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Abstract: [18F]DCFPyL is increasingly used for prostate-specific membrane antigen (PSMA) mediated
imaging of men with biochemically recurrent prostate cancer (BRPCa). In this meta-analysis, which
is updated with the addition of multiple new studies, including the definitive phase III CONDOR
trial, we discuss the detection efficiency of [18F]DCFPyL in BRPCa patients. PubMed was searched
on 29 September 2022. Studies evaluating the diagnostic performance of [18F]DCFPyL among patients
with BRPCa were included. The overall pooled detection rate with a 95% confidence interval (95% CI) was
calculated among all included studies and stratified among patients with PSA ≥ 2 vs. <2 ng/mL and
with PSA ≥ 0.5 vs. <0.5 ng/mL. The association of detection efficiency with pooled PSA doubling
time from two studies was calculated. Seventeen manuscripts, including 2252 patients, met the
inclusion criteria and were used for data extraction. A previous meta-analysis reported that the
pooled detection rate was 0.81 (95% CI: 0.77–0.85), while our study showed a pooled overall detection
rate of 0.73 (95% CI: 0.66–0.79). An increased proportion of positive scans were found in patients
with PSA ≥ 2 vs. <2 ng/mL and PSA ≥ 0.5 vs. <0.5 ng/mL. No significant difference was found in
detection efficiency between those with PSA doubling time ≥ 12 vs. <12 months. Detection efficiency
is statistically related to serum PSA levels but not to PSA doubling time based on available data.
The detection efficiency of [18F]DCFPyL in men with BRPCa has trended down since a previous
meta-analysis, which may reflect increasingly stringent inclusion criteria for studies over time.
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1. Introduction

Prostate cancer (PCa) remains the most common non-cutaneous cancer among men
worldwide [1]. Although the majority of patients with localized disease have a favor-
able response to initial treatment with either radical prostatectomy or radiation ther-
apy, biochemical recurrence (BCR) remains relatively common and, if left untreated, can
progress to incurable metastatic disease. According to the American Urological Association
(AUA), BCR after radical prostatectomy is defined as two consecutive serum PSA values of
≥0.2 ng/mL after being undetectable [2], whereas BCR after radiation therapy is defined
as a serum prostate-specific antigen (PSA) rise of ≥2.0 ng/mL above the nadir [3]. A
key step in selecting the most appropriate form of treatment for BCR is to determine the
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anatomical distribution and volume of a patient’s disease. Compared to standard clinical
parameters alone, the use of molecular imaging with [18F]FACBC PET/CT to guide salvage
radiation therapy has been shown to improve outcomes for men with BCR after radical
prostatectomy [4]. In the time since completing that trial, molecular imaging with PET
radiotracers targeting prostate-specific membrane antigen (PSMA) has emerged as the
standard of care for men with BCR. Although a trial is currently underway evaluating
the benefits of using PSMA-targeted PET imaging to guide salvage treatment in men with
BCR [5,6], most clinicians have already begun using this form of molecular imaging to
inform decisions regarding the care of patients with BCR.

Prostate-specific membrane antigen (PSMA) is a transmembrane protein that is local-
ized within the cytoplasm in benign prostatic cells, with malignant transformation resulting
in expression on the surface of cells with a resultant large extracellular domain [7]. It is
known that PSMA Expression is 100- to 1000-fold higher in PCa versus benign cells, and
that small molecules capable of binding to the catalytic domain of the PSMA protein are
rapidly internalized within PCa cells [8]. In recent years, it has become possible to not
only detect but also treat PCa using radiolabeled small molecules targeting PSMA. For
the purpose of diagnostic imaging, the two most commonly used PET imaging agents for
targeting PSMA are [18F]DCFPyL and [68Ga]PSMA-11.

In contrast to gallium-68, fluorine-18 has a longer half-life and better spatial resolu-
tion, which makes it an ideal agent for cancer detection [9]. Because of these properties,
[18F]DCFPyL has emerged as the radiotracer of choice among most clinicians, at least in the
United States. A prior meta-analysis of the available medical literature up to December 2020
showed that the agent is associated with a relatively high detection rate among patients
with BCR and that the rate of prostate cancer detection is highly dependent on the patient’s
serum prostate-specific antigen (PSA) level [10]. In this report, we provided an updated
systematic review and meta-analysis of the diagnostic performance of this agent among
patients with BCR following definitive local treatment for PCa, with a particular emphasis
on correlations to PSA parameters. This updated meta-analysis incorporates the results
of several key clinical trials [11–13] that have been published since the time of the earlier
report and includes data on three times as many patients.

2. Materials and Methods

This study adhered to the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) 2020 checklist. A comprehensive search of the literature was
performed on 29 September 2022 using the MEDLINE database. Clinical studies in humans
evaluating the diagnostic performance of [18F]DCFPyL among patients with BRPCa that
were written in the English language were included. The overall pooled detection rate
with 95% confidence intervals (95% CIs) was calculated among all included studies. In
addition, we compared the pooled detection rates among patients with PSA ≥ 2 ng/mL
versus those with PSA < 2 ng/mL, as well as the pooled detection rates in patients with
PSA < 0.5 ng/mL versus those with PSA ≥ 0.5 ng/mL. We also stratified the detection
rate according to the location of malignant tissue, including local recurrence (prostate bed
and seminal vesicles), locoregional lymph node involvement, osseous metastases, and
visceral metastases. Meta-analysis for calculation of the pooled proportion of patients
with positive findings was performed with R version 4.2.2 (31 October 2022) using a meta
package (version 6.0-0) [14].

We also compared the pooled proportion of positive scans in two studies [15,16]
according to PSA doubling time < 12 months versus those ≥ 12 months using Review
Manager (RevMan) version 5.4. We performed the meta-analysis based on a random-effects
model. I2 was calculated to quantify the heterogeneity.

To evaluate the contribution of possible covariates in the heterogeneity, meta-regression
analysis was performed with R version 4.2.2 using meta package version 6.0-0 for overall
detection. Logit transformation with the inverse variance method was used to perform
a meta-analysis of proportions. In addition, Funnel plots were used to assess publica-
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tion bias. The overall quality of the studies was evaluated based on the revised “Quality
Assessment of Diagnostic Accuracy Studies” tool (QUADAS-2) using Review Manager
(RevMan) version 5.4 [17]. QUADAS-2 evaluates four domains (patient selection, index
test, reference standard, and flow and timing), and each domain was assessed in terms of
risk of bias. In addition, the first three domains were considered as a measure to check
applicability. The reference standard was considered histopathologic correlation, and if
the methods section of an included study clarified that at least some of the lesions were
evaluated with pathology, the study was considered a low risk of bias for the reference
standard. Otherwise, it was labeled as high risk for reference standards.

3. Results

Fifty-four articles were reviewed individually against our inclusion criteria. Fourteen
studies were omitted by reviewing the title or abstract. Full texts of the remaining 40 studies
were reviewed, and 22 studies were excluded. As such, a total of 17 manuscripts, including
2252 patients, met the inclusion criteria and were used for data extraction (Figure 1 and
Table 1). Two studies by Mena et al. [12,18] showed significant overlap, and only the later
study with a greater number of cases was included in the meta-analysis to assess overall
detection [12]. However, the smaller and earlier study published in 2020 [18] was used to
calculate the pooled proportion of positive cases stratified based on the location of disease,
the information of which was not provided in the larger study.
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Table 1. Characteristics of the included studies.

Author, Year Radiotracer Dose Time Interval between
Injection and Scanning PSA Standard of Truth # Patients

Baratto, 2021 [19] 270.1 to 366.3 MBq (333 ± 25.9 MBq) 60 to 120 min (81.2 ± 17 min) Mean 5 ng/mL At least part of the data was
validated by histopathology 28

Chaussé, 2021 [20] 9 ± 1 mCi (333 ± 37 MBq) 60–90 min Median 2.27 ng/mL At least part of the data was
validated by histopathology 93

Koschel, 2021 [21] 250 MBq ± 50 MBq 120 min Median 0.32 ng/mL No histopathologic validation 98

Luiting, 2021 [22] Not provided Not provided Median 0.30 ng/mL (IQR 0.23–0.70) No histopathologic validation 157

Markowski, 2020 [15] 333 MBq (9 mCi) 60 min Median 0.7 ng/mL (IQR 0.3–1.8) No histopathologic validation 108

Meijer, 2021 [23] 311 MBq (interquartile range (IQR)
301–322 MBq) 120 min

The median PSA level at the time of the
PET scan post-RARP was 0.5 ng/mL

(IQR 0.2–1.1), median 0.9 ng/mL (IQR
0.3–2.8) in patients post-RARP + SRT,

and median 2.8 ng/mL (IQR 1.3–5.6) in
patients post-EBRT

No histopathologic validation 253

Mena, 2020 [18] Mean 299.9 ± 15.5 MBq, 8.09 mCi
(6.2–8.8 mCi) - Median 2.5 ng/mL (range 0.21–35.5) At least part of the data was

validated by histopathology 90

Mena, 2022 [12]
Mean 296 ± 33.3 MBq
[8.0 ± 0.9 mCi]; range,

207.2–325.6 MBq (5.6–8.8 mCi)
1–2 h Median 1.6 ng/mL (range, 0.2–35.5) No histopathologic validation 245

Metser, 2021 [24] 327 (±16.7) 110.2 (±13.9) min Median 3.0 mg/mL (range 0.5–43.3) At least part of the data was
validated by histopathology 35

Morris, 2021 [11] MBq median 349 range (277–410),
mCi 9.42 (7.49–11.07) median 79 range (59–115) Median 0.8 ng/mL At least part of the data was

validated by histopathology 208

Ortega, 2020 [25] 335.5 MBq (range, 223–376 MBq)
approximately 120 min
(mean, 115.1 min; range,

83–168 min)

Median 3.69 mg/L (range,
0.55–49.9 mg/L) No histopathologic validation 142

Perry, 2021 [26] 250 MBq (±50 MBq 120 min (±10 min) Median 0.51 ng/mL (range, 0.08–58.9) No histopathologic validation 222

Rousseau, 2019 [27]

The administered activity was scaled
by body weight (range,

237–474 MBq), allowing a 10%
variation in target activity.

120 min Mean ± SD 5.20 ng/mL ± 6.50 No histopathologic validation 130
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Table 1. Cont.

Author, Year Radiotracer Dose Time Interval between
Injection and Scanning PSA Standard of Truth # Patients

Rowe, 2020 [28] 333 MBq (9 mCi) 60 min Median 0.4 ng/mL (range, 0.2–28.3) No histopathologic validation 31

Song, 2019 [16] Mean 338.8 ± 25.3 60 min Median 3.0 ng/mL (range, 0.23 to
698.4 ng/mL)

At least part of the data was
validated by histopathology 72

Ulaner, 2022 [13] 333 MBq (9 mCi) ± 10% 60 min Median 0.7 ng/mL (range, 0.2–38.9 All data was validated
by histopathology 92

Wondergem, 2019 [29] 311 MBq 120 min _ No histopathologic validation 248

Abbreviations, IQR: interquartile range, RARP: robot-assisted radical prostatectomy, SRT: salvage radiotherapy.
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The proportion of patients showing positive scans, along with the total PSA values,
PSA doubling time, and location of PSMA avid lesions, were extracted. A forest plot
representing the pooled data from all included studies showing the proportion of patients
with positive scans is shown in Figure 2. The overall detection rate between studies was
markedly heterogeneous (range: 0.47–0.91, I2: 89%) and was influenced considerably by
the absolute PSA level of imaged patients (Figure 3). Higher PSA values were associated
with a significantly higher detection rate. In addition, stratifying the data based on PSA
values resulted in an improvement of the heterogeneity, for example, a comparison of the
proportion of patients showing the proportion of positive [18F]DCFPyL scans among those
with PSA < 2 compared to those with PSA ≥ 2 (Figure 3A) showed I2 of 0 and among
those with PSA < 0.5 versus PSA ≥ 0.5 showed I2 of 44%. In contrast, we did not observe
a difference in the cancer detection efficiency with stratification by PSA doubling time of
≤12 versus >12 months (Figure 4).
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with PSA doubling time <12 months versus >12 months [15,16].

Figure 5 illustrates the pooled proportion of positive scans stratified according to dif-
ferent anatomical regions, including local recurrence, which itself is comprised of prostate
bed and seminal vesicles (Figure 5A), locoregional lymph node involvement (Figure 5B),
distant lymph node involvement (Figure 5C), bone metastases (Figure 5D), and visceral
metastases (Figure 5E). The pooled proportions and 95% CIs of positive scans by anatom-
ical site were 0.26 (95% CI: 0.19–0.32), 0.37 (95% CI: 0.29–0.46), 0.14 (95% CI: 0.06–0.30),
0.17 (95% CI: 0.08–0.33), and 0.08 (95% CI: 0.06–0.10), respectively. These results were
associated with moderate to high heterogeneity; the lowest heterogeneity in detection rate
was among those with visceral metastasis (I2 = 55%), and the highest heterogeneity was
among those with locoregional lymphadenopathy (I2 = 99%).

Tomography 2023, 9, FOR PEER REVIEW 7 
 

 

 
Figure 5. The detection rate of [18F]DCFPyL scan according to the site of disease, including local 
recurrence (A) [18,20–23,27], locoregional lymphadenopathy (B) [11,18,19,20,21,22,,23,27,28], distant 
lymphadenopathy (C) [11,18–20,23,27,28], osseous metastases (D) [11,16,18,19,21,27,28], and vis-
ceral metastases (E) [18,20–23,27]. 

To further assess the heterogeneity, a meta-regression was performed using histo-
pathologic validation as the standard of truth. We found that ten studies did not provide 
histopathologic validation, while seven studies verified at least a portion of lesions with 
radiotracer uptake via tissue sampling (Table 1). Only one study compared all imaging 
findings with the ground truth of histopathology [13]. Meta-regression did not show a 
statistically significant difference. 

A funnel plot was used for the evaluation of possible publication bias. By visual in-
spection, there is no subjective asymmetry among the studies in overall detection rate 
evaluation (Figure 6). 

Figure 5. The detection rate of [18F]DCFPyL scan according to the site of disease, including local recur-
rence (A) [18,20–23,27], locoregional lymphadenopathy (B) [11,18–23,27,28], distant lymphadenopathy



Tomography 2023, 9 1511

(C) [11,18–20,23,27,28], osseous metastases (D) [11,16,18,19,21,27,28], and visceral metastases
(E) [18,20–23,27].

To further assess the heterogeneity, a meta-regression was performed using histopatho-
logic validation as the standard of truth. We found that ten studies did not provide
histopathologic validation, while seven studies verified at least a portion of lesions with
radiotracer uptake via tissue sampling (Table 1). Only one study compared all imaging
findings with the ground truth of histopathology [13]. Meta-regression did not show a
statistically significant difference.

A funnel plot was used for the evaluation of possible publication bias. By visual
inspection, there is no subjective asymmetry among the studies in overall detection rate
evaluation (Figure 6).
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Assessment of the risk of bias using QUADAS-2 showed that, in addition to the
reference standard, overall, the studies showed a low risk of bias (Figure 7). Six studies
did not include any pathologic correlation as a measure of the reference standard, and four
studies did not clarify their approach.
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age a patient, but also demonstrates that there is no cut-off below which there is not at 
least a moderate detection efficiency. In contrast, the rates of cancer detection by PSA dou-
bling time did not show a significant difference at the conventional p-value threshold of 
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Figure 7. Risk of bias and applicability concerns summary based on QUADAS-2.
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4. Discussion

In this systematic review and meta-analysis, we provide updated estimates of the
pooled sensitivity of [18F]DCFPyL PET/CT for detecting sites of disease in men with
BRPCa following local definitive therapy. This is also the first meta-analysis to include the
definitive phase III trial (CONDOR) that helped establish [18F]DCFPyL as a standard of
care in men with BRPCa. Additionally, we stratified the data according to the PSA level and
PSA doubling time and showed that the proportion of positive scans is significantly higher
among those with PSA values ≥ 2 ng/mL versus <2 ng/mL and among those with PSA
values ≥ 0.5 versus <0.5. These findings confirm that higher PSA levels improve detection
efficiency. This may impact decision-making regarding the timing of when to image a
patient, but also demonstrates that there is no cut-off below which there is not at least a
moderate detection efficiency. In contrast, the rates of cancer detection by PSA doubling
time did not show a significant difference at the conventional p-value threshold of 0.05.
Although this finding may represent reality, it is more likely that our study was simply
underpowered to detect an association between this parameter and cancer detection.

This meta-analysis is an update to a previously published study by Sun et al. [10],
which included nine studies in their meta-analysis of [18F]DCFPyL overall detection rate in
BCR. Our study compiled 17 studies for this purpose, including the most up-to-date
studies during the last year. Sun et al. reported that the pooled detection rate was
0.81 (95% CI: 0.77–0.85), while our study showed a pooled overall detection rate of
0.73 (95% CI: 0.67–0.79), which may reflect an overall trend toward a more stringent
definition of BCR in study inclusion criteria. In addition, we noticed an increase in hetero-
geneity, with I2 being 53.2% in the prior study and 90.0% in ours. Subjective evaluation
of the outliers on the forest plot (Figure 2) showed that the possible contributors are the
studies by Koschel et al. [18] and Luiting et al. [19]. In addition, heterogeneity was further
assessed with meta-regression based on the presence of histopathologic validation as the
standard of truth. The bubble plot in Figure 6 demonstrated that the difference in the
standard of truth at least partially could explain the heterogeneity.

Stratification of the results according to the site of disease was comparable to the
findings of the study by Sun et al. [10]. Similar to our study, Sun et al. also found regional
lymphadenopathy to be the most common site of disease and osseous metastasis as the
least common site of metastasis. The slightly higher proportions in their study could be at
least partly related to regression to the mean.

Limitations of the current analysis include the high heterogeneity among trials and the
fundamental differences in truth standards that were utilized. The majority of the studies
did not stratify the results based on prior radiation and/or radical prostatectomy, which
likely contributed to the high heterogeneity observed in our results. Nonetheless, this
study serves as an important update on the importance of PSMA-targeted imaging with
[18F]DCFPyL in men with BRPCa.

5. Conclusions

Our meta-analysis shows that the detection efficiency of [18F]DCFPyL in men with
BRPCa remains overall high but has trended down from earlier estimates in the literature,
leading to increased heterogeneity in the reporting of this outcome. This observation may
be related to the use of increasingly stringent inclusion criteria in studies over time, such as
the requirement for negative conventional imaging as in the CONDOR trial. Another factor
may be the trend toward imaging of men with lower PSA values in more recent studies.
Indeed, our analysis has shown that PSA level at the time of imaging is unmistakably
linked to cancer detection rates, whereas PSA doubling time was not. Finally, differences in
the required truth standard for test positivity have likely also contributed to the high degree
of heterogeneity in the literature, and this must be taken into account when comparing
cancer detection rates across studies.
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