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Abstract: Growing evidence suggests that artificial intelligence tools could help radiologists in dif-
ferentiating COVID-19 pneumonia from other types of viral (non-COVID-19) pneumonia. To test
this hypothesis, an R-AI classifier capable of discriminating between COVID-19 and non-COVID-19
pneumonia was developed using CT chest scans of 1031 patients with positive swab for SARS-CoV-2
(n = 647) and other respiratory viruses (n = 384). The model was trained with 811 CT scans, while
220 CT scans (n = 151 COVID-19; n = 69 non-COVID-19) were used for independent validation.
Four readers were enrolled to blindly evaluate the validation dataset using the CO-RADS score. A
pandemic-like high suspicion scenario (CO-RADS 3 considered as COVID-19) and a low suspicion
scenario (CO-RADS 3 considered as non-COVID-19) were simulated. Inter-reader agreement and
performance metrics were calculated for human readers and R-AI classifier. The readers showed
good agreement in assigning CO-RADS score (Gwet’s AC2 = 0.71, p < 0.001). Considering human
performance, accuracy = 78% and accuracy = 74% were obtained in the high and low suspicion sce-
narios, respectively, while the AI classifier achieved accuracy = 79% in distinguishing COVID-19 from
non-COVID-19 pneumonia on the independent validation dataset. The R-AI classifier performance
was equivalent or superior to human readers in all comparisons. Therefore, a R-AI classifier may
support human readers in the difficult task of distinguishing COVID-19 from other types of viral
pneumonia on CT imaging.

Keywords: COVID-19; artificial intelligence; radiomics; lung; tomography (X-ray computed)

1. Introduction

Coronavirus Disease 2019 (COVID-19) is a complex infectious disease caused by the
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which has caused more
than half a billion cases and 6 million deaths since it was first reported in late 2019 [1].

From a radiological point of view, CT findings of SARS-CoV-2 pulmonary infection
include ground-glass opacities, areas of crazy-paving pattern, and consolidations. Such
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alterations are usually multiple and bilateral, with patchy distribution and predominant
involvement of basal and subpleural lung regions [2,3]. However, not all COVID-19 patients
exhibit these characteristics, making differential diagnosis from other pulmonary diseases
challenging [4,5]. In particular, the typical appearance of COVID-19 partially overlaps with
the CT findings of different types of viral pneumonia, similar to those from adenovirus and
rhinovirus [6]. This reduces the specificity of chest CT and raises the risk of false-positive
diagnosis, especially in case of low incidence and prevalence of COVID-19 [7].

To facilitate the evaluation of chest CT of patients with suspected lung involvement
by SARS-CoV-2, the COVID-19 Reporting and Data System (CO-RADS) score was pro-
posed [8]. This scheme provides a standardized five-point scale to express the suspicion
of COVID-19 pneumonia on chest CT images, demonstrating excellent diagnostic per-
formance and moderate-to-substantial interobserver agreement [9]. Nevertheless, the
CO-RADS category 3, which accounts for equivocal findings, still implies positivity to
COVID-19 in 20–40% of cases [8,10].

Given the need for efficient tools for the detection and differential diagnosis of
COVID-19, there has been a considerable drive to develop solutions based on quantitative
imaging, such as radiomics and artificial intelligence (AI) [11]. Many authors have pointed
out the potential added value of AI models in differentiating COVID-19 from other types
of pneumonia, with accuracy ranging from 80% to over 95% [12–15]. However, in most
cases, the diagnostic performance of AI models was assessed by comparing COVID-19 with
heterogenous pulmonary conditions, often including bacterial infections [15–17], whose
distinct features can ease the classification task.

In this work, we designed a multi-reader study to assess the performance of a
radiomics-based AI classifier in the radiological challenge of discriminating COVID-19
from other types of viral-only pneumonia with microbiologically established etiology. We
also simulated two distinct suspicion scenarios to investigate the impact of the varying
epidemiological conditions on diagnostic performance.

2. Materials and Methods
2.1. Study Design and Imaging Data

This study was retrospectively conducted in a single high-volume referral hospital
for the management of the COVID-19 pandemic. The Local Ethics Committee (decision
number 188-22042020) approved the study and waived informed consent since data were
collected retrospectively and processed anonymously.

Chest CT scans of 1031 consecutive patients with a positive PCR nasopharyngeal
swab for SARS-CoV-2 (COVID-19, n = 647) and other respiratory viruses (non-COVID-19,
n = 384) were collected. The panel of non-COVID-19 viruses detected included: aden-
ovirus, bocavirus 1/2/3/4, coronavirus 229E/NL63/OC43, enterovirus, influenza virus
A/B viruses, metapneumovirus, parainfluenza virus 1/2/3/4, rhinovirus A/B/C, and
respiratory syncytial virus A/B. Patients with evidence of bacterial coinfection in their
clinical documentation were excluded.

The CT scans of COVID-19 patients were performed between March 2020 and April
2021, while CT scans of non-COVID-19 patients were performed between January 2015 and
October 2019 (i.e., before SARS-CoV-2 started circulating). For both groups, the CT scans
were acquired within 15 days of serological evidence of infection.

Chest CT examinations were performed with different CT scanners (Somatom Defini-
tion Edge—Siemens, Somatom Sensation 64—Siemens, Brilliance 64—Philips) and with the
same patient set-up (supine position with arms over the head during a single breath-hold,
in keeping with the patient compliance). The main acquisition parameters were: tube
voltage = 80–140 kV; automatic tube current modulation; pitch = 1; matrix = 512 × 512. All
acquisitions were reconstructed with high-resolution thorax kernels and a slice thickness
of 3 mm.
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2.2. Artificial Intelligence-Based Model

The collected CT images were used to develop a radiomic-based Neural Network
(R-AI) classifier exploiting a Multi-Layer Perceptron architecture to discriminate between
COVID-19 and non-COVID-19 pneumonia. In particular, the classifier was trained with
811 CT images (n = 496 COVID-19, n = 315), while the remaining 220 CT images (n = 151
COVID-19, n = 69 non-COVID-19) were used as an independent validation dataset, apply-
ing a threshold on the predicted values of 0.5. Details about the R-AI classifier, including
development and tuning, were previously described [18].

The R-AI classifier provided as output the probability (0.00–1.00) that the analyzed CT
scan belonged to a COVID-19 patient.

2.3. Reader Evaluation

Three radiologists with >10 years of experience (Readers 1–3) and one radiology
resident with 3 years of experience (Reader 4), all employed at a high-volume COVID-19
referral hospital, were enrolled to evaluate the 220 CT scans of the independent validation
dataset. The four readers were blinded to the original radiologic report and all non-imaging
data, including the acquisition date of the CT scans. They were asked to assign each case the
CO-RADS score [8] (1 to 5) to express the increasing suspicion of COVID-19. To properly
simulate a realistic clinical scenario, the readers were instructed to interpret the CT findings,
assuming that the patients had an acute condition (e.g., presentation at the Emergency
Department).

Additionally, as an estimate of disease severity, for each patient, the readers visually
assessed the extent of pulmonary involvement expressed as a percentage of the total lung
volume, rounded to the nearest 10%.

The test was performed using a program developed in JavaScript that automatically
opened to the reader the anonymized CT series in random order. After the reader had
assigned the CO-RADS score through a dialog box, the program automatically loaded the
CT of the next patient in random order.

2.4. Data Analysis

Continuous variables were reported as median values with 25th and 75th percentiles
(Q1–Q3) of their distribution; categorical variables were expressed as counts and per-
centages, with the corresponding 95% confidence interval (95%CI) using the Wilson
method [19].

The chance-corrected inter-reader agreement for the assigned CO-RADS score was
tested using Gwet’s second-order agreement coefficient (AC2) with ordinal weights [20].
AC2 was chosen to correct for the partial agreement occurring when comparing ordinal
variables with multiple readers and because it is less affected by prevalence and marginal
distribution [21–23]. The level of agreement was interpreted following Altman’s guide-
lines [24]. Weighted percentage agreement was reported as well [25].

To account for equivocal results (i.e., CO-RADS 3), two different scenarios were simu-
lated: a high suspicion scenario, where CO-RADS 3 results were considered as COVID-19
patients, and a low suspicion scenario, where CO-RADS 3 results were considered as
non-COVID-19 patients together with CO-RADS 1 and 2.

Sensitivity (SE), specificity (SP), accuracy (ACC), positive likelihood ratio (PLR), and
negative likelihood ratio (NLR) of human readers in discriminating COVID-19 patients
from non-COVID-19 patients were calculated for both high and low suspicion scenarios.
The same metrics of diagnostic performance were also calculated for the R-AI classifier.

Moreover, a further subanalysis was conducted to compare the performance of human
readers and the R-AI classifier in challenging cases when two or more readers had assigned
a CO-RADS 3 score.

Significant differences in the diagnostic performance of the readers and the R-AI
classifier were tested using Cochran’s Q test with a post-hoc pairwise McNemar test.
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The data analysis was generated using the Real Statistics Resource Pack software
(Release 6.8) (www.real-statistics.com (accessed on 1 October 2022)) for Microsoft Excel
(Microsoft Corporation, Redmond, Washington, DC, USA) and GraphPad Prism 8.4.0
(GraphPad Software, La Jolla, CA, USA).

Statistical significance was established at the p < 0.050 level, applying Bonferroni’s
correction for multiple comparisons when appropriate.

3. Results

The demographic characteristics of the patient population are reported in Table 1.
Specifically, the 220 patients of the independent validation set consisted of 159 (72%)
males and 61 (28%) females and had a median age of 68 (Q1–Q3: 59–78) years. Aver-
aging between the different readers, the median extent of their pulmonary disease was
33% (Q1–Q3: 20–53%) of the total lung volume. Median interval between CT scans and
molecular swabs was of 1 (Q1–Q3: 0–2) days for COVID-19 and 3 (Q1–Q3: 1–6) days for
non-COVID-19 patients.

Table 1. Demographic characteristics of the study population.

Total Population
All Patients COVID-19 Non-COVID-19

Age 66 (55–77) 67 (55–78) 66 (54–74)
Sex

Male 694 (67%) 458 (71%) 236 (61%)
Female 337 (33%) 189 (29%) 148 (39%)

Virus
SARS-CoV-2 647 (63%) 647 (100%) -
Adenovirus 14 (1%) - 14 (4%)
Coronavirus 229E/NL63/OC43 29 (3%) - 29 (8%)
Enterovirus 5 (0%) - 5 (1%)
Influenza virus A/B 147 (14%) - 147 (38%)
Bocavirus 1/2/3/4 12 (1%) - 12 (3%)
Metapneumovirus 22 (2%) - 22 (6%)
Parainfluenza virus 1/2/3/4 25 (2%) - 25 (7%)
Rhinovirus A/B/C 94 (9%) - 94 (24%)
Respiratory syncytial virus A/B 36 (3%) - 36 (9%)

Total 1031 (100%) 647 (100%) 384 (100%)

Train Set
All Patients COVID-19 Non-COVID-19

Age 66 (54–77) 67 (55–78) 65 (54–74)
Sex

Male 535 (66%) 347 (70%) 188 (60%)
Female 276 (34%) 149 (30%) 127 (40%)

Virus
SARS-CoV-2 496 (61%) 496 (100%) -
Adenovirus 12 (1%) - 12 (4%)
Coronavirus 229E/NL63/OC43 25 (3%) - 25 (8%)
Enterovirus 4 (0.5%) - 4 (1%)
Influenza virus A/B 119 (15%) - 119 (38%)
Bocavirus 1/2/3/4 10 (1%) - 10 (3%)
Metapneumovirus 17 (2%) - 17 (5%)
Parainfluenza virus 1/2/3/4 19 (2%) - 19 (6%)
Rhinovirus A/B/C 79 (10%) - 79 (25%)
Respiratory syncytial virus A/B 30 (4%) - 30 (10%)

Total 811 (100%) 496 (100%) 315 (100%)

www.real-statistics.com
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Table 1. Cont.

Independent Validation Set
All Patients COVID-19 Non-COVID-19

Age 68 (59–78) 67 (59–79) 68 (60–75)
Sex

Male 159 (72%) 111 (74%) 48 (70%)
Female 61 (28%) 40 (26%) 21 (30%)

Virus
SARS-CoV-2 151 (69%) 151 (100%) -
Adenovirus 2 (1%) - 2 (3%)
Coronavirus 229E/NL63/OC43 4 (2%) - 4 (6%)
Enterovirus 1 (0.005%) - 1 (1%)
Influenza virus A/B 28 (13%) - 28 (41%)
Bocavirus 1/2/3/4 2 (1%) - 2 (3%)
Metapneumovirus 5 (2%) - 5 (7%)
Parainfluenza virus 1/2/3/4 6 (3%) - 6 (9%)
Rhinovirus A/B/C 15 (7%) - 15 (22%)
Respiratory syncytial virus A/B 6 (3%) - 6 (9%)

Total 220 (100%) 151 (100%) 69 (100%)

CO-RADS scores assigned by each reader were detailed in Table 2. Considering
the global performance of the four readers, the error rate was 17% (95%CI: 14–20%) in
classifying patients as COVID-19 and 32% (95%CI: 27–38%) in classifying them as non-
COVID-19. Notably, some discrepancies could be observed since Reader 3 tended to
assign CO-RADS 2 score more frequently in both the COVID-19 and non-COVID-19 groups
compared to the other readers. However, inter-reader agreement in assigning the CO-RADS
score was good, with an ordinal-weighted AC2 of 0.71 (95%CI: 0.67–0.76; p < 0.001) and a
weighted percentage agreement of 91% (95%CI: 90–92%; p < 0.001). Perfect agreement was
obtained between the four readers in 53/220 (24%) cases, distributed as follows: 3/53 (6%)
CO-RADS 1, 20/53 (38%) CO-RADS 2, and 30/53 (57%) CO-RADS 5.

Table 2. CO-RADS scores assigned to COVID-19 and non-COVID-19 patients by the four readers.

COVID-19 Patients Non-COVID-19 Patients Total
Readings

CO-RADS Reader 1 Reader 2 Reader 3 Reader 4 Total Reader 1 Reader 2 Reader 3 Reader 4 Total

1 7 (5%) 4 (3%) 9 (6%) 12 (8%) 32 (5% 16 (23%) 10 (14%) 11 (16%) 18 (26%) 55 (20%) 87 (10%)
2 25 (17%) 7 (5%) 29 (19%) 8 (5%) 69 (11%) 28 (41%) 23 (33%) 48 (70%) 27 (39%) 126 (46%) 195 (22%)
3 21 (14%) 25 (17%) 24 (16%) 20 (13%) 91 (15%) 16 (23%) 25 (36%) 6 (9%) 15 (22%) 62 (22%) 152 (17%)
4 36 (24%) 33 (22%) 46 (30%) 21 (14%) 135 (22%) 4 (6%) 6 (9%) 3 (4%) 0 (0%) 13% (5%) 149 (17%)
5 62 (41%) 82 (54%) 43 (28%) 90 (60%) 277 (46%) 5 (7%) 5 (7%) 1 (1%) 9 (13%) 20 (7%) 297 (34%)

151 (100%) 604
(100%) 69 (100%) 276

(100%)
880

(100%)

The rate of patients classified as CO-RADS 1 (normal/noninfectious) was 10% (95%CI:
8–12%), while the rate of CO-RADS 3 (equivocal cases) was 17% (95%CI: 15–20%). Specifi-
cally, 43 (20%) cases received a CO-RADS 3 score from two or more readers, of which 26
(60% of 43) were COVID-19 patients and 17 (40% of 43) were non-COVID-19 patients. On
the other hand, the R-AI classifier misclassified 21% (95%CI: 15–28%) of the COVID-19
patients and 22% (95%CI: 14–33%) of the non-COVID-19 patients. Exemplary cases are
shown in Figure 1.

Regarding the diagnostic performance in identifying COVID-19 pneumonia, full
results are provided in Table 3, Figures 2 and 3. Considering all the readers, SE = 83%
(95%CI: 80–86%), SP = 66% (95%CI: 60–71%), ACC = 78% (95%CI: 75–80%), PLR = 2.35
(95%CI: 2.00–2.76), and NLR = 0.25 (95%CI: 0.21–0.30) were observed in the high suspicion
scenario. On the other hand, SE = 68% (95%CI: 64–72%), SP = 88% (95%CI: 84–92%),
ACC = 75% (95%CI: 72–77%), PLR = 5.70 (95%CI: 4.12–7.89), and NLR = 0.36 (95%CI:
0.32–0.41) were obtained in the low suspicion scenario.
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Figure 1. Exemplary cases of different situations occurred in the classification task. For each case, the
probability output of the R-AI classifier and the CO-RADS scores assigned by the readers are reported.
Final diagnoses by molecular testing were: (a) parainfluenza virus 4 pneumonia; (b) COVID-19
pneumonia; (c) rhinovirus pneumonia; (d) COVID-19 pneumonia.

Tomography 2022, 8, FOR PEER REVIEW 7 
 

 

= 75% (95%CI: 72–77%), PLR = 5.70 (95%CI: 4.12–7.89), and NLR = 0.36 (95%CI: 0.32–0.41) 
were obtained in the low suspicion scenario.  

When considering the R-AI classifier, it achieved SE = 79% (95%CI: 71–85%), SP = 78% 
(95%CI: 67–87%), ACC = 79% (95%CI: 73–84%), PLR = 3.63 (95%CI: 2.30–5.72), and NLR = 
0.27 (95%CI: 0.19–0.38) in distinguishing COVID-19 from non-COVID-19 pneumonia on 
the validation dataset.  

Table 3. Diagnostic performance of radiomic-based artificial intelligence classifier (R-AI) and 
human readers in classifying the patients in the high and low suspicion scenarios. 

 SE SP ACC PLR NLR 
 High Suspicion Scenario 

Reader 1 79% (71–85%) 64% (51–75%) 74% (68–80%) 2.18 (1.57–3.01) 0.33 (0.23–0.47) 
Reader 2 93% (87–96%) 48% (36–60%) 79% (73–84%) 1.78 (1.41–2.24) 0.15 (0.08–0.28) 
Reader 3 75% (67–82%) 86% (75–93%) 78% (72–83%) 5.16 (2.89–9.23) 0.29 (0.22–0.39) 
Reader 4 87% (80–92%) 65% (53–76%) 80% (74–85%) 2.49 (1.79–3.47) 0.20 (0.13–0.32) 

Total 83% (80–86%) 66% (60–71%) 78% (75–80%) 2.42 (2.05–2.86) 0.25 (0.21–0.31) 
 Low suspicion scenario 

Reader 1 65% (57–72%) 87% (77–94%) 72% (65–78%) 4.98 (2.68–9.25) 0.40 (0.32–0.51) 
Reader 2 76% (69–83%) 84% (73–92%) 79% (73–84%) 4.78 (2.76–8.27) 0.28 (0.21–0.38) 
Reader 3 59% (51–67%) 94% (86–98%) 70% (63–76%) 10.17 (3.89–26.57) 0.44 (0.36–0.53) 
Reader 4 74% (66–80%) 87% (77–94%) 78% (72–83%) 5.64 (3.04–10.44) 0.30 (0.23–0.40) 

Total 68% (64–72%) 88% (84–92%) 75% (72–77%) 5.70 (4.12–7.89) 0.36 (0.32–0.41) 
R-AI 79% (71–85%) 78% (67–87%) 79% (73–84%) 3.63 (2.30–5.72) 0.27 (0.19–0.38) 

95% confidence intervals were reported in parentheses. SE: sensitivity; SP: specificity; ACC: 
accuracy; PLR: positive likelihood ratio; NLR: negative likelihood ratio. 

 
Figure 2. Confusion matrices of the global performance of the four readers in the high and low 
suspicion scenarios and the radiomic-based artificial intelligence (R-AI) classifier in distinguishing 
COVID-19 from other types of viral pneumonia. 

Figure 2. Confusion matrices of the global performance of the four readers in the high and low
suspicion scenarios and the radiomic-based artificial intelligence (R-AI) classifier in distinguishing
COVID-19 from other types of viral pneumonia.



Tomography 2022, 8 2821
Tomography 2022, 8, FOR PEER REVIEW 8 
 

 

 
Figure 3. Comparison between the accuracy of the radiomic-based artificial intelligence (R-AI) 
classifier and the four readers in differentiating COVID-19 from other types of viral pneumonia in 
both high and low suspicion scenarios. Bars on graph boxes represent the 95% confidence interval 
of the accuracy values. Significant results of pairwise McNemar test after Bonferroni’s correction 
were reported. 

According to Cochran’s Q test, only the performance of Reader 3 significantly 
changed between the high and low suspicion scenarios, decreasing in the latter (accuracy 
70% vs. 78%, p = 0.008); no significant changes were found for the other readers (p > 0.999). 
No significant differences in performance were observed between the readers and the R-
AI classifier for the high suspicion scenario (p = 0.369); on the contrary, a statistically 
significant result was obtained for the low suspicion scenario (p = 0.003). However, the 
post-hoc pairwise McNemar test revealed that the R-AI classifier still had diagnostic 
performance comparable to that of human readers (lowest p = 0.256), whereas Reader 3 
had a significantly lower performance than Reader 2 (p = 0.039) and Reader 4 (p = 0.041). 
Full statistical results of the comparative analysis are provided in Table 4. 

Table 4. Comparative analysis of the diagnostic performance of radiomic-based artificial 
intelligence classifier (R-AI) and human readers in both high and low suspicion scenarios. 

Cochran’s Q Test Post-Hoc Pairwise McNemar Test 

 
High Suspicion 

Scenario 
Low Suspicion 

Scenario   R-AI Reader 1 Reader 2 Reader 3 Reader 4 
Accuracy p-Value Accuracy p-Value 

R-AI 79% 

0.369 

79% 

0.003 * 

R-AI 1 - - - - 
Reader 1 74% 72% Reader 1 0.637 1 - - - 
Reader 2 79% 79% Reader 2 1 0.288 1 - - 
Reader 3 78% 70% Reader 3 0.256 1 0.039 * 1 - 
Reader 4 80% 78% Reader 4 1 0.259 1 0.041 * 1 

The p-values adjusted after Bonferroni’s correction were reported (“*” = statistically significant 
values). 

Finally, considering the subset of 43 CT scans to which two or more radiologists 
assigned a CO-RADS 3 score, the readers obtained a global accuracy of 55% (95%CI: 47–

Figure 3. Comparison between the accuracy of the radiomic-based artificial intelligence (R-AI)
classifier and the four readers in differentiating COVID-19 from other types of viral pneumonia in
both high and low suspicion scenarios. Bars on graph boxes represent the 95% confidence interval
of the accuracy values. Significant results of pairwise McNemar test after Bonferroni’s correction
were reported.

Table 3. Diagnostic performance of radiomic-based artificial intelligence classifier (R-AI) and human
readers in classifying the patients in the high and low suspicion scenarios.

SE SP ACC PLR NLR

High Suspicion Scenario
Reader 1 79% (71–85%) 64% (51–75%) 74% (68–80%) 2.18 (1.57–3.01) 0.33 (0.23–0.47)
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Reader 3 75% (67–82%) 86% (75–93%) 78% (72–83%) 5.16 (2.89–9.23) 0.29 (0.22–0.39)
Reader 4 87% (80–92%) 65% (53–76%) 80% (74–85%) 2.49 (1.79–3.47) 0.20 (0.13–0.32)

Total 83% (80–86%) 66% (60–71%) 78% (75–80%) 2.42 (2.05–2.86) 0.25 (0.21–0.31)

Low suspicion scenario
Reader 1 65% (57–72%) 87% (77–94%) 72% (65–78%) 4.98 (2.68–9.25) 0.40 (0.32–0.51)
Reader 2 76% (69–83%) 84% (73–92%) 79% (73–84%) 4.78 (2.76–8.27) 0.28 (0.21–0.38)
Reader 3 59% (51–67%) 94% (86–98%) 70% (63–76%) 10.17 (3.89–26.57) 0.44 (0.36–0.53)
Reader 4 74% (66–80%) 87% (77–94%) 78% (72–83%) 5.64 (3.04–10.44) 0.30 (0.23–0.40)

Total 68% (64–72%) 88% (84–92%) 75% (72–77%) 5.70 (4.12–7.89) 0.36 (0.32–0.41)

R-AI 79% (71–85%) 78% (67–87%) 79% (73–84%) 3.63 (2.30–5.72) 0.27 (0.19–0.38)

95% confidence intervals were reported in parentheses. SE: sensitivity; SP: specificity; ACC: accuracy; PLR:
positive likelihood ratio; NLR: negative likelihood ratio.

When considering the R-AI classifier, it achieved SE = 79% (95%CI: 71–85%), SP = 78%
(95%CI: 67–87%), ACC = 79% (95%CI: 73–84%), PLR = 3.63 (95%CI: 2.30–5.72), and
NLR = 0.27 (95%CI: 0.19–0.38) in distinguishing COVID-19 from non-COVID-19 pneu-
monia on the validation dataset.

According to Cochran’s Q test, only the performance of Reader 3 significantly changed
between the high and low suspicion scenarios, decreasing in the latter (accuracy 70% vs.
78%, p = 0.008); no significant changes were found for the other readers (p > 0.999). No
significant differences in performance were observed between the readers and the R-AI
classifier for the high suspicion scenario (p = 0.369); on the contrary, a statistically significant
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result was obtained for the low suspicion scenario (p = 0.003). However, the post-hoc
pairwise McNemar test revealed that the R-AI classifier still had diagnostic performance
comparable to that of human readers (lowest p = 0.256), whereas Reader 3 had a significantly
lower performance than Reader 2 (p = 0.039) and Reader 4 (p = 0.041). Full statistical results
of the comparative analysis are provided in Table 4.

Table 4. Comparative analysis of the diagnostic performance of radiomic-based artificial intelligence
classifier (R-AI) and human readers in both high and low suspicion scenarios.

Cochran’s Q Test Post-Hoc Pairwise McNemar Test

High Suspicion
Scenario

Low Suspicion
Scenario R-AI Reader 1 Reader 2 Reader 3 Reader 4

Accuracy p-Value Accuracy p-Value

R-AI 79%

0.369

79%

0.003 *

R-AI 1 - - - -
Reader 1 74% 72% Reader 1 0.637 1 - - -
Reader 2 79% 79% Reader 2 1 0.288 1 - -
Reader 3 78% 70% Reader 3 0.256 1 0.039 * 1 -
Reader 4 80% 78% Reader 4 1 0.259 1 0.041 * 1

The p-values adjusted after Bonferroni’s correction were reported (“*” = statistically significant values).

Finally, considering the subset of 43 CT scans to which two or more radiologists
assigned a CO-RADS 3 score, the readers obtained a global accuracy of 55% (95%CI: 47–62%)
in the high suspicion scenario and 45% (95%CI: 38–53%) in the low suspicion scenario,
whereas the R-AI classifier showed an accuracy of 74% (95%CI: 59–86%). Cochran’s Q test
was significant in both cases, with p < 0.001; however, the post-hoc pairwise McNemar
test was significant only for the comparison of the R-AI classifier with Reader 1 (p = 0.023
for both scenarios) and Reader 3 in the low suspicion scenario (p = 0.035). Full details are
reported in Tables 5 and 6 and Figure 4.

Table 5. Diagnostic performance of radiomic-based artificial intelligence classifier (R-AI) and human
readers in classifying the subset (n = 43) of patients who were assigned a CO-RADS 3 score by two or
more readers.

SE SP ACC PLR NLR

High Suspicion Scenario
Reader 1 42% (23–63%) 35% (14–62%) 40% (25–56%) 0.65 (0.37–1.16) 1.63 (0.79–3.37)
Reader 2 100% (87–100%) 6% (0–29%) 63% (47–77%) 1.06 (0.94–1.20) n/a
Reader 3 42% (23–63%) 82% (57–96%) 58% (42–73%) 2.4 (0.78–7.35) 0.7 (0.47–1.04)
Reader 4 92% (75–99%) 6% (0–29%) 58% (42–73%) 0.98 (0.83–1.15) 1.31 (0.13–13.32)

Total 69% (59–78%) 32% (22–45%) 55% (47–62%) 1.02 (0.83–1.26) 0.95 (0.61–1.49)

Low Suspicion Scenario
Reader 1 12% (2–30%) 82% (57–96%) 40% (25–56%) 0.65 (0.15–2.87) 1.07 (0.83–1.39)
Reader 2 31% (14–52%) 94% (71–100%) 56% (40–71%) 5.23 (0.72–38.15) 0.74 (0.55–0.98)
Reader 3 0% (0–13%) 100% (80–100%) 40% (25–56%) n/a 1 (1.00–1.00)
Reader 4 19% (7–39%) 88% (64–99%) 47% (31–62%) 1.63 (0.36–7.49) 0.92 (0.71–1.18)

Total 15% (9–24%) 91% (82–97%) 45% (38–53%) 1.74 (0.72–4.23) 0.93 (0.83–1.04)

R-AI 69% (48–86%) 82% (57–96%) 74% (59–86%) 3.92 (1.36–11.31) 0.37 (0.20–0.69)

95% confidence intervals were reported in parentheses. SE: sensitivity; SP: specificity; ACC: accuracy; PLR:
positive likelihood ratio; NLR: negative likelihood ratio.
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Table 6. Comparative analysis of diagnostic performance of radiomic-based artificial intelligence
classifier (R-AI) and human readers in classifying the subset (n = 43) of patients who were assigned a
CO-RADS 3 score by two or more readers.

Cochran’s Q Test Post-Hoc Pairwise McNemar Test

High Suspicion Scenario
R-AI Reader 1 Reader 2 Reader 3 Reader 4

Accuracy p-value

R-AI 74%

<0.001 *

R-AI 1 - - - -
Reader 1 40% Reader 1 0.035 * 1 - - -
Reader 2 63% Reader 2 1 0.550 1 - -
Reader 3 58% Reader 3 1 0.614 1 1 -
Reader 4 58% Reader 4 1 1 1 1 1

Low Suspicion Scenario
R-AI Reader 1 Reader 2 Reader 3 Reader 4

Accuracy p-value

R-AI 74%

<0.001 *

R-AI 1 - - - -
Reader 1 40% Reader 1 0.023 * 1 - - -
Reader 2 56% Reader 2 0.990 1 1 - -
Reader 3 40% Reader 3 0.023 * 1 0.455 1 -
Reader 4 47% Reader 4 0.139 1 1 1 1

The p-values adjusted after Bonferroni’s correction were reported (“*” = statistically significant values).
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the subset (n = 43) of patients who were assigned a CO-RADS 3 score by two or more. Bars on graph
boxes represent the 95% confidence interval of the accuracy values. Significant results of pairwise
McNemar test after Bonferroni’s correction were reported.

4. Discussion

In this study, the diagnostic performance of multiple readers in distinguishing between
COVID-19 and non-COVID-19 pneumonia was evaluated in two different risk scenarios
and compared with a radiomic-based artificial intelligence classifier.

Given the well-known complexity of the task, inter-reader agreement in assigning the
CO-RADS score was assessed and found to be good, in line with the currently available
literature on the reproducibility of this reporting system. Prokop et al. [8] initially observed
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an overall Fleiss’ kappa of 0.47, but subsequent studies reported a moderate-to-good level
of agreement, comparable to that observed in our study [9,26]. Moreover, the absence of
significant differences in the diagnostic performance of the three high-experience readers
compared to the low-experience reader using the CO-RADS score confirmed the observa-
tions by Bellini et al. [10]. On the contrary, in our study, some inconsistency in CO-RADS
evaluation was observed for one of the high-experience readers, whose diagnostic accuracy
were slightly inferior in the low suspicion scenario.

At the very beginning of the COVID-19 pandemic, a study [7] on 424 patients with
COVID-19 and non-COVID-19 viral pneumonia yielded a classification accuracy ranging
between 60% and 83% when considering radiologists with direct experience of SARS-
CoV-2 infection. Such a wide range of accuracy was reported in subsequent multi-reader
analyses [5,27,28], and the results of our study fell within it. The simulation of two different
suspicion scenarios allowed us to account for diverse epidemiological conditions, thus
providing a more complete picture of the diagnostic performance of the readers.

When applied to the same dataset, the R-AI classifier obtained an accuracy of 79%,
comparable to the performance of the human readers in both high and low suspicion
scenarios. This result was similar to that reported by Cardobi et al. [29], who developed a
radiomic-based model to distinguish COVID-19 from other types of interstitial pneumonia
at chest CT. As we used a ten-time larger dataset and applied the R-AI classifier to an
independent validation set, our study provided stronger evidence that quantitative imaging
and AI models can support this diagnostic task.

Notably, when considering only the subset of patients who were assigned a CO-RADS
3 score by two or more radiologists, the global accuracy of the human readers dropped to
45–55% (depending on the scenario), while the accuracy of the R-AI classifier was almost
unchanged (74%). This suggested a more stable performance for the AI, probably based
on the extraction of quantitative information within medical images not perceivable by
the human brain, even though the result was only partially confirmed by the post-hoc
pairwise McNemar test. However, it is reasonable to believe that the smaller sample
size, resulting in larger confidential intervals for performance metrics, and correction for
multiple comparisons reduced the statistical power by increasing the risk for type II errors.
Nevertheless, the result bolsters the concept of AI models helping with equivocal cases, for
example, as a second opinion tool to improve diagnostic performance.

AI models with higher performance than our classifier in differentiating between
COVID-19 and non-COVID-19 viral pneumonia were also reported, as in the study by
Wang et al. [14,30]. However, these authors proposed a method based on single-slice manual
segmentation of pulmonary lesions, which is a time-consuming approach hardly feasible
in everyday clinical practice compared with our fully automatic approach. Zhou et al. [13]
provided another example of an automatic deep learning-based algorithm with very good
performance but limited to patients with SARS-CoV-2 and influenza virus infections.

In this regard, contrary to many other similar studies on AI models [16,17], we decided
to focus only on the differential diagnosis between COVID-19 and non-COVID-19 viral
pneumonia, rather than a broader spectrum of pulmonary diseases. On the one hand, this
choice was meant to stress the difficulty posed by the highly overlapping CT findings of
these entities; on the other hand, the recognition of typical signs of bacterial infections,
such as lobar consolidation, would most likely not require the support of an AI tool. In
addition, even if rapid COVID-19 tests are currently widespread and help guide the clinical
suspicion, they may be unavailable in some contexts (e.g., night shifts) or provide equivocal
results. On the other hand, we envisioned our R-AI classifier as a tool for the radiologist to
be used for pneumonia cases whose infectious nature is recognized but with ambiguous
or discordant findings compared to clinical history or laboratory results. Nevertheless,
in the future, it would be possible to further train the classifier with other lung diseases that
mimic COVID-19, such as organizing pneumonia or drug-induced interstitial pneumonia,
thus extending its applications.
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The main limitation of this study is represented by its retrospective design in a single
institution, showing a selection bias. For example, COVID-19 and non-COVID-19 groups
had different sample sizes, although this was limited by the fact that the readers were
unaware of the case proportions. The R-AI classifier was trained and tested on a COVID-
predominant dataset, as well. Additionally, the study population mainly included patients
with moderate-to-severe pulmonary involvement based on the visual evaluation of the
readers. The underrepresentation of cases with mild disease could represent a bias, even if
the sample reflected the actual population for whom chest CT scan is recommended [31]. In
addition, the CO-RADS score has been developed specifically for use in patients with mod-
erate to severe disease [8]. Another limitation was that chest CT scans within 15 days from
molecular evidence of infection were used, but the cause-and-effect relationship could have
been fallacious. Indeed, some of the selected patients may have mixed pneumonia or other
diseases. However, the large dataset used should have minimized the impact of this occur-
rence. Finally, the radiologists were not given clinical information during the evaluation,
which could have further improved their performance. In the future, the generalizability of
our results should be assessed with a prospective design in a multicenter setting, possibly
incorporating clinical information in the AI model.

In conclusion, this work confirmed that distinguishing COVID-19 from other types
of viral pneumonia is challenging, even for expert radiologists. Nevertheless, we showed
that an artificial intelligence classifier based on radiomic features can provide diagnostic
performance in this task comparable to human readers, and probably even better with
equivocal cases. Once implemented in the clinical workflow, such a tool could support
the radiological activity, for example, by providing a second opinion in case of ambiguous
chest CT findings of pulmonary infection.
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