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Abstract: This study was performed to assess the value of SPECT/CT radiomics parameters in
differentiating enchondroma and atypical cartilaginous tumors (ACTs) located in the long bones.
Quantitative HDP SPECT/CT data of 49 patients with enchondromas or ACTs in the long bones
were retrospectively reviewed. Patients were randomly split into training (n = 32) and test (n = 17)
data, and SPECT/CT radiomics parameters were extracted. In training data, LASSO was employed
for feature reduction. Selected parameters were compared with classic quantitative parameters
for the prediction of diagnosis. Significant parameters from training data were again tested in the
test data. A total of 12 (37.5%) and 6 (35.2%) patients were diagnosed as ACTs in training and test
data, respectively. LASSO regression selected two radiomics features, zone-length non-uniformity
for zone (ZLNUGLZLM) and coarseness for neighborhood grey-level difference (CoarsenessNGLDM).
Multivariate analysis revealed higher ZLNUGLZLM as the only significant independent factor for the
prediction of ACTs, with sensitivity and specificity of 85.0% and 58.3%, respectively, with a cut-off
value of 191.26. In test data, higher ZLNUGLZLM was again associated with the diagnosis of ACTs,
with sensitivity and specificity of 83.3% and 90.9%, respectively. HDP SPECT/CT radiomics may
provide added value for differentiating between enchondromas and ACTs.
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1. Introduction

Chondrosarcoma and enchondroma are the most common malignant and benign
cartilage-forming bone tumors, respectively. Chondrosarcoma is classified as grade 1–3.
Grade 1 chondrosarcomas are now referred to as atypical cartilaginous tumors (ACTs) [1].
While ACTs represent a low-grade tumor, surgical treatment is currently regarded as the
only form of curative management. Enchondroma is a benign tumor, and a wait-and-see
policy is permissible [2]. Due to such different management strategies, proper differentia-
tion between ACTs and enchondromas is crucial. However, ACTs and enchondromas show
very similar radiographical and histologic characteristics [3].

Radionuclide bone imaging is used to observe osteoblastic activity associated with
bone diseases. Bone scintigraphy has been employed in an attempt to differentiate between
enchondromas and chondrosarcomas. Bone scintigraphy can reflect cortical destruction
and permeation due to chondroid tumor [4]. Chondrosarcomas generally demonstrate
marked heterogeneous radionuclide uptake in only a small proportion of cases. Single
photon emission computed tomography (SPECT) provides three-dimensional information
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of radiotracer uptake. Recently, technological advancements have allowed combined
modality of SPECT/CT to be used to provide a quantitative assessment of radiotracer
distribution, similar to PET/CT [5].

Previously, we evaluated the value of quantitative SPECT/CT for differentiating ACTs
from enchondromas, and we demonstrated that ACTs show higher SUVmax compared to
enchondromas [6]. With a cut-off value of 15.6 for SUVmax, its sensitivity and specificity
were 86% and 75% for differentiating between enchondroma and ACTs, respectively.

Texture analysis has been used as a valuable tool for medical images in recent years [7].
Studies have suggested that certain texture parameters that reflect intratumoral heterogene-
ity can serve as valuable prognostic markers [8]. Texture analysis with MR images have
shown the potential for differentiating chondrosarcoma and enchondromas [9,10]. While
there have been several attempts to use radiomics from anatomic imaging, the value of
SPECT/CT radiomics have not yet been evaluated in bone tumors.

We hypothesized that bone metabolic radiomics parameters would be valuable
biomarkers for the diagnosis of ACTs, as they may represent the intratumoral hetero-
geneity. The purpose of our study was to investigate the usefulness of texture analysis with
quantitative SPECT/CT in differentiating enchondromas and ACTs.

2. Materials and Methods
2.1. Patient Selection

The retrospective study design received approval from the institutional review board
(IRB) of St. Vincent’s Hospital. Informed consent was waived by the IRB. This study
included patients with suspected enchondroma or ACTs originating in the long bones who
underwent bone SPECT/CT between December 2015 and June 2021. Patients who had
surgical removal or biopsy before SPECT/CT were excluded. Clinical and radiological
data, including age, gender, tumor location, and imaging findings, were gathered from
the medical records. Patients were randomly distributed into training and test data, in a
2:1 ratio, with a random number generator.

2.2. Image Acquisition

All SPECT/CT scans were conducted using an NMCT/670 SPECT/CT scanner (GE
Healthcare, Waukesha, WI, USA). First, 800–1100 MBq of Tc-99m hydroxymethylene diphos-
phonate (HDP) was injected. SPECT/CT images of tumor site were obtained 4 h after
radiotracer injection. CT acquisition was done by the following parameters: peak energy at
140 keV with 10% window and step-and-shot mode acquisition (25 s per step and 30 steps
per detector) with 6◦ angular increments. For SPECT image reconstruction, an iterative
ordered subset expectation maximization algorithm was employed (four iterations; 10 sub-
sets), with CT-based attenuation correction, scatter correction, and resolution recovery
carried out on a Xeleris imaging workstation (version 4.0, GE Healthcare, Waukesha, WI,
USA). The reconstructed images had a matrix size of 128 × 128 with a section thickness of
4.42 mm. The minimal source-to-collimator distance for the parallel-hole collimation of
Tc-99m was set at 4 mm.

2.3. Segmentation and Feature Extraction

Volume of interest (VOI) segmentation was carried out on the open-access LIFEx platform
version 7.10 (IMIV/CEA, Orsay, France) [11]. The lesions were delineated automatically using
the Nestle’s adaptive thresholding method (Threshold = (0.3 × SUVtumor_mean70%_SUVmax) +
SUVbackground_mean). Two experienced nuclear medicine physicians manually inspected the
drawn lesions to remove VOIs that were not attributable to the primary tumor, if needed
(Figure 1).
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Figure 1. (a) A large VOI was drawn to include all of the visible tumor. (b) With Nestle’s adaptive 
thresholding method, the VOI of the tumor was automatically delineated. 

Feature extraction was done on the LIFEx platform. Intensity level numbers were 
resampled into 64 discrete levels ranging from 0 to 25 of SUV. Forty-two SPECT parame-
ters were extracted and categorized into three main groups: five conventional parameters, 
six histogram parameters, and thirty-one texture parameters. The thirty-one texture pa-
rameters were evaluated using four texture matrices, namely the Gray-Level Co-occur-
rence Matrix (GLCM), Grey-Level Run Length Matrix (GLRLM), Neighborhood Grey-
Level Different Matrix (NGLDM), and Grey-Level Zone Length Matrix (GLZLM), adher-
ing to the most current benchmark values of the Image Biomarkers Standardization Initi-
ative (IBSI). The coefficient of variation (CV), defined as the standard deviation over the 
mean of SUV distribution, was used instead of the standard deviation in order to satisfy 
IBSI requirements [11]. The full list of extracted radiomics parameters is provided in Sup-
plementary Material 1. All parameters were normalized into Z-values. 

Figure 1. (a) A large VOI was drawn to include all of the visible tumor. (b) With Nestle’s adaptive
thresholding method, the VOI of the tumor was automatically delineated.

Feature extraction was done on the LIFEx platform. Intensity level numbers were
resampled into 64 discrete levels ranging from 0 to 25 of SUV. Forty-two SPECT parameters
were extracted and categorized into three main groups: five conventional parameters, six
histogram parameters, and thirty-one texture parameters. The thirty-one texture param-
eters were evaluated using four texture matrices, namely the Gray-Level Co-occurrence
Matrix (GLCM), Grey-Level Run Length Matrix (GLRLM), Neighborhood Grey-Level Dif-
ferent Matrix (NGLDM), and Grey-Level Zone Length Matrix (GLZLM), adhering to the
most current benchmark values of the Image Biomarkers Standardization Initiative (IBSI).
The coefficient of variation (CV), defined as the standard deviation over the mean of SUV
distribution, was used instead of the standard deviation in order to satisfy IBSI require-
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ments [12]. The full list of extracted radiomics parameters is provided in Supplementary
Materials Table S1. All parameters were normalized into Z-values.

2.4. Feature Selection and Statistical Analysis

SPSS software (version 24.0; IBM Corp., Armonk, NY, USA) and R version 3.2.3 (The R
Foundation for Statistical Computing, Vienna, Austria) were used for feature selection and
statistical analysis.

Feature selection/reduction was performed to reduce the high-dimensional problem
from a large number of parameters with co-linearity. With training data, a least absolute
shrinkage and selection operator (LASSO) regression was performed with ‘glmnet’ package
in R to select the most important feature related to differentiating ACTs from enchondromas.
LASSO regression is commonly used to select relevant features and encourage sparsity in
the model [13]. The variables that minimized the mean square error (MSE) were selected
for further analysis.

Univariate and multivariate logistic regression analysis for the prediction of diagnosis
were performed for selected parameters, as well as classic quantitative parameters, such
as SUVmax, SUVmean, and tumor volume. A receiver operating characteristic (ROC)
curve analysis was used to dichotomize the selected feature. Significant parameters on
multivariate analysis were again tested in the test data.

3. Results
3.1. Demographics

A total of 49 patients were included in this retrospective study. A total of 20 (40.8%)
patients were diagnosed as grade I chondrosarcoma. Data was randomly split into training
(n = 32) and test (n = 17) data, each with 12 (37.5%) and 6 (35.2%) patients diagnosed
as grade I chondrosarcoma, respectively. The patient demographics are summarized in
Table 1. The median patient age was 54 years (range 31–45) in training and 49 years (range
19–70) in the test data. All VOIs delineated with Nestle’s adaptive thresholding method
were considered to be acceptable, and no manual adjustment was made.

Table 1. Demographic summary.

Training Data Test Data

Patients (n) 32 17
Median age (range), years 54 (31–45) 49 (19–70)
Sex

Male 9 (28.1%) 6 (35.3%)
Female 23 (71.9%) 11 (64.7%)

Diagnosis
Enchondroma 20 (62.5%) 11 (64.8%)
Grade 1 chondrosarcoma 12 (37.5%) 6 (35.2%)

Skeletal distribution
Femur 16 6
Humerus 13 9
Tibia 2
Fibula 1 2

3.2. Statistical Analysis
3.2.1. Training Data

From training data, LASSO regression revealed that two variables minimize MSE
(Figure 2). Two radiomics features, zone-length non-uniformity for zone (ZLNUGLZLM)
and coarseness for neighborhood grey-level difference (CoarsenessNGLDM), were found to
be the most important features related to differentiating grade I chondrosarcomas from
enchondromas. Univariate analysis revealed higher SUVmean, SUVmax, and ZLNUGLZLM
values as being significant predictive factors for the diagnosis of grade I chondrosarcoma.
Multivariate analysis revealed ZLNUGLZLM to be the only significant independent factor
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related with the diagnosis of grade I chondrosarcoma. The results of univariate and
multivariate analysis with training data are shown in Table 2.
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Figure 2. The mean squared error (MSE) of training data. MSE (red dots) is minimized when lambda
is 2.

Table 2. Univariate and Multivariate regression for diagnosis of ACT.

Univariate Analysis Multivariate Analysis

Coefficient p Coefficient p

SUVmean −0.35 0.052
SUVmax −0.36 0.043
Volume −0.29 0.107
CoarsenessNGLDM 0.29 0.112
ZLNUGLZLM −0.38 0.032 −0.38 0.032

The univariate and multivariate regress areas under the receiver-operating characteris-
tic curve (AUC) for ZLNUGLZLM was 0.721. With a cut-off value of 191.26, the sensitivity
and specificity of ZLNUGLZLM was 85.0% and 58.3%, respectively, for differentiating be-
tween enchondroma and grade I chondrosarcoma (Figure 3a).
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Figure 3. AUC (blue lines) of ZLNUGLZLM diagnosis of chondrosarcomas in (a) training data and
(b) test data.

3.2.2. Test Data

In test data, higher ZLNUGLZLM was again significantly associated with the diagnosis
of grade I chondrosarcoma. The AUC was 0.909. With cutoff of 191.26, the sensitivity and
specificity of ZLNUGLZLM was 83.3% and 90.9%, respectively, for differentiating between
enchondroma and grade I chondrosarcoma (Figure 3b). The mean values of all extracted
parameters in the training data and test data are presented in Supplementary Material
Tables S2 and S3.

4. Discussion

We evaluated the osteoblastic phenotype of chondroid tumors in HDP SPECT/CT
scans via radiomics analysis. By LASSO regression, ZLNUGLZLM and CoarsenessNGLDM
were selected as the most important factors for differentiation of ACTs from enchondromas
in the long bones. Logistic regression has shown ZLNUGLZLM to be the only significant
independent factor related with the diagnosis of ACT. The performance of ZLNUGLZLM for
differentiating ACTs from enchondromas was also noted in the test cohort.

While certain imaging features have been suggested for the differentiation of en-
chondromas and chondrosarcomas, distinguishing ACTs from enchondromas remains a
challenge even to expert radiologists and pathologists [3,14]. Unlike other tumors, even
biopsy does not always provide an accurate result. Currently, the differentiation between
ACTs from enchondromas with imaging is an unmet clinical need.

Chondrosarcomas typically demonstrate high radionuclide uptake on bone scintig-
raphy, compared to enchondromas [15]. SPECT/CT imaging allows for three accurate
localizations of uptake when compared with planar scintigraphy. Traditionally, SPECT/CT
imaging lacked the ability to provide an accurate quantitative analysis. Recent advances in
technology have enabled a feasible semi-quantitative evaluation using SUV, similarly to
PET/CT systems [5]. Our previous study demonstrated that ACTs show higher SUVmax
compared to enchondromas [6].

There has been increasing interest in the field of radiomics, which have been shown
to provide prognostic information for various cancers [16]. However, while radiomics
research shows great potential, its current use is mainly confined to the academic literature,
and its presently lacking the transition to real-world clinical application. This is partly
due to the lack of efficient strategies to develop radiomics into a useful image biomarker
guiding clinical decisions [17].

In the field of radiomics, while a large number of parameters are provided, the exact
meaning and clinical implications of each value are yet uncertain. The search for one best
texture parameter has not yet met consensus.

A large number of features variables within a limited number of data often causes
“the curse of dimensionality”, leading to overfitting and multiple comparison-related
problems [18]. Therefore, feature selection or feature extraction is required to reduce di-
mensionality. In this study, we applied LASSO regression to perform variable selection [19].
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As a result, ZLNUGLZLM and CoarsenessNGLDM were selected for further analysis, and
ZLNUGLZLM was shown to be the only significant independent factor related with the
diagnosis of ACT. While these radiomics features may reflect the tumor heterogeneity
similarly to FDG PET/CT [20], the robustness and clinical implications of HDP SPECT/CT
radiomics have not been prior evaluated.

Several other studies have investigated the value of MR image-based radiomics in
chondroid tumors [9,10,21]. These studies have shown promising results in the discrim-
ination of enchondroma and chondrosarcoma. However, these studies have included
chondrosarcoma patients of all grades, and their performance for distinguishing ACTs
from enchondromas was not evaluated.

The reproducibility of radiomics is of a major concern [22]. Image segmentation can
greatly affect the outcome of the study. Out study aimed to provide consistent segmentation
by using Nestle’s adaptive thresholding method to automatically define VOI. Different
feature extraction methods may provide different values from the same images. To prevent
this, the IBSI aims to standardize commonly used radiomics features, and ensure that the
same results are used between different extraction software programs [9]. We extracted
radiomics features with LIFEx, which complies with ISBI standards.

To our knowledge, this is the first study to evaluate the value of quantitative HDP
SPECT/CT radiomics for differentiating ACTs from enchondromas in the long bones.

There are several limitations in our study. This was a retrospective study with a
relatively small number of patients. Radiomics studies typically require large amounts of
data, and results created from a small number of patients show a high risk of overfitting
and model instability [22]. Our results also show signs of instability, where the specificity
was increased in the test data compared to training data, while typical well-developed
internal validation should show similar, but slightly lower, accuracy for the test data. Also,
all cases were obtained from a single center, and only internal validation was performed.

5. Conclusions

Radiomics analysis of HDP SPECT/CT images may provide prognostic factor for differ-
entiation of grade I chondrosarcomas from enchondromas, and may have clinical potential.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/tomography9050148/s1: Table S1: List of extracted metabolic
parameters; Table S2: The mean values of all extracted parameters in the training data; Table S3: The
mean values of all extracted parameters in the test data.
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