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Abstract: This paper investigates the effect of anisotropic resolution on the image textural features
of pharmacokinetic (PK) parameters of a murine glioma model using dynamic contrast-enhanced
(DCE) MR images acquired with an isotropic resolution at 7T with pre-contrast T1 mapping. The PK
parameter maps of whole tumors at isotropic resolution were generated using the two-compartment
exchange model combined with the three-site-two-exchange model. The textural features of these
isotropic images were compared with those of simulated, thick-slice, anisotropic images to assess
the influence of anisotropic voxel resolution on the textural features of tumors. The isotropic images
and parameter maps captured distributions of high pixel intensity that were absent in the corre-
sponding anisotropic images with thick slices. A significant difference was observed in 33% of the
histogram and textural features extracted from anisotropic images and parameter maps, compared
to those extracted from corresponding isotropic images. Anisotropic images in different orthogonal
orientations demonstrated 42.1% of the histogram and textural features to be significantly different
from those of isotropic images. This study demonstrates that the anisotropy of voxel resolution
needs to be carefully considered when comparing the textual features of tumor PK parameters and
contrast-enhanced images.
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1. Introduction

A growing trend in medical imaging is the shift from qualitative to quantitative
image assessment. Texture analysis has long been used as a tool for image analysis and
classification through quantifying the spatial distribution of intensities in an image [1]. In
medical imaging, texture analysis has gained popularity owing to its ability to describe
tissue heterogeneity. Characterizing the complex microenvironment of solid tumors has
been an obvious application for texture analysis, as increased tumor heterogeneity may
be related to malignancy as well as resistance to therapies due to diverse and dynamic
molecular subtypes [2–4]. With vast improvements in pattern analysis tools in recent years,
texture features have been leveraged to build predictive models for treatment response
from medical images in the field of radiomics [5–7].

While the potential of texture analysis has been well demonstrated, its adoption in
clinical settings remains elusive, partly due to a lack of standardization that results in
poor reproducibility as choices made at every step of the analysis affect the extracted
feature values and predictive model performance [7–14]. In addition, variations in imaging
protocols at the acquisition and reconstruction levels can also create non-biologically related
differences in feature values [7]. Image spatial resolution is often cited as a significant source
of variability in feature extraction. For instance, images with an anisotropic voxel resolution
and thick slices, often observed in MRI, underperformed compared to those with thinner
slices [8]. For texture analysis, medical images acquired at a non-isotropic resolution are
typically resampled to an isotropic resolution in order to calculate 3D texture features, which
can still obfuscate the potential predictive capabilities of the textual features [9]. Resampling
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images at an isotropic voxel resolution was able to reduce the feature dependency on the
spatial resolution in some studies [10,11], but not in others [12–14]. However, efforts to
standardize acquisition methods and reporting have improved reproducibility between
studies with anisotropic image acquisition methods [6,9].

Among various imaging modalities, dynamic contrast-enhanced (DCE) MRI and the
estimated pharmacokinetic (PK) parameter maps have been widely used in radiomics
analysis for cancer grading, tumor molecular subtyping, and predicting response to treat-
ment [15–17]. DCE-MRI is one of the most commonly used imaging methods for cancer,
and it provides rich information about the heterogeneous tumor microenvironment, which
makes it a good candidate for texture analysis applications. On the other hand, DCE-MRI
is also one of the MRI methods that could be quite susceptible to the variability of textual
features related to the image spatial resolution because DCE-MR images are typically
acquired with an anisotropic resolution with a slice thickness substantially larger than the
in-plane voxel size to achieve an appropriate temporal resolution. However, it has not
been well understood which textual features of DCE-MRI could be more affected by the
anisotropy of the voxel dimension.

In this study, we investigated how non-isotropic voxel resolution affects texture fea-
tures commonly used for DCE-MRI by comparing them with DCE-MR images acquired
with an isotropic voxel resolution, using a mouse model of a brain tumor. The objective of
this study is to identify radiomic features that are most sensitive to having a 3D isotropic
resolution as opposed to a non-isotropic resolution in contrast-enhanced images and PK
parameter maps. We also assessed how the textual features found significant in previous
DCE-MRI studies differed between the images with isotropic and anisotropic resolutions.

2. Materials and Methods
2.1. Animal Model

Six to eight-week-old C57BL6 mice (n = 16) were inoculated with 1 × 105 GL261 mouse
glioma cells suspended in 4 µL of saline solution using a Hamilton syringe for stereotactic
intracranial injection. The mice were scanned once between post-injection days 15 and 22,
when tumors were observed. The mice were treated in strict accordance with the National
Institutes of Health Guide for the Care and Use of Laboratory Animals, and this study was
approved by the Institutional Animal Care and Use Committee.

2.2. Data Acquisition

MRI scans were performed on a Bruker 7T micro-MRI system, consisting of a Biospec
Avance III-HD console (Bruker Biospin MRI, Ettlingen, Germany) with an actively shielded
gradient coil (Bruker, BGA-12; gradient strength, 600 mT/m) and a 1H four-channel phased
array receive-only MRI CryoProbe with a volume transmit coil (Bruker, Ettlingen, Germany).
During MRI scans, general anesthesia was induced by 1.5% isoflurane in the air. The
animal’s body temperature was maintained at 34 ± 2 ◦C during the scan.

The 3D ultra-short echo-time (UTE) sequence with the 3D Golden angle Radial Sparse
Parallel (GRASP) MRI method was used for DCE-MRI scans to achieve an isotropic spatial
resolution and to minimize the T2* effect [18]. The scan parameters were TR/TE = 4/0.028 ms,
image matrix = 128 × 128 × 128, and field of view = 20 × 20 × 20 mm3. This sequence
was continuously run to acquire 154,080 spokes (51,360 spokes per flip angle segment of
8◦-25◦-8◦) for 10 min and 13 s. A bolus of Gadobutrol (Gadavist, Bayer) in saline at the
standard dose of 0.1 mmol/kg was injected through a tail vein catheter after the first 60 s for
the acquisition of pre-contrast images. Prior to the DCE scan, a 3D isotropic high-resolution
T1 map was obtained using the same 3D-UTE-GRASP sequence with variable flip angles
(8◦-2◦-12◦, 12,776 spokes for each flip angle, with total acquisition time = 153 s).

2.3. Image Reconstruction and PK Parameter Maps

A joint compressed sensing and parallel imaging reconstruction was implemented
based on the 3D-UTE-GRASP algorithm [18]. The image reconstruction was conducted
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with zero padding to achieve the reconstructed image matrix = 256 × 256 × 256, providing
a spatial resolution of about 0.078 × 0.078 × 0. 078 mm3 and a temporal resolution of
T = 5 s/frame (Figure 1a). As described in the above section on data acquisition, the
middle part of the dynamic data acquisition was conducted with a different flip angle
(25◦), as opposed to 8◦ for the first and last parts, such that there were sudden signal level
changes (dotted lines in Figure 1c). Arterial input function (AIF) was obtained using the
Principal Component Analysis (PCA) method with estimation of the pre-contrast T1 value
during conversion of the two-flip angle DCE-MRI data to the Gd concentration curve as
shown in Figure 1b [19]. The T1 maps measured before DCE-MRI were used to manually
segment the whole tumors, free hand, using Amira Software (Thermo Fisher Scientific,
Waltham, MA, USA), from healthy tissue for 3D ROI selection, based on higher T1 values
in the tumor compared to the surrounding brain tissue. The pre-contrast T1 maps were
also used for the contrast kinetic model analysis that was carried out for all the voxels
in the segmented tumor using the Two-Compartment-Exchange Model (TCM) [20] and
Three-Site-Two-Exchange (3S2X) Model [19,21–23] (Figure 1c). Estimated from the model
fit were five parameters, including interstitial space volume fraction (ve), vascular space
volume fraction (vp), blood plasma flow (Fp), permeability surface area product (PS), and
intracellular water lifetime (τi), as shown in Figure 2. The volume transfer constant (Ktrans)
was calculated from PS and Fp (Ktrans = [1 − exp(−PS/Fp)] Fp).

2.4. Assessment of Isotropic versus Anisotropic Resolution Images

In conventional DCE-MRI, an anisotropic voxel resolution is commonly used. This can
be due to using a slice thickness larger than the in-plane voxel resolution as well as using
partial sampling in phase encoding directions to reduce scan time. In this study, we assume
the anisotropic resolution is only achieved by using a slice thickness larger than the in-
plane voxel resolution, while the in-plane voxel resolution is isotropic without any partial
Fourier sampling. We took averages of every thirteen slices (0.078 mm × 13 = 1.016 mm) in
each orthogonal direction across the whole tumor ROI from the isotropic images acquired
with 3D-UTE-GRASP to generate corresponding images with an anisotropic resolution
(0.078 × 0.078 × 1.016 mm3) (Figure 3). We also generated anisotropic images in the axial
plane with resolutions of (0.078 × 0.078 × 0.546 mm3) and (0.078 × 0.078 × 0.234 mm3) in
the same fashion. The above-mentioned contrast kinetic model analysis was carried out
for the anisotropic dynamic images to generate the contrast kinetic parameter maps of the
anisotropic images. There was no other image pre-processing used prior to the extraction
of radiomic features.

Texture features were extracted using the open-source Python package PyRadiomics
version 3.0.1 [24]. We included 93 features; First-Order Histogram Features (n = 18 features),
Gray Level Co-occurrence Matrix (GLCM; n = 24), Gray Level Dependence Matrix (GLDM;
n = 14), Gray Level Run Length Matrix (GLRLM; n = 16), Gray Level Size Zone Matrix
(GLSZM; n = 16), and Neighboring Gray Tone Difference Matrix (NGTDM; n = 5). In
addition to the contrast kinetic parameter maps, the last frame of the DCE-MR images was
included as delayed contrast-enhanced images for extracting texture features. Following
IBSI recommendations [9], all the anisotropic resolution images were interpolated to have
an isotropic resolution of 0.078 × 0.078 × 0078 mm3 prior to extracting the 3D texture
features. In this way, the input images to the PyRadiomics analysis had the same isotropic
resolution. To isolate the effect of shape and volume on feature calculations, the ROI
segmented from the isotropic image was transferred to the simulated anisotropic images
for a given subject. Discretization of the dynamic ranges of the contrast-enhanced images
and parameter maps was performed using a fixed bin width determined by the Freedman-
Diaconis rule: W = 2 (IQR) N−1/3, where IQR is the interquartile range and N is the number
of pixels [25]. The default PyRadiomics configuration was used for all other texture feature
extraction settings (see http://pyradiomics.readthedocs.io (accessed 16 May 2022) for
further information).

http://pyradiomics.readthedocs.io
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Figure 1. Example of acquired data from the 3D Dynamic Contrast-Enhanced (DCE) MRI. (a) Max-
imum intensity projections of whole head T1 weighted DCE MR images for pre-contrast (5 s), early 
phase of post-contrast (200 s; 140 s post-contrast injection) and final frame (600 s). (b) Arterial input 
function derived from early enhancing vascular voxels selected with the Principal Component Anal-
ysis method. (c) Time intensity curves of three example tumor voxels with different enhancement 
levels (dotted lines), fitted with the two-compartment model and the three-site-two-exchange model 
(solid lines). The Ktrans values estimated from the model fit are 0.1043, 0.0559, and 0.0051 min−1 for 
the high, medium, and low enhancing voxels, respectively. 

Figure 1. Example of acquired data from the 3D Dynamic Contrast-Enhanced (DCE) MRI.
(a) Maximum intensity projections of whole head T1 weighted DCE MR images for pre-contrast (5 s),
early phase of post-contrast (200 s; 140 s post-contrast injection) and final frame (600 s). (b) Arterial
input function derived from early enhancing vascular voxels selected with the Principal Component
Analysis method. (c) Time intensity curves of three example tumor voxels with different enhancement
levels (dotted lines), fitted with the two-compartment model and the three-site-two-exchange model
(solid lines). The Ktrans values estimated from the model fit are 0.1043, 0.0559, and 0.0051 min−1 for
the high, medium, and low enhancing voxels, respectively.

Statistical analysis of texture feature differences between two images (isotropic vs.
anisotropic images and different orientations of anisotropic images) was performed using
the paired Student’s t-test. To keep the family-wise error rate to 0.05 for each parameter,
we used the significance level for a single hypothesis test of 0.00054 using the Bonferroni
correction. We have also assessed the differences in the texture features of PK parameters
that were found significant in previous DCE-MRI studies, as summarized in Table 1.
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Figure 2. Volume renderings of the 3D contrast kinetic model parameter maps of the whole mouse
glioma from Dynamic Contrast-Enhanced MRI data with an isotropic resolution. Included are the 3D
maps for extravascular extracellular volume fraction (ve), plasma volume fraction (vp), blood flow (Fp),
permeability surface area product (PS), transfer constant (Ktrans), and intracellular water lifetime (τi).
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Figure 3. Axial isotropic parameter map slices and the corresponding anisotropic parameter map.
The raw Dynamic Contrast-Enhanced MR images of the 13 slices (Slice 1–Slice 13, with a spatial
resolution of 0.078 × 0.078 × 0.078 mm3) were vector averaged to simulate the anisotropic data for a
thick slice, and then the contrast kinetic analysis was conducted to obtain the parameter maps shown
on the left (spatial resolution of 0.078 × 0.078 × 1.016 mm3). Red arrows indicate large areas of high
pixel values in the isotropic images but diminished values in the anisotropic images.
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Table 1. Summary of pharmacokinetic parameters from DCE-MRI studies that were found significant
by the radiomic analysis.

Study Acquisition
Resolution Cancer Type Predicting Parameter Feature

W. Ma et al.
(2018) [26] 0.98 × 0.49 × 1.8 mm Breast Cancer Ki-67 expression Post-Contrast

T1-w DCE

First-Order: Mean, SD, Skewness, and Kurtosis
GLCM: Energy (Joint energy), Entropy (Joint
entropy), Contrast, Correlation, Homogeneity

(Inverse difference), and IDM

Y. Wang et al.
(2019) [15] 0.89 × 0.89 × 3 mm Prostate Cancer Bone Metastases Post-Contrast

T1-w DCE

First-Order: 0.025 quartile
GLCM: Auto correlation, Cluster prominence,

Difference entropy, Dissimilarity, Homogeneity,
IDM, and IDMNGLRLM: Short run low grey level
emphasis and Short run high grey level emphasis

Thibault et al.
(2016) [17] 1 × 1 × 1.4 mm Breast Cancer Response to

Treatment
Ktrans

τi

GLCM: Entropy difference, Contrast, Variance
differences, and Inertia

GLRLM: Gray-level nonuniformity and
Long-run emphasis

GLCM: Mean

ve GLCM: Contrast and Inertia

Xie T et al.
(2017) [27] 0.74 × 0.53 × 6.0 mm Glioma Grading

Ki-67 expression
Ktrans

ve, vp, Ktrans, vp

GLCM: Energy (Joint Energy), Entropy (Joint
Entropy), Inertia (Contrast), and Correlation IDM

GLCM: Energy, Entropy, and IDM
GLCM: Energy (Joint Energy) and IDM

Liu YYG et al.
(2020) [28] 0.6 × 0.8 × 3 mm Pituitary

macroadenoma

Tumor
‘Aggressiveness’

via Heterogeneity
in Vasculature

Ktrans

ve
Ktrans, ve

Kep

First-Order: Skewness
First-Order: Mean

GLRLM: Long-run emphasis, Gray-level
non-uniformity, High gray-level run emphasis, and

Short run emphasis
GLCM: Difference entropy

GLRLM: Gray level non-uniformity and Run length
non-uniformity

Zhou X et al.
(2020) [29] 1.4 × 1.3 × 4 mm Breast Cancer Benign/malignancy

Ktrans, ve
Kep, ve

ve

GLCM: Entropy (Joint entropy)
GLRLM: Short run low grey level emphasis

GLCM: Cluster shade

vp GLCM: IDM

Molecular Subtype

Ktrans, ve
Ktrans

ve
vp

GLCM: Entropy (Joint entropy)
GLRLM: Grey level non uniformity and

Long run emphasis
GLRLM: Short run emphasis

First-Order: Entropy
GLSZM: Zone percentage

GLRLM: Short run high grey level emphasis and
Short run low grey level emphasis
GLSZM: High grey level emphasis

3. Results

Figure 3 shows 7 slices out of the 13 consecutive slices (0.078 mm thick) in 3D isotropic
high-resolution images that were averaged together to generate one image with a slice thick-
ness of about 1 mm while maintaining the same in-plane resolution (0.078 mm × 0.078 mm).
The PK maps of the thick slice case were generated after averaging the images to generate
the anisotropic resolution images. This example illustrates possible discrepancies between
the 3D isotropic image and the corresponding anisotropic resolution maps of the same
tumor due to the partial volume effect in the anisotropic resolution images. There is a
complex heterogeneity of the tumor morphology and parameter distribution captured in
the 13 isotropic slices, which is evidently lost in the thick slice. Particularly of note are
larger areas of high enhancement present in the isotropic images that are diminished or
lost in the anisotropic image (indicated by red arrows). The distribution of voxel intensities
may vary depending on the orientation of the tumor in anisotropic images relative to the
high resolution in plane resolution. Furthermore, up-sampling anisotropic images to an
isotropic resolution for 3D texture feature calculations has severe limitations in terms of
restoring the spatial heterogeneity along the slice direction, as shown in Figure 4. This
blurring of spatial information along the slice direction may have an impact on the texture
features calculated using a 3D patch of voxels.
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Figure 4. Impact of up-sampling anisotropic images along slice direction. The images are shown
after up-sampling axial anisotropic images to isotropic resolution for the radiomics analysis. Spatial
blurring of the image and parameters along the coronal direction is clearly shown. In contrast, such
blurring is less remarkable in axial images (in-plane spatial resolution of 0.078 × 0.078 mm2). The
green line indicates the axial slice location, and the red line indicates the coronal slice location.

3.1. Isotropic vs. Anisotropic Resolution Images

The radiomic features were compared in terms of their percentage differences to mini-
mize the inherently large differences in their magnitudes. The differences between isotropic
(0.078 × 0.078 × 0.078 mm3) and anisotropic (0.078 × 0.078 × 1.014 mm3) images of all animal
tumors are illustrated as heatmaps (Figure 5). Of the 75 texture features calculated for all
parameter maps and DCE images, 31% demonstrated a significant difference, and of the
18 first-order histogram features for all images, 40% demonstrated a significant difference.
Decreasing the slice thickness of the anisotropic images to 0.546 mm or 0.234 mm demon-
strated similar patterns of percent differences but decreased the magnitude of the difference
(Supplementary Figures S1 and S2). The percentage of significantly different texture features
remained at 32% for images with 0.546 mm and decreased to 18% for 0.234 mm slice thickness,
with significant histogram features reducing to 37% and 25%, respectively.

The distribution of significantly different texture features is not consistent among dif-
ferent images, with post-contrast T1-w images, FP and τi maps demonstrating much higher
sensitivities to change in resolution (30.7–46.7% significantly different features at 0.234 mm)
compared to ve, vp, PS, and Ktrans maps (0–5.3%) (Table 2). Similarly, histogram features
from different parameter maps demonstrate different sensitivities to resolution change,
where ve, vp, and FP maps with slice thickness of 0.234 mm show 0–16.7% significantly
different features compared to isotropic resolution, and where FP, PS τi, Ktrans, and T1-w
images range from 27.8–38.9%.
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Figure 5. Percent difference and significance between features from isotropic and anisotropic (slice
thickness of 1.014 mm) images. (a) A heatmap depicting the percent difference in histogram and
texture features between isotropic parameter maps and up-sampled anisotropic maps (slice thickness
of 1.014 mm in axial direction). (b) A heatmap showing the features that have a significant difference
in radiomic features (p < 0.00054, depicted in red) between isotropic and anisotropic image resolution,
which are over 32% of all features.
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Table 2. The percentage of significantly different texture and histogram features among different
parameters for images of various anisotropic resolutions and orthogonal slice directions compared
to isotropic resolution. Post-contrast T1-weighted images, FP, and τi maps demonstrate higher
sensitivity to changes in slice thickness (30.7–46.7% of significantly different features at 0.234 mm)
compared to ve, vp, PS, and Ktrans maps (0–5.3%). Similarly, histogram features from different
parameter maps demonstrate different sensitivity to resolution change, where ve, vp, and FP maps
with slice thickness of 0.234 mm show 0–16.7% significantly different features compared to isotropic
resolution, and where FP, PS, τi, Ktrans, and T1-w images range from 27.8–38.9%. Slice direction
generally impacts the distribution of significantly different features similarly, with the notable
exception of post-contrast T1-weighted images, where the sagittal direction impacts 58.7% of texture
features compared to 20% and 10.7% of features for the axial and coronal directions, respectively.

Percent of Features Demonstrating Significant Difference from Isotropic Resolution

Texture Features (n = 75) Histogram Features (n = 18)
1.014 mm 0.546 mm 0.234 mm 1.014 mm 0.546 mm 0.234 mm

ve 29.3 22.7 1.3 16.7 0.0 0.0
vp 24.0 13.3 5.3 33.3 22.2 16.7
FP 53.3 52.0 42.7 44.4 33.3 16.7
PS 13.3 17.3 2.7 38.9 44.4 33.3
τi 33.3 34.7 30.7 55.6 61.1 44.4

Ktrans 16.0 17.3 0.0 33.3 27.8 27.8
T1-w 48.0 66.7 46.7 55.6 72.2 38.9

Total 31.0 32.0 18.5 39.7 37.3 25.4
Ax Cor Sag Ax Cor Sag

ve 29.3 28.0 28.0 16.7 33.3 11.1
vp 24.0 18.7 24.0 33.3 38.9 38.9
FP 53.3 60.0 57.3 44.4 50.0 38.9
PS 13.3 18.7 26.7 38.9 38.9 50.0
τi 33.3 32.0 33.3 55.6 72.2 66.7

Ktrans 16.0 62.7 62.7 33.3 44.4 44.4
T1-w 48.0 10.7 58.7 55.6 38.9 61.1

Total 31.0 33.0 41.5 39.7 45.2 44.4

3.2. Anisotropic Resolution Images in Different Orientations

We also investigated how the radiomic features vary depending on the orientation
of the anisotropic resolution, i.e., slice orientation. The heatmaps in Figure 6 show that
the differences in GLCM features between anisotropic images in different imaging planes
share similar patterns of differences and a similar range of significantly different features
(32–34%). Furthermore, slice direction generally impacts the distribution of significantly
different features similarly, with the notable exception of post-contrast T1-weighted images,
where the sagittal direction impacts 58.7% of texture features compared to 20% and 10.7%
of features for the axial and coronal directions, respectively (Table 2). Heatmaps for the
complete feature set for anisotropic images in all 3 orthogonal imaging planes can be found
in Figure 5 and Supplemental Figures S3 and S4.
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Figure 6. The percent difference and significance between Grey Level Cooccurrence Matrix
(GLCM) texture features from isotropic and anisotropic images of different orthogonal orientations.
(a) A heatmap depicting the percent difference in texture features calculated from GLCM between
isotropic parameter maps and anisotropic maps of different orthogonal orientations. Anisotropic
maps were simulated from the isotropic images in three orthogonal directions, all demonstrating sim-
ilar patterns in the difference. (b) A heatmap showing the features that have a significant difference
in radiomic features (p < 0.00054, depicted in red) between isotropic and anisotropic image resolution,
which are between 32% and 34% of total features.

3.3. Texture Features Reported in DCE-MRI Studies

The radiomics features included in our present study have been used in other recent
studies [15,17,26–29]. Table 1 presents a summary of the radiomic features found significant
for predicting various aspects of tumors, such as malignancy and treatment response.
Of the 40 features found to be predictive in the six different DCE MRI radiomic studies,
the mean value of 17–25 of these features was found to be impacted by at least ±%10
when extracted from isotropic versus anisotropic images, and 17 features for all three
slice thickness cases were found to be statistically significant, where all post-contrast T1-w
features, two Ktrans features, and four ve features were impacted significantly.
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4. Discussion

The principal aim of our study was to investigate the dependency of texture feature
values on images acquired with an isotropic versus an anisotropic resolution. We found that
over 32% of the texture features available in PyRadiomics were derived from PK parameter
maps at isotropic resolution and were significantly different from those estimated from more
commonly used images with an anisotropic resolution. Furthermore, of the 40 radiomic
features found to be predictive in cancer imaging, we found 17 to be significantly impacted
by anisotropic resolution (Figure 7). This suggests that it is critical to acquire images with
an isotropic high resolution in order to use radiomic features as reliable biomarkers for
cancer studies.
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Figure 7. Bar plots representing the percent difference of the means (a) and standard deviations
(b) of the 40 features used in recent studies listed in Table 1 show the difference between isotropic
and up-sampled anisotropic images. The number of features with mean values differing by more
than ±10% are 22, 24, and 32 for slice thicknesses of 0.234 mm (dark gray), 0.546 mm (light gray),
and 1.014 mm (white), respectively. The number of features with SD values >10% is 22, 23, and 32,
respectively. The percent difference of mean fell outside of the axis range for T1-w FO skewness
(−217%, −268%, and −275%) and T1-w GLCM Contrast (165%,194%, and 253%). The percent
difference of SD fell outside of the axis range for Ktrans GLRLM Long Run Emphasis (8%, 25%, and
196%), T1-w FO Variance (36%, 31%, and 375%) and T1-w GLCM Contrast (187%, 151%, and 232%).

A previous study [30] demonstrated that radiomic feature classification abilities are
highly dependent on in-plane resolution, with improved classification from lower reso-
lution images after interpolation to higher resolutions. The study suggests that adequate
spatial resolution is needed for texture features to capture the relevant tissue microstructure.
This is in line with the results of our study, which show that some features may have minor
differences despite different slice thicknesses, as all images are resampled to isotropic
resolution for 3D texture analysis.
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A recent phantom study by Baeßler et al. [31] demonstrated poor reproducibility of
close to half of the radiomic features calculated from T1-w images sampled at anisotropic
resolutions. Similarly, our study found features from T1-w images to be most sensitive to
resolution and thick slice orientation compared to PK parameter map images, despite the
interpolation to an isotropic resolution. Baeßler argued that the reduced reproducibility
of T1-w images versus FLAIR images from their study may be accounted for by a more
subtle gray-level discretization from the spread of more gray levels across a smaller range
in FLAIR images [31]. This may also be the case for our parameter map images, as their
values are bound inherently to a physiologically relevant range. For this reason, using PK
parameter maps or other quantitative imaging modalities may improve reproducibility in
texture analysis and radiomic workflows.

Qualitatively, a high degree of detail is lost by the increased partial volume effect of
images acquired at an anisotropic resolution with a thick slice compared to those acquired
at an isotropic high resolution. Large areas of high intensity in isotropic images appear to be
diminished or absent in the thick slice images as a result of the partial volume effect. This is
most evident in Figure 3, comparing slice 13 of the isotropic parameter maps with the thick
slice parameter maps for ve, vp, PS, and τi. The smoothing and diminishing of high intensity
areas likely account for the high variation in texture features measuring heterogeneity and
intensity groupings. Regions of maximal abnormality, or ‘hotspots’, within the tumor
parameter maps can be used for grading tumors [32], where the diminishing of these
‘hotspots’ in thick slice images likely impacts predictive capabilities and warrants further
study. Additionally, several studies have found poor reliability in comparing thick slice
image data with genomic and histopathology biomarkers, which represent many orders of
magnitude difference in scale [33,34], making it challenging to validate image heterogeneity
biomarkers against histopathology.

A non-trivial consideration for image texture analysis is the intensity discretization
method, as there is currently no consensus on the best practice despite the high dependency
of feature values on this choice [35,36]. For this study, we chose to discretize images based
on the Freedman-Diaconis rule to statistically determine the bin-width size for each image
between isotropic and anisotropic images [25,37]. Radiomic features have been shown to
be highly dependent on tumor volume [38], which we hoped to reduce with a dynamic
discretization approach such as the Freedman-Diaconis rule. Furthermore, discretization
with bin-width selection has demonstrated reduced variabilities in texture feature values
compared with choosing a bin number [39,40]. Additionally, selecting a bin-width instead
of a bin number maintains the relative contrast of the image, which is especially important
when pixel intensities are definite and tied to physiological parameters, such as in DCE-MRI
PK parameter maps [24].

The lack of standardization of texture analysis in radiomic workflows, resulting in poor
reproducibility, is a known issue, preventing its broader adoption in the clinic. The Interna-
tional Standardization Initiative (IBSI) [9] and Quantitative Imaging Network (QIN) [6] have
weighed in, providing a standardization of feature definitions and guidelines on reporting
radiomics studies to improve reproducibility. The choice of imaging platform and IBSI com-
pliance have been shown to affect feature extraction and predictability, and by standardizing
acquisition and post-processing settings such as resolution, variability in feature values is
reduced [41]. IBSI guidelines are most impactful in retrospective studies where acquisition
parameters are preestablished and reproducibility is dependent on reporting image process-
ing settings. Moving forward, it is vital to standardize acquisition techniques to improve
the reproducibility and power of quantitative imaging techniques like DCE-MRI through
multi-institution initiatives where image analysis must be a focal point.

This study has a number of limitations. This study featured a limited number of
subjects with a single tumor type. In future work, we plan to expand this study with
different types of tumors. We are especially keen to investigate the impact of acquired
image resolution on the predictive capabilities of texture features for response to treatment,
which was not possible with the current cohort. All tumors in this study were manually
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segmented, which may result in intraobserver variability, particularly in cases of anisotropic
resolution [42]. However, the accuracy of lesion segmentation may not be a critical issue in
this study as the comparison of the radiomic features was made within the selected ROIs
across multiple tumors.

5. Conclusions

This study has demonstrated that acquired image resolution, particularly anisotropic
versus isotropic, significantly affects about 30–40% of texture features, with major implica-
tions in radiomics workflows. We showed how kinetic parameter maps estimated from
isotropic high-resolution DCE images provide an improved description of tumor hetero-
geneity through the entire volume compared with those estimated from anisotropic images.
Considering the impact of acquired resolution on texture analysis, it would be prudent to
acquire images at an isotropic high resolution for improved texture feature reproducibility.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/tomography9020058/s1, Figure S1, Percent difference and signifi-
cance between features from isotropic and anisotropic (slice thickness 0.234 mm) images.
(a) A heatmap depicting the percent difference in histogram and texture features between isotropic
parameter maps and up-sampled anisotropic maps (slice thickness of 0.234 mm in the axial direc-
tion). (b) A heatmap showing the features that have a significant difference in radiomic features
(p < 0.00054, depicted in red) between isotropic and anisotropic image resolutions, which are over
19.8% of all features; Figure S2, Percentage difference and significance between features from isotropic
and anisotropic (slice thickness of 0.546 mm) images. (a) A heatmap depicting the percent difference
in histogram and texture features between isotropic parameter maps and up-sampled anisotropic
maps (slice thickness of 0.546 mm in the axial direction). (b) A heatmap showing the features that
have a significant difference in radiomics features (p < 0.00054, depicted in red) between isotropic and
anisotropic image resolutions, which are over 33.0% of all features; Figure S3, Percentage difference
and significance between features from isotropic and anisotropic (slice thickness of 1.014 mm in
the coronal direction) images. (a) A heatmap depicting the percent difference in histogram and
texture features between isotropic parameter maps and up-sampled anisotropic maps (slice thickness
of 1.014 mm in the coronal direction). (b) A heatmap showing the features that have a significant
difference in radiomics features (p < 0.00054, depicted in red) between isotropic and anisotropic image
resolutions, which are over 35.3% of all features; Figure S4, Percentage difference and significance
between features from isotropic and anisotropic (slice thickness of 1.014 mm in the sagittal direction)
images. (a) A heatmap depicting the percentage difference in histogram and texture features between
isotropic parameter maps and up-sampled anisotropic maps (slice thickness of 1.014 mm in the
sagittal direction). (b) A heatmap showing the features that have a significant difference in radiomic
features (p < 0.00054, depicted in red) between isotropic and anisotropic image resolutions, which are
over 42.1% of all features.
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