risk [134], to visualise regional venti-
lation decrease during bronchoalveolar lavage and the recovery of regional ventilation
afterwards [182], and to evaluate long-term dyspnoea by quantifying regional ventilation
inhomogeneity in COVID-19 survivors during a one-year follow-up [183].

10. Conclusions

Electrical impedance tomography use has increased in clinical settings since the
COVID-19 pandemic began. This has shifted the use of EIT from a research niche to a
bedside clinical tool. At this time, bedside EIT was mainly used for PEEP titration. However,
EIT has the potential to become the standard for respiratory monitoring of patients with or
at risk of respiratory failure, with the aim of individualising therapy in various applications
besides PEEP titration, such as optimal patient posture in spontaneously breathing patients
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or as a diagnostic tool. The major challenge for the future is to minimise the constraints
and simplify decision making using algorithms.

11. Main Considerations

1. Use EIT as a non-invasive imaging modality to monitor lung function in critically
ill patients.

2. EIT has shown promise in detecting changes in regional lung ventilation in re-
sponse to interventions such as mechanical ventilation, prone positioning, and
recruitment manoeuvres.

3. EIT can provide clinicians with real-time information regarding the distribution
of ventilation in the lungs, which may help guide interventions and improve
patient outcomes.

4. EIT has the potential to be used in clinical trials to evaluate the efficacy of interventions
aimed at improving lung function in critically ill patients.

5. Further research is needed to establish EIT’s accuracy, reliability, and clinical utility of
the EIT in critically ill patients.

12. Recommendations for Future Studies

First, further studies are required to determine the optimal EIT technique for different
patient populations and clinical scenarios. This could involve comparing different EIT
methods, such as continuous and intermittent monitoring or investigating the use of EIT in
conjunction with other monitoring tools.

Second, future studies should focus on developing predictive algorithms based on EIT
data that could help clinicians detect and prevent respiratory failure before it occurs.

Third, large-scale, multicentre studies are needed to evaluate the clinical effectiveness
of EIT in critically ill patients. This could involve randomised controlled trials comparing
EIT-guided ventilation strategies to the standard of care or investigating the impact of EIT
on patient outcomes such as length of stay and mortality.

Fourth, further studies are needed to explore the potential long-term benefits of EIT in
critically ill patients. For example, they investigated the impact of EIT-guided ventilation
strategies on long-term respiratory function and quality of life.

Lastly, mortality is an accessible endpoint, but given that the ICU population is diverse,
mortality is a challenging end goal. Considerations should be given to suitable outcome
measures in ventilation studies.
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Abbreviations
A/P ratio anterior-to-posterior ventilation ratio
ARDS acute respiratory distress syndrome
AU arbitrary unit
Cdyn dynamic respiratory system compliance
CL alveolar collapse
CoV centre of ventilation
CPAP continuous positive airway pressure
CT computed tomography
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DLT double-lumen tube
EELI end-expiratory lung impedance
EIP end-inspiratory pressure
EIT electrical impedance tomography
GI global inhomogeneity index
IR impedance ratio
LL lower limit
OD alveolar overdistension
PEEP positive end-expiratory pressure
P-SILI patient self-inflicted lung injury
RPF regional peak flow
RVD regional ventilation delay
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
TID tidal impedance difference
UL upper limit
VALI Ventilator-associated lung injury
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