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Abstract: Atrial size is a predictor of cardiovascular mortality. Non-ECG-gated computed tomogra-
phy pulmonary angiography (CTPA) is a common test for cardiopulmonary evaluation but normative
values for biatrial volumes are lacking. We derived normal CT biatrial volumes using manual
and semiautomated segmentation with contemporaneous transthoracic echocardiography (TTE)
to confirm normal diastology. Thirty-five consecutive cases in sinus rhythm with no history of
cardio-vascular, renal, or pulmonary disease and normal diastolic function were selected. Planimetric
CTPA measurements were compared to TTE volumes measured using area length method. TTE and
CTPA derived normal LAVi and RAVi were 27 + 5 and 20 + 6 mL/m2, and 30 + 8 and 29 + 9 mL/m2,
respectively. Bland–Altman analysis revealed an underestimation of biatrial volumes by TTE. TTE-CT
mean biases for LAV and RAV were −5.7 + 12.0 mL and −16.2 + 14.8 mL, respectively. The CT
intraclass correlation coefficients (ICC 95% CI) for LA and RA volumes were 0.99 (0.96–1.00) and 0.96
(0.76–0.99), respectively. There was excellent correlation (p < 0.001) between the semiautomated and
manual measurements for LA (r 0.99, 95% CI 0.98–0.99) and RA (r 0.99, 95% CI 0.99–1.00). Atrial
volumetric assessment on CTPA is easy and reproducible and can provide additional metric in
cardiopulmonary assessment.

Keywords: CT biatrial size; CT biatrial volumes; CT indexed atrial volumes; CT atrial size; CT atrial
volumes; CT planimetry

1. Introduction

There is an increasing trend to use left atrial (LA) size and function as a morphophys-
iologic expression to predict cardiovascular mortality in a variety of conditions such as
atrial fibrillation, cardiomyopathy, ischemic heart disease, and valvular heart disease [1].
Right atrial (RA) size has also been shown to be of prognostic relevance in diverse car-
diopulmonary disorders such as pulmonary embolism and pulmonary hypertension [2,3].
Cardiac magnetic resonance imaging (MRI) and echocardiography are the two non-invasive
imaging techniques that are traditionally used for cardiac chamber quantification. Echocar-
diography is widely available and relatively inexpensive but has limited use for thoracic
evaluation. MRI, with its unrivalled versatility, is the reference standard [4] and uses
steady-state free precession cine imaging rather than angiographic sequences for chamber
measurements as it provides high signal contrast between the ventricular blood pool and
the myocardium with improved performance for semiautomated edge-detection algo-
rithms. In spite of its numerous advantages such as operator independence, no exposure to
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ionising radiation, and lack of geometric assumptions to estimate heart size, MRI is not
the introductory modality in the investigation of cardiopulmonary disorders and is also
resource intensive and time consuming.

Non-ECG-gated computed tomography pulmonary angiography (CTPA) is a com-
monly performed test for assorted indications pertaining to the cardiopulmonary system
including the assessment of dyspnoea and chest pain. Historically, cardiac chamber assess-
ment on CTPA was performed subjectively but with recent technical advances, it is possible
to accomplish objective evaluations. However, there is limited published data regarding
normal atrial size on CTPA. There are a number of ECG-gated CT angiography [5–7] based
publications on atrial volumetry but this literature serves to illustrate the methodological
differences between the different groups. Such lack of consensus translates to difficulty
in establishing normative values. In a recent systematic review by Zuin et al. [8] of the
potential role of LA size derived by non-ECG-gated CT angiography in patients with
acute pulmonary embolism, LA volumes were evaluated in four studies [9–12] but none
had comparative TTE that could be used for corroboration of the volumes. The results
were further limited by the lack of data regarding the presence of atrial fibrillation in the
analysed patients.

Given the wide variation in the CT angiography methodology used for atrial mea-
surements, both in terms of the parameters used for estimating atrial size as well as in the
techniques employed for the measurements, we performed a small pilot study to examine
the feasibility and reproducibility of deriving normative biatrial volumes on CTPAs us-
ing both manual contouring and semiautomated volume segmentation with comparative
transthoracic echocardiography (TTE) to confirm normal diastology.

2. Materials and Methods
2.1. Patient Population

This retrospective study was approved by the Institutional Review Board and need for
informed consent was waived. Internal radiology information system/picture archiving
and communication system, echocardiography and electronic medical records databases
were scrutinised over a 3-year period to select patients who were in sinus rhythm, had
no prior history of cardiovascular, renal, or pulmonary disease, and had undergone both
non-ECG-gated CTPA and transthoracic echocardiography (TTE) within a 6 month period,
irrespective of the indications for the 2 tests.

TTE was first analysed in accordance with current guidelines [13]. Strict exclusion
criteria were then applied to identify patients with completely normal diastology (Figure 1:
Flow chart of the selection process including exclusion criteria; although age was not an
exclusion criterion, all patients with normal diastology in the final analysis were less than
56-years old). If the LV diastolic function was completely normal on TTE, the corresponding
CTPA was then retrieved. After excluding cases with thromboembolic disease, the images
were analysed for cardiorespiratory motion and contrast opacification that could adversely
affect atrial size quantification. As adequate biatrial contrast enhancement is a prerequisite
to both manual and semi-automated segmentation, CTPAs with low left atrial enhancement
(<150 HU) were excluded. The final analysis included thirty-five cases.
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Figure 1. Flow chart outlining the selection process including the exclusion criteria. TTE: transtho-
racic echocardiography; LA: left atrium. HU: Hounsfield unit. 
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CTPA’s were acquired on single-source 128-multislice configuration (Somatom 

Definition AS+; Siemens AG, Munich, Germany). Non-ECG-gated scanning was 
performed in craniocaudal direction from lung apices to bases at end-inspiration during 
a single breath-hold using the following acquisition parameters; table speed 61.4 
mm/rotation, pitch 0.8 pitch, tube voltage 80–120 kVp, tube current 100 mAs, rotation time 
0.5 s, and 512 × 512 acquisition matrix. A total of 100 mLs Omnipaque 350 (GE Healthcare, 
Chicago, IL, USA) was injected at 5 mL/s with 20-mL saline chaser. Pulmonary artery 
visualisation was optimised using an automated bolus-tracking technique with region of 
interest (ROI) placed within main pulmonary artery and trigger values of 130 Hounsfield 
units. Images were reconstructed at 1-mm slice thickness at 1 mm interval using SAFIRE 
(Sinogram Affirmed Iterative Reconstruction, strength 3) iterative reconstruction. 

2.3. CT Biatrial Measurement 
For manual measurements, CT images were analysed using Vitrea Advanced 

Visualization multimodal platform (Vital Images, Inc.; Minnetonka, MN, USA). CT 
parameters were measured in consensus by two radiologists (R1, a cardiovascular 
radiologist with 15 years’ experience, and R2, a radiology imaging fellow). 

Figure 1. Flow chart outlining the selection process including the exclusion criteria. TTE: transthoracic
echocardiography; LA: left atrium. HU: Hounsfield unit.

2.2. CT Acquisition

CTPA’s were acquired on single-source 128-multislice configuration (Somatom Defi-
nition AS+; Siemens AG, Munich, Germany). Non-ECG-gated scanning was performed
in craniocaudal direction from lung apices to bases at end-inspiration during a single
breath-hold using the following acquisition parameters; table speed 61.4 mm/rotation,
pitch 0.8 pitch, tube voltage 80–120 kVp, tube current 100 mAs, rotation time 0.5 s, and
512 × 512 acquisition matrix. A total of 100 mLs Omnipaque 350 (GE Healthcare, Chicago,
IL, USA) was injected at 5 mL/s with 20-mL saline chaser. Pulmonary artery visualisation
was optimised using an automated bolus-tracking technique with region of interest (ROI)
placed within main pulmonary artery and trigger values of 130 Hounsfield units. Images
were reconstructed at 1-mm slice thickness at 1 mm interval using SAFIRE (Sinogram
Affirmed Iterative Reconstruction, strength 3) iterative reconstruction.

2.3. CT Biatrial Measurement

For manual measurements, CT images were analysed using Vitrea Advanced Visual-
ization multimodal platform (Vital Images, Inc.; Minnetonka, MN, USA). CT parameters
were measured in consensus by two radiologists (R1, a cardiovascular radiologist with
15 years’ experience, and R2, a radiology imaging fellow).
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CT 2 and 4 chamber planes were created analogous to TTE views. Using multiplanar
reformatting (MPR) with true axial stack, 2 and 4 chamber planes were created by position-
ing long axis reference line through LV apex and mid mitral valve, and short axis reference
line parallel and aligned with mitral annular plane. Imaging slice height was adjusted
cranio-caudally to remove LV outflow tract/aortic root from view, to avoid creation of TTE
equivalent ‘5 chamber view’. The LV short axis plane was used for cross reference to ensure
the manually created 2 and 4 chamber planes transected the appropriate and relevant my-
ocardial segments; 2 chamber—anterior and inferior segments, 4 chamber—inferoseptum
and anterolateral segment (Figure 2).
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Figure 2. Creation of 4 and 2 chamber planes on non-ECG-gated CTPA. Left panel: Source data prior
to image manipulation. Middle panel: Alignment of crosshairs with long axis reference line through
LV apex and mid mitral valve and short axis reference line parallel and aligned with mitral annular
plane. Right panel: Avoid creation of a 5 chamber view by adjusting the image height (arrow points to
left ventricular outflow tract). RA: right atrium; LA: left atrium; RV: right ventricle; LV: left ventricle.

LA area planimetry was performed using freehand ROI tool. Pulmonary veins and
LA appendage were excluded. Using TTE area length method, LA volume was estimated
by: (0.85 × area 1 (2 chamber) × area 2 (4 chamber)) ÷ shortest LA long axis length [14].
Whilst limitations of area length method (relating to LA shape geometric assumptions) are
acknowledged, it was selected over the Simpson modified biplane method to allow expe-
ditious CT LA volume estimation without the need for additional software computation.
Direct LA area was not measured from the straight axial stack due to divergence of LA
long axis plane from the standard axial plane which would result in a degree of systematic
bias and limit direct comparability with TTE. This would be further compounded by single
plane 4 chamber LA measurements being smaller than 2 chamber [15]. RA volume was
also measured from same CT 4 chamber plane without alteration of the horizontal imaging
plane to emphasise the RA. Area planimetry was performed using freehand ROI tool with
exclusion of RA appendage. Single plane RA volume was estimated by: (0.85 × (RA 4
chamber area)2) ÷ RA long axis length [14,16]. (Figures 3 and 4).

Left atrial volume: (0.85 × area 1 (2 chamber) × area 2 (4 chamber)) ÷ shortest LA long axis length:
0.85 × 14.7 × 14.4 ÷ 4.4 = 40.8 mL. LAVi = 21.4 mL/m2

Right atrial volume: (0.85 × (RA 4 chamber area)2) ÷ RA long axis length:
0.85 × (16.1) 2) ÷ 4.2 = 52.45 mL. RAVi: 27.6 mL/m2

LAVi: Left atrial volume indexed; RAVi: Right atrial volume indexed.
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Figure 3. Four and two chamber planes from a non-ECG-gated CTPA (top) and corresponding
echocardiograpy images (bottom). Atrial areas planimetered with exclusion of right and left atrial
appendages and pulmonary veins. Arrow in middle panel indicates left atrial appendage. RA: right
atrium; LA: left atrium.
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Figure 4. Example of left and right atrial planimetry in a 50-year-old male with body surface area of
1.9 (height 173 cm, weight 76 kg).

Semiautomated biatrial measurements were performed offline using commercially
available software (CVI42 version 5.12.1, Circle Cardiovascular Imaging, Calgary, AB,
Canada). The biatrial endocardial borders were manually delineated in the apical four-
and two-chamber views using a point-and-click approach before the automated tracking
algorithm was applied. The pulmonary veins and atrial appendages were again excluded
from the analysis. Maximum and minimum volumes were calculated based on the biplane
area-length method [14] and indexed to body surface area.
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The time required to load the CT data into the PACS and software interface and to
complete the manual and semiautomated image analyses was also recorded.

To maintain methodological comparability with CT, atrial volumes on TTE were
measured using the atrial length method by a single experienced echocardiologist (KL).

2.4. Statistical Analysis

Continuous normal data are presented as mean (±1 standard deviation). Non-normal
data are presented as median (inter-quartile range). Categorical variables are displayed
as n (%). Continuous data was compared with the (paired) two tailed Student’s t test.
Intraclass correlation coefficient (ICC) estimates and their 95% confidence intervals for
inter-observer variability in manual CT atrial measurement were calculated. TTE and
manual CT measurement of biatrial volumes was compared with Bland–Altman analysis.
Manual CT and semiautomated CT measurement of biatrial volumes was also compared
with Bland–Altman analysis. Correlation analysis was performed using Pearson correlation
coefficient. A p-value of <0.05 was considered statistically significant.

3. Results

The baseline characteristics and TTE features demonstrating normal diastology are
delineated in Tables 1 and 2, respectively. Manual CT and TTE biatrial measurements are
outlined in Table 3.

Table 1. Baseline characteristics of the thirty-five cases.

Normal Diastology (n = 35)
Age (years) 45 (34–55)

Gender 18 M (51%), 17 F (49%)
BMI 27.0 (23.5–32.0)
BSA 1.95 ± 0.25

CTPA-TTE time interval (days) 44 (11–113)
BMI: body mass index; BSA: body surface area; CTPA: CT pulmonary angiography; TTE: transthoracic
echocardiography.

Table 2. Transthoracic echocardiography (TTE) measures of normal diastology.

Normal Diastology Cohort (n = 35)

Simpson’s biplane LVEF (%) 61 ± 4

Transmitral E (cm/s) 84 (63–96)

Transmitral A (cm/s) 65 (53–73)

E/A 1.29 ± 0.24

Medial mitral e’ (cm/s) 11 (9–12)

Lateral mitral e’ (cm/s) 14 (12–15)

E/medial e’ 7.9 ± 2.0

E/lateral e’ 5.9 ± 1.4

TR Vmax (m/s) (n = 15) 2.3 ± 0.2
LVEF: left ventricular ejection fraction. TR: tricuspid regurgitation.
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Table 3. Manual CT and transthoracic echocardiography (TTE) atrial measurements.

CT Atrial Measurements
(Manual) TTE Atrial Measurements

4Ch LA area (cm2) 18.1 ± 4.1 18.3 ± 3.4

2Ch LA area (cm2) 17.0 ± 4.2 16.7 ± 3.8

LAVi (mL/m2) 30 ± 8 27 ± 5

4Ch RA area (cm2) 17.0 ± 4.1 15.1 ± 3.2

RAVi (mL/m2) 29 ± 9 20 ± 6

4Ch RA:LA area ratio 0.91 (0.82–1.06) 0.84 ± 0.14

RA:LA volume ratio 0.88 (0.81–1.09) 0.76 ± 0.23
LAVi: left atrial volume index; RAVi: right atrial volume index.

3.1. TTE versus CT Biatrial Volumes

TTE and CTPA derived normal LAVi and RAVi were 27 + 5 and 20 + 6 mL/m2, and
30 + 8 and 29 + 9 mL/m2, respectively. Bland–Altman analysis (Figure 5) revealed an
underestimation of biatrial volumes by TTE compared to CT. TTE-CT mean biases for
(non-indexed) LAV and RAV were −5.7 + 12.0 mL and −16.2 + 14.8 mL, respectively. The
intraclass correlation coefficients (ICC 95% CI) for the two readers for CT manual atrial mea-
surements were 0.99 (0.96–1.00) and 0.96 (0.76–0.99) for LA and RA volumes, respectively.
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Figure 5. Bland–Altman comparison of normal transthoracic echocardiography (TTE) and CT (in-
dexed) LA and RA volume measurements.

Shading indicates ±1 standard deviation. Dotted line denotes mean bias.
Whist majority of cases had smaller LAV with TTE, some patients had larger volumes

with TTE than CT. This would relate to TTE LAV being measured in end-systole at maximal
atrial volume and CT being ungated. LA: left atrium. RA: LAV: left atrial volume. Right
atrium. RAV: right atrial volume.

3.2. Manual versus Semiautomated CT Biatrial Volumes

The indexed manual and semiautomated biatrial volumes are outlined in Table 4.

Table 4. Manual automated CT atrial measurements.

Manual Measurement (n = 35) Semiautomated
Measurement (n = 35) p-Value

LAVi (mL/m2) 30 ± 8 30 ± 7 NS

RAVi (mL/m2) 29 ± 9 28 ± 9 NS
LAVi: left atrial volume index; RAVi: right atrial volume index.
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Excellent correlation (p < 0.001) was seen for LA (r 0.99, 95% CI 0.98–0.99) and RA
(r 0.99, 95% CI 0.99–1.00), as displayed in Figure 6.
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Figure 6. CT manual and semiautomated atrial volume correlation. LAVi: left atrial volume indexed;
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The mean time for biatrial analysis with the manual approach was 12 min (+/−3 min).
Automated image analysis was faster with an average of 6–8 min.

4. Discussion

Due to the paucity of published CTPA literature on normative atrial volumes, we
performed this pilot study and derived biatrial volumes on 35 patients with comparative
volumes on contemporaneous TTE. Our results showed excellent correlation between CT
manual and semiautomated volumetric analysis for both atria. However, compared with
CT, there was an underestimation of biatrial volumes by TTE. This is not surprising as
previous studies using ECG-gated CT datasets have shown similar results [17–19].

Quantifying LA size is difficult, in part because of the complex geometry and the
variable contributions of its appendage and pulmonary veins. Furthermore, atria have
an amorphous morphology and their dimensions are affected by parameters such as age
and body mass index [20–22]. LA volume increases markedly in patients with severe
renal dysfunction [23]. Taking these factors in to consideration, we carefully selected our
TTE-CTPA cohort of normal diastology, ensuring normal renal function and sinus rhythm.
Although we did not set an age cut-off, patients with normal diastolic function on the TTE
were younger, with an upper limit of 55 years.

Axial diameter has previously been shown to be a simple and quick CT measurement
of LA size with a cut-off of 4.0 cm for predicting diastolic dysfunction with a sensitivity of
68% and a specificity of 74% [24]. However, this and other studies [24–26] acknowledge that
volumetric analysis provides a more accurate representation of LA size. Furthermore, in
patients with sinus rhythm, indexed LA volume is a more robust marker of cardiovascular
events than LA area or diameter [27]. This is because LA is an asymmetrical cavity and so
volumetric analysis gives a more precise size estimation. Finally, LA dilatation might not
be evenly distributed in all planes, and so a simple antero-posterior dimension is likely to
be insensitive to LA size change [25].

Whilst there are established reference ranges for normative RV volumes on TEE, there
is very limited data on measurement of RA size and in particular, RA volumes by CT. A
cut-off of >35 mm, in the transverse diameter, perpendicular to the interatrial septum,
measured from septal wall to lateral wall has been proposed for RA enlargement, but
this is based on historic data [28]. Few studies have used ECG-gated CT datasets for RA
volumetry [6,29,30] and have shown that similar to LA, the CT-derived RA volumes also
tend to be overestimated when compared with MRI [29] and echocardiography [30]. The
differences in the temporal resolution may account for the inter-technique variability in the
measurements. A recent prospective study of 609 patients with acute PE [2] demonstrated
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the feasibility of performing fully automated RA volumetric analysis on non-ECG-gated
CTPA. Whilst RA dilation was a frequent finding in this population, its prognostic perfor-
mance was inferior compared to other risk stratification markers. Moreover, in the above
study [2], there were patients with co-morbidities that affected the atrial volumes (elderly
male patients with cardiovascular comorbidities had higher volumes whilst cancer patients
had lower volumes) and only 25% of the cases had corresponding echocardiography which
adds to the difficulty of comparing CT measurement accuracy to other techniques.

The complex RA anatomy and the suboptimal delineation of the RA wall on the CT
due to streak artifacts from the intravenous contrast medium contribute to the difficulties in
RA volumetric analysis. Furthermore, the RA size may be affected by the high flow rate of
the administered contrast medium, as well as alterations in venous return with inspiratory
breath-holds. Notwithstanding these challenges, we were able to perform both a manual
and semiautomated assessment of the RA volumes with excellent correlation between
the two methodologies. Similar to LA volumes, TTE underestimated the RA volumes
compared to CT but with a higher magnitude of difference. This greater underestimation of
RA volumes with TTE is likely due to the lack of right ventricle (RV)/ RA focused imaging
as in routine clinical practice; the standard TTE four chamber imaging emphasises the
left heart.

Our study has demonstrated the feasibility and reproducibility of deriving norma-
tive values on routine CTPA. A main limitation is the small sample size. We identified
304 patients with contemporaneous CTPA and TTE but a large proportion in this retro-
spective study group was not suitable due to diastolic dysfunction. However, it must be
emphasised that the current sample size of 35 patients satisfies the central limit theorem
to demonstrate Gaussian/normal distribution for assessment of CT atrial normative val-
ues. Moreover, to our knowledge, it is the only study to have corroborative TTE in all
cases to ensure completely normal diastology. We also acknowledge that atrial chamber
quantification is gender specific, but our work is intended as a pilot study and Gaussian
distribution cannot be demonstrated if our small cohort is divided into male and female
subgroups. Whilst ECG-gating may potentially improve the accuracy of the atrial volumes,
we believe our approach reflects real-world clinical practice as most institutions perform
CTPA without ECG-gating. Manual atrial volumetric assessment is operator dependent
but our quantitative data demonstrated excellent intraclass correlation. However, whilst
manual measurements without recourse to expensive and dedicated analysis software were
shown to be as good as the more sophisticated semiautomated measurements, the latter
are quicker and simpler to perform and hence more easily adaptable in clinical practice.

In conclusion, atrial measurements on CTPA are undergoing an evolutionary process
from subjective evaluation to objective quantification. Knowledge of normal values of atrial
volumes is required to differentiate between pathological conditions and normal state as
well as grade the disease severity and monitor treatment response. The present work has
shown that CT atrial volumetric assessment is easy and reproducible and can provide an
additional metric in the CTPA assessment of cardiopulmonary diseases. Current trends
using artificial intelligence algorithms are apposite for automated atrial volumetric analysis
to be incorporated into routine practice. However, prospective large volume studies will be
needed to validate the normative atrial volumes on CTPA.
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