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Abstract: Background: Collateral status is an important predictor for the outcome of acute ischemic
stroke with large vessel occlusion. Multiphase computed-tomography angiography (mCTA) is useful
to evaluate the collateral status, but visual evaluation of this examination is time-consuming. This
study aims to use an artificial intelligence (AI) technique to develop an automatic AI prediction
model for the collateral status of mCTA. Methods: This retrospective study enrolled subjects with
acute ischemic stroke receiving endovascular thrombectomy between January 2015 and June 2020 in
a tertiary referral hospital. The demographic data and images of mCTA were collected. The collateral
status of all mCTA was visually evaluated. Images at the basal ganglion and supraganglion levels of
mCTA were selected to produce AI models using the convolutional neural network (CNN) technique
to automatically predict the collateral status of mCTA. Results: A total of 82 subjects were enrolled.
There were 57 cases randomly selected for the training group and 25 cases for the validation group.
In the training group, there were 40 cases with a positive collateral result (good or intermediate)
and 17 cases with a negative collateral result (poor). In the validation group, there were 21 cases
with a positive collateral result and 4 cases with a negative collateral result. During training for the
CNN prediction model, the accuracy of the training group could reach 0.999 ± 0.015, whereas the
prediction model had a performance of 0.746 ± 0.008 accuracy on the validation group. The area
under the ROC curve was 0.7. Conclusions: This study suggests that the application of the AI model
derived from mCTA images to automatically evaluate the collateral status is feasible.

Keywords: multiphase CTA; collateral status; artificial intelligence; convolutional neural network;
acute ischemic stroke

1. Introduction

Stroke is a complex disease and is one of the major causes of long-term disability and
death. Because of aggressive treatment of underlying risk factors, such as hypertension and
dyslipidemia, the mortality due to stroke declines [1]. In acute ischemic stroke with large
vessel occlusion, endovascular thrombectomy (EVT) has been proved to be beneficial and is
able to improve functional outcome. Roughly 46.0% of patients receiving EVT can achieve a
modified Rankin scale (mRS) score of 0 to 2 within 3 months, as compared with only 26.5%
of patients not receiving this procedure [2]. The two basic criteria to select candidates for
EVT are the time window and image evidence of large vessel occlusion. Collateral status
is an additional important imaging result to identify good candidates for EVT, especially
at the borderline or in an extended time window. Therefore, pre-procedural evaluation,
including imaging studies, should be completed as soon as possible.
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Multiphase computed-tomography angiography (mCTA) is a useful imaging tool
to identify good candidates for EVT. mCTA includes an arterial phase and 2 subsequent
venous phases, also known as 2 delayed arterial phases, and there will be three post-contrast
images in mCTA. As compared with traditional single-phase CTA, mCTA is advantageous
in the detection of arterial occlusion, with higher interrater reliability and in the evaluation
of collateral status [3]. Another useful tool is computed-tomography perfusion (CTP),
which can calculate the volumes of infarction core and ischemic penumbra, and these
measurements can be automatically performed by some automated software [4]. These two
techniques are both widely used in acute ischemic stroke. The strengths of CTP include
higher correlation with clinical outcome and availability of automated postprocessing
software. In contrast, mCTA does not require postprocessing software and is recommended
by guidelines. However, the weak point of mCTA is that the evaluation relies on visual
assessment, which might still compromise interrater and intrarater agreement and require
additional time to evaluate the imaging results [5]. The management of acute ischemic
stroke is as soon as possible to reverse blood flow for the ischemic brain in order to rescue
these salvageable brain regions. If the results of mCTA could be evaluated automatically
as CTP, the pre-EVT evaluation could be more efficient, which would be significantly
beneficial for patients.

Artificial intelligence (AI) dramatically improves the performance of clinical radiology.
The basic clinical application of AI is computer-aided detection, such as lesion detection in
chest plain films or mammography [6,7]. The advanced clinical application includes disease
classification and grading and prediction of prognosis [8–10]. Automatic calculation of
the results of CTP is also a typical demonstration of the AI technique. If the AI technique
can be used to automatically measure the collateral status of mCTA, the weak points of
using mCTA in acute ischemic stroke, including time-consuming visual evaluation and
discrepancy of interrater or intrarater agreement, might be solved.

This study aims to use the AI technique to develop an AI model, which can au-
tomatically evaluate the collateral status of mCTA in acute ischemic stroke with large
vessel occlusion.

2. Methods
2.1. Subjects

This was a retrospective study, which had been approved by the Institutional Review
Board in Mackay Memorial Hospital (20MMHIS361e). Subjects who had acute ischemic
stroke with large vessel occlusion and received EVT between January 2015 and June 2020
were enrolled in this study. Other inclusion criteria included age at least 20 years old, a
National Institute of Health Stroke Scale (NIHSS) at onset time of at least 8 scores, having
mCTA images, having mRS at 3 months after the procedure of EVT, and having an Alberta
Stroke Program Early CT Score (ASPECTS) of at least 5 points on the initial nonenhanced
brain CT images. Exclusion criteria were loss of required clinical data, marked imaging
motion artifact, severe underlying diseases such as malignancy, severe trauma, and aortic
dissection, and acute ischemic infarction due to posterior circulation, including occlusion
of vertebral artery or basilar artery.

2.2. Imaging Studies

In the enrolled subjects, all the mCTA of these subjects were reviewed and graded by
an experienced neuroradiologist. The collateral status of mCTA was graded based on the
original concept of the development of mCTA [11]. The pial arterial filling score within the
symptomatic ischemic territory using mCTA ranged from 0 to 5. A score of 5 meant good
collateral status, 4 meant intermediate collateral status, and 0 to 3 meant poor collateral
status. In a complete mCTA scan, there were a nonenhanced CT scan from head to neck,
an arterial phase CT scan from head to neck, an 8 s delay arterial phase CT scan for the
whole head, and a 16 s delay arterial phase CT scan for the whole head. The raw images
were 1.5 mm on a Siemens SOMATOM Definition AS CT Scanner (Siemens Healthcare
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GmbH, Erlangen, Germany) and 1 mm on a Canon Aquilion PRIME CT Scanner (Toshiba
Medical Systems, Nasu, Japan). Reconstruction with the maximum intensity projection
(MIP) technique was applied on the first arterial phase CT images to produce axial, coronal
and sagittal MIP images, as well as on the second and third arterial phase CT images,
to produce axial MIP images. The settings of MIP were a 20 mm slice thickness with a
10 mm increment for axial reconstructed MIP images and a 10 mm slice thickness with a
4 mm increment for coronal and sagittal reconstructed MIP images. Two levels of the axial
images were identified as the basal ganglion level and the supraganglion level. The basal
ganglion level was the image when the size of the basal ganglion was visually measured at
the maximum size. The supraganglion level meant the first image level when both lateral
ventricles just disappeared on the axial images examined in a caudal to cranial sequence.
There were 12 images selected from the mCTA study of each subject for further analysis
using the AI technique. The 12 images included the raw image and the MIP image at
the basal ganglion level and the supraganglion level from all three arterial phase images
(Figure 1).
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Figure 1. Demonstration of 12 images selected from each multiphase CTA study.

2.3. Data Preprocessing and Normalization

In this study, we mainly used Keras and Scikit-learn libraries in Python to perform
data preprocessing, normalization and model establishment. Before establishing deep
learning models, data preprocessing and normalization were conducted. The data in this
study were images, so the data preprocessing and normalization included the denoising
and adjusting contrast of images and resizing images to be identical in size.

2.4. Convolutional Neural Network

The collateral status graded as good or intermediate collateral status was defined as
the positive collateral result, while poor collateral status as the negative collateral result
(Figure 2). From all the enrolled subjects, 70% subjects were randomly selected for the
training group, and the remaining 30% of the subjects were placed in the validation group.

The Convolutional Neural Network (CNN) technique was a deep learning technique
and was first described in 1980 [12]. This technique was further consolidated by Yann
Lecun [13]. CNN could be used to analyze visual imagery with little preprocessing to
perform image classification. In this study, the CNN technique was used to develop a
prediction model based on the 12 selected mCTA images to predict collateral status as a
positive or negative collateral result. Specifically, the structure of the CNN prediction model
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is shown in Figure 3, where only 5 convolution layers were employed. It was experimentally
evaluated to have a comparable performance as that of the renowned ResNet50 [14] trained
using transfer learning for this binary classification problem for collateral status, but with a
much-improved convergence rate.
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Figure 2. Demonstration of positive and negative collateral status on multiphase CTA. The A1,
A2, and A3 indicate the three arterial phases. In the positive collateral status (upper row), the left
side brain (green frame) is the ischemic side. When the enhancement of the arterial branches in
the ischemic side can achieve similar appearance to the A1 contralateral normal side in A1 or A2
(this case), the collateral status is good or intermediate, respectively, and the result is defined as the
positive collateral status. On the contrary, in the negative collateral status (lower row), the arterial
branches in the ischemic side (red frame) cannot be enhanced like the A1 contralateral normal side
in A1 or A2, suggesting that the collateral status is poor and the result is defined as the negative
collateral status.
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3. Results

There were 82 enrolled subjects in this study. The sex ratio was 1:1. The mean age
was 70.67 ± 14.09 years old, ranging from 35 to 98 years old. The median of initial NIHSS
was 18, ranging from 8 to 31, and the Glasgow Coma Scale was 13.5, ranging from 5 to
15. The median ASPECTS score on the initial nonenhanced brain CT was 8, ranging from
5 to 10. The location of acute arterial occlusion was located at the internal carotid artery in
28 (34.1%) subjects, the first segment of the middle cerebral artery in 41 (50.0%) subjects,
and the second segment of the middle cerebral artery in 13 (15.9%) subjects. The procedure
results of EVT were 9 (11.0%) with modified treatment in cerebral infarction (mTICI) 0,
4 (4.9%) with mTICI 1, 11 (13.4%) with mTICI 2a, 38 (46.3%) with mTICI 2b, and 20 (24.4%)
with mTICI 3. The mean time from onset to reperfusion or end of the procedure was
316.66 ± 86.11 min. Symptomatic intracranial hemorrhage occurred in 14 (17.1%) subjects
during the hospitalization course after EVT. The functional outcomes in 3 months were
3 (3.7%) cases with mRS 0, 9 (11.0%) cases with mRS 1, 9 (11.0%) cases with mRS 2, 17 (20.7%)
cases with mRS 3, 22 (26.8%) cases with mRS 4, 4 (4.9%) cases with mRS 5, and 18 (22.0%)
cases with mRS 6. The demographic data of these subjects with a positive or negative
collateral status are separately detailed in Table 1.

Table 1. Demographic data of the enrolled subjects with a positive or negative collateral status.

Collateral Status Positive (n = 61) Negative (n = 21)

Mean ± SD (Range) n (%) Median (Range)

Age (years) 72.5 ± 13.5 (43–98) 65.4 ± 14.8 (35–96)

Sex (male) 28 (45.9) 13 (61.9)

National Institute of Health Stroke Scale (NIHSS) 17 (8–31) 19 (13–23)

Glasgow Coma Scale 14 (5–15) 11 (7–15)

Alberta Stroke Program Early CT Score (ASPECTS) 8 (5–10) 8 (6–10)

Occlusion site
ICA: 20 (32.8)
M1: 31 (50.8)
M2: 10 (16.4)

ICA: 8 (38.1)
M1: 10 (47.6)
M2: 3 (14.3)

Modified treatment in cerebral infarction (mTICI) 0–2a: 16 (26.2)
2b–3: 45 (73.8)

0–2a: 8 (38.1)
2b–3: 13 (61.9)

Onset to Reperfusion time (minutes) 316.3 ± 83.5 (152–528) 317.6 ± 95.4 (189–519)

Symptomatic intracranial hemorrhage 9 (14.8) 5 (23.8)

Modified Rankin Scale 0–2: 18 (29.5)
3–6: 43 (70.5)

0–2: 3 (14.3)
3–6: 18 (85.7)

Abbreviations: ICA: internal carotid artery; M1: the first segment of the middle cerebral artery; M2: the second
segment of the middle cerebral artery; SD: standard deviation.

There were 57 cases (69.5%) randomly selected for the training group and 25 cases
(30.5%) for the validation group. In the training group, there were 40 cases (70.2%) with
a positive collateral result (good or intermediate collateral) and 17 cases (29.8%) with a
negative collateral result (poor collateral). In the validation group, there were 21 cases
(84.0%) with a positive collateral result and 4 cases (16.0%) with a negative collateral result.
The confusion matrix of the validation group is displayed in Figure 4. During training for
the CNN prediction model, the accuracy of the training group could reach 0.999 ± 0.015,
whereas the prediction model had a performance of 0.746 ± 0.008 accuracy on the validation
group (Figure 5). The ROC curve of this model demonstrated an area under the curve
(AUC) of 0.7 (Figure 6).
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4. Discussion

By using the CNN technique to produce a prediction model from the selected 12 images
of mCTA, the model demonstrated a performance of 0.746 ± 0.008 accuracy and a 0.7 AUC
on the prediction of the collateral status of mCTA.
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The collateral status has been found to be an independent predictor of final infarct
volume in patients receiving EVT for acute anterior circulation ischemic stroke due to
large vessel occlusion. A good collateral status helps to prevent the middle cerebral
arterial territory from infarction [15]. On the contrary, poor collateral circulation is a
risk factor for symptomatic intracranial hemorrhage after EVT, and therefore results in
a poor functional outcome [16,17]. Furthermore, collateral status sometimes might be
helpful to determine eligibility for EVT in some cases [18]. There are many proposed
methods to evaluate the collateral status by using CT images, including single-phase
CTA, mCTA and CTP. The single-phase CTA tends to underestimate the collateral status
due to limited information only from the spatial extent of collateral enhancement in one
series of images [19]. CTP-based parameters, such as time-to-maximum, cerebral blood
flow, hypoperfusion intensity ratio and cerebral blood volume index, have been used to
evaluate the collateral status [20–22]. By using some automated software, these CTP-based
parameters could be calculated automatically and quickly without interobserver bias [19].
However, the availability of an automated software might require an additional expense
and several factors including bolus shape, scanner protocol, different software, and head
motion might affect CTP analysis [19,23]. In addition, a limited brain coverage of the CT
scanner will cause inadequate coverage of the ischemic lesion; therefore, the requirement
of a wide-coverage CT scanner is also important to perform a better CTP [24]. On the
contrary, collateral evaluation based on mCTA might solve some weak points of CTP-based
techniques, but mCTA also has its disadvantages, including reduced temporal resolution
and time-consuming visual assessment [19]. Though CTP-based collateral evaluation might
be more attractive for clinical practitioners because of faster and fully automatic calculation
and more reliable results, mCTA sometimes is the only choice due to the limitation of
inaccessible postprocessing software or wide-coverage CT scanners. Recently, the rapid
development of AI has significantly contributed to automatic imaging analysis in lesion
detection and classification. Thus, the development of automatic analysis on mCTA to
predict the collateral status might be possible, and the prediction model would be very
useful for hospitals where the mCTA technique is the only choice to evaluate patients with
acute ischemic stroke.

A previous study produced an AI model to differentiate good and poor collateral
status in mCTA and achieved an accuracy of 0.852 ± 0.045. However, the mCTA was
extracted from whole-brain 4D CTA/CTP images rather than the traditional mCTA [25].
Another study used single-phase CTA to produce an AI model and achieved accuracy
of 0.85 ± 0.01 to differentiate whether there was more than 50% filling [26]. In an article
reviewing recent automatic collateral scoring using CTA, the 4D CTA is the most popular
one to be used in the research. Other methods are based on single-phase CTA or even
nonenhanced CT [27]. The overall accuracy or area under the curve of these methods could
be above 70% or even up to 90%. However, an AI model based on the traditional mCTA to
evaluate collateral status is less frequently described in the literature, but our preliminary
result suggests that the performance of the AI model based on the traditional mCTA could
also achieve more than 70% accuracy with an AUC of 0.7. Based on previous studies, CTP-
based ischemic core volume shows a better prediction on the 3-month functional outcome
for patients with acute ischemic stroke undergoing EVT than the mCTA collateral score [5].
Fully automated commercial software for CTP analysis are also available. However, CTP
requires a higher coverage CT scanner and an additional expense for the commercial
software, which sometimes makes CTP an impossible choice even with a CT scanner. The
concept of 4D CTA is close to that of the traditional mCTA, though the images of different
phases in 4D CTA are extracted from a pool of several volume images, while the images of
different phases in the traditional mCTA are directly scanned. Again, 4D CTA also requires
a wide-coverage CT scanner. As compared with single-phase CTA and nonenhanced CT,
mCTA includes much more imaging information and data. Furthermore, mCTA is found
to be highly correlated with the CTP result, and the physiological role might be more
important than single-phase CTA [28]. For the abovementioned points, mCTA might be a
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more reliable resource to produce an AI prediction model for the collateral status because
of the similarity to 4D CTA and being more correlated with CTP. Although previous studies
mainly adopted 4D CTA, single-phase CTA or nonenhanced CT to produce AI prediction
models for the collateral status, our study points out the possibility of automatic evaluation
of the collateral status from the traditional mCTA, which might sometimes be the best CT
collateral evaluation for acute ischemic stroke in hospitals with limited resources, such as a
lack of postprocessing software or wide-coverage CT scanners.

There are several limitations in this study. First, the retrospective design of this study
has some diverse settings of scan protocol and many uncontrolled parameters. Second,
there are two different CT scanners used in this study, and the heterogeneous quality
of images might affect AI analysis. The data only enrolled 82 cases and only included
12 images from each mCTA study. In the future, more enrolled cases and included images
might be able to improve the performance of the AI model, but the imaging postprocessing
time might increase markedly if more images of mCTA studies are included to evaluate the
collateral status. In the confusion matrix of this study, there was a very high false-positive
rate (91.7%) and a very low true-negative predictive value (8.3%). Possible reasons for this
poor result include limited enrolled subjects and images, relatively more enrolled cases
with a positive collateral status, and the complexity of collateral evaluation on mCTA.
Because poor collateral status is considered as a negative predictor of functional outcome,
cases with poor collateral status are not highly suggested to be aggressively treated with
EVT, and, thereby, the cases with poor collateral status are fewer than good or intermediate
collateral status in this study. To enroll many more cases with a poor collateral status
might be helpful to overcome the problem of a high false-positive rate in the future. There
are some challenges we encountered during the AI model training, including the limited
number of images, overfitting of models, and poor learning efficiency. There was an
important problem about image augmentation we did not expect before this study. Image
augmentation is a common technique to create more images from existing ones. Initially,
we planned to use image augmentation to overcome the problem of a limited number of
images in this study. However, the images of mCTA from a single subject had some internal
relationship, because they were from the same subject or from the same scan sequence.
When we used image augmentation by flipping or rotating images, the result of model
training became worse, probably because of breaking the internal relationship of those
images from the same subject. Thus, we were focused on using different AI models or
changing the structures of AI models to improve the prediction accuracy.

5. Conclusions

This study suggests that even in a hospital with limited resources where only very
basic traditional mCTA can be performed, the AI model proposed by this study can still
automatically evaluate the collateral status in acute ischemic stroke with large-vessel
occlusion, which is promising to facilitate the patient selection for EVT and to decrease
inter-observer bias. Since the data required for this AI model only include very basic
traditional mCTA images, this AI model can be applied in many more hospitals than other
techniques, such as CTP or 4D CTA.
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