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Abstract: Amide proton transfer (APT)-weighted MRI is a promising molecular imaging technique
that has been employed in clinic for detection and grading of brain tumors. MTRasym, the quan-
tification method of APT, is easily influenced by B0 inhomogeneity and causes artifacts. Current
model-free interpolation methods have enabled moderate B0 correction for middle offsets, but have
performed poorly at limbic offsets. To address this shortcoming, we proposed a practical B0 correction
approach that is suitable under time-limited sparse acquisition scenarios and for B1 ≥ 1 µT under 3T.
In this study, this approach employed a simplified Lorentzian model containing only two pools of
symmetric water and asymmetric solutes, to describe the Z-spectral shape with wide and ‘invisible’
CEST peaks. The B0 correction was then performed on the basis of the fitted two-pool Lorentzian
lines, instead of using conventional model-free interpolation. The approach was firstly evaluated
on densely sampled Z-spectra data by using the spline interpolation of all acquired 16 offsets as the
gold standard. When only six offsets were available for B0 correction, our method outperformed
conventional methods. In particular, the errors at limbic offsets were significantly reduced (n = 8,
p < 0.01). Secondly, our method was assessed on the six-offset APT data of nine brain tumor patients.
Our MTRasym (3.5 ppm), using the two-pool model, displayed a similar contrast to the vendor-
provided B0-orrected MTRasym (3.5 ppm). While the vendor failed in correcting B0 at 4.3 and 2.7 ppm
for a large portion of voxels, our method enabled well differentiation of B0 artifacts from tumors.
In conclusion, the proposed approach could alleviate analysis errors caused by B0 inhomogeneity,
which is useful for facilitating the comprehensive metabolic analysis of brain tumors.

Keywords: amide proton transfer (APT) MRI; B0 inhomogeneity correction; brain tumors; Lorentzian
fitting; chemical exchange saturation transfer (CEST) MRI

1. Introduction

As a type of chemical exchange saturation transfer (CEST) imaging [1–3], amide proton
transfer (APT) imaging is a promising, non-invasive molecular MRI technique that can
detect endogenous mobile proteins and peptides in tissue [4,5]. Numerous institutions
worldwide have demonstrated that APT imaging adds important value to the standard
clinical MRI sequences in brain tumor diagnoses, such as finding biomarkers, monitoring
tumor progression and response to treatment, grading gliomas, etc. [6–9]. Due to the
asymmetric nature of CEST signals, asymmetry analysis of the magnetization transfer ratio
(i.e., MTRasym) is employed to quantify APT MRI, which equates to the subtraction of
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normalized saturation signals at two symmetric offsets around the water frequency (i.e.,
0 ppm). MTRasym is susceptible to B0 inhomogeneity, and B0 artifacts interfere with the
identification and analysis of brain tumors. Therefore, B0 inhomogeneity correction is
important for the quantification and clinical applications of APT imaging.

Limited by the scan time, in the clinical APT protocol, a few saturation offsets are
acquired around +3.5 ppm and −3.5 ppm for the post-processing of B0 inhomogeneity
correction, instead of real-time B0 correction being performed during acquisition [10–13].
The most commonly used post-processing correction methods are interpolation-based
methods, which include two steps. First, densely sampled signals with intervals of 0.1 ppm
are interpolated from sparsely acquired signals using spline or other interpolated meth-
ods [14–18]. Second, the B0 inhomogeneity is corrected through a B0 inhomogeneity (∆B0)
map of the same image geometry. A ∆B0 map can be obtained using water saturation shift
referencing (WASSR) [19,20], Dixon [21], or Lorentzian-based methods [22].

Interpolation-based methods require high-frequency resolutions and signals close to
the water frequency to provide line shape and adequate neighborhood information. For
example, Debnath et al. found that linear interpolation was suitable for the B0 correction
of APT data (B1 = 2 µT) acquired at 64 offsets (−14~14 ppm with 0.5 ppm intervals) [15].
However, as it is limited by scan time, when using the clinical APT protocol, only a few
saturation offsets can be sampled around ±3.5 ppm. Due to insufficient data acquisition,
interpolation-based methods perform poorly at limbic offsets, which means the APT
protocol typically only provides MTRasym (3.5 ppm). Therefore, the acquisition signals
of the APT protocol are not actually fully used, meaning some important metabolites are
discarded, such as the fast exchange amine (2.7 ppm) and semi-solid macromolecules
(4.3 ppm) [21].

The a priori introduction of a line-shape constraint may compensate for the disad-
vantages caused by insufficient data acquisition in the B0 correction process. Zhou et al.
reported Z-spectral line-shapes of brain tumor patients (B0 = 3T, B1 =2 µT) in their APT
imaging review, which indicates that Z-spectral line-shapes are determined by four effects,
i.e., direct water saturation (DS), semi-solid magnetization transfer (MT), CEST and the
relayed nuclear Overhauser effect (NOE) [9]. The four effects can be simply divided into
two components according to whether the effect is symmetry around water frequency, i.e.,
a symmetric component including DS, and an asymmetric component including MT, CEST
and NOE. Lee et al. proposed a model-based CEST analysis method, which also separated
Z-spectra into symmetric and asymmetric parts and used a Lorentzian model to fit the
symmetric part [23]. Therefore, limited by few acquisition offsets, a two-pool Lorentzian
model may be the correct choice to describe Z-spectral line shapes under 3T with high B1,
in which one pool fits the symmetric water and another pool fits all asymmetric solutes.

Herein, we propose a practical B0 correction approach for use in the most popular six-
offset acquisition protocol [24]. Using this approach, we employed a two-pool (symmetric
water and asymmetric solutes) Lorentzian model to fit the Z-spectral line shape of human
brains at 3T with B1 = 2 µT, in a voxel-by-voxel manner. We evaluated our method using
in vivo APT data acquired from the brains of healthy volunteers and tumor patients. The
contributions of the present study are as follows: (a) In theory, we propose a simplified
two-pool Lorentzian model that is suitable to describe the Z-spectral line shape of human
brains under 3T with B1 ≥ 1 µT. The reduced number of model parameters allowed
for fitting using less frequency offsets, i.e., six offsets as in the popular APT protocol.
(b) Compared with conventional model-free interpolation, the proposed method could
better recover the Z-spectral signals and improve B0 correction performance, especially for
limbic offsets.

2. Theory

To robustly describe the Z-spectral line shape under 3T with high B1 (2 µT), a simplified
two-pool Lorentzian model was chosen as an a priori line shape to fit the spline-interpolated
initial Z-spectra (ranging ±2.5~±4.5 ppm). Given the small number of acquired offsets
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and the broadening of the peaks, we used the simplest standard to construct our two-
pool model, i.e., symmetric water was considered as one pool, and all asymmetric solutes
were considered as another pool, which included a large portion of semi-solid macro-
molecules, a relayed nuclear Overhauser effect (NOE), amides and other metabolites.
Equations (1) and (2) present the model function of our two-pool Lorentzian method.

Ssat(∆ω)

S0
= Zbase −

2

∑
i=1

Li(∆ω) (1)

Li(∆ω) =
Ai

1 + (∆ω − ∆i)
2/(0.5Wi)

2 (2)

where i = 1 (symmetric water), 2 (asymmetric solutes); the parameter Zbase is used to correct
for a constant signal reduction; Li represents a Lorentzian line with a central offset (∆i),
peak full width at half maximum (FWHM, Wi), and peak amplitude (Ai); Ssat(∆ω)/S0 is
the normalized Z-spectrum. Based on previous studies [25,26] and our experiences, the
starting points and boundaries of the fitting parameters are shown in Table 1. The flowchart
of the proposed B0 correction procedure is illustrated in Figure 1.

Table 1. Starting points and boundaries of the 2-pool Lorentzian fitting parameters.

∆1 W1 A1 ∆2 W2 A2 Zbase

start 0 50 25 −2 50 0.1 0.7
lower −0.5 0 0 −4 −inf −inf −inf
upper 0.5 100 50 4 +inf +inf +inf

Note: +inf and −inf represent the positive and negative infinity, respectively.
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3. Materials and Methods
3.1. B0 inhomogeneity Correction

The APT data were normalized by S0 (−1560 ppm) without saturation pulse, and
smoothed using a 4 × 4 median filter according to the acquisition matrix. The proposed
2-pool Lorentzian-based B0 correction method was used in a voxel-by-voxel manner
(Figure 1). For each voxel, a 6-offset Z-spectrum was interpolated, generating a fine Z-
spectrum with interval of 0.1 ppm. In this study, the cubic-spline method, implemented by
MATLAB 2021, a function spline, was employed for interpolation, because it shows less
B0 artifacts on MTRasym (2.7 ppm) than linear and cubic-Hermite interpolation (Figure S1
in the Supplementary Materials). Then, the 2-pool (i.e., symmetric water and asymmetric
solutes) Lorentzian model was utilized to fit the line shape of the interpolated Z-spectrum.
Finally, after fitting, the Z-spectrum was shifted along the frequency dimension to the
correct position, according to a B0 inhomogeneity (∆B0).

3.2. MTRasym Quantification of APT

After voxel-by-voxel B0 correction, magnetization transfer ratio asymmetry analysis
(i.e., MTRasym) was employed to quantify APT, which is defined as Equation (3).

MTRasym
(
∆ωj

)
=

Ssat
(
−∆ωj

)
− Ssat

(
∆ωj

)
S0

(3)

where ∆ωj represents an offset.

3.3. Comparison Methods

The vendor, the cubic-spline interpolation-based method (spline) and the 1-pool
Lorentzian-based method (1-pool) were employed as comparison methods. The vendor
represents the correction results provided by Philips Healthcare [27]. The 1-pool Lorentzian-
based method is similar to the proposed 2-pool Lorentzian-based method, merely replacing
the 2-pool (water and solutes) Lorentzian model with the 1-pool (water) Lorentzian model.

3.4. Datasets

In this study, first, we recruited 4 healthy volunteers (2 males and 2 females, aged
22 ± 3.4 years) and 4 brain tumor patients (3 males and 1 female, aged 53.5 ± 14.8 years).
From these 8 subjects, densely sampled 16-offset APT data were acquired (−6.7, -5.9, ±5.1,
±4.3, ±3.5, ±2.7, ±1.9, ±1.1 and ±0.3 ppm) to validate the accuracy of our method. Then,
we recruited 9 brain tumor patients (3 males and 6 females, aged 54.4 ± 18.6 years), from
whom we acquired 6-offset APT data to enable further comparisons with the vendor. Note
that the 16-offset APT protocol was modified by us; therefore, it did not include B0 correc-
tion results from the vendor. For our method and comparison methods, 6-offset images
(±2.7, ±3.5 and ±4.3 ppm) were extracted from 16-offset APT data. The B0 correction re-
sults using the spline interpolation-based method of 16-offset images were considered to be
the gold standard. Of the 13 brain tumor patients, 8 had glioblastomas, 4 had meningiomas
and 1 had a metastatic brain tumor from lung cancer.

The study protocol was approved by the institutional review board, and written
informed consent was obtained from each subject. MR experiments were performed on a 3T
Ingenia MRI system (Philips Healthcare) with a 32-channel phase array coil, using an APT
sequence and a turbo spin echo readout. For brain tumor patients, APT data were acquired
on the slice centered at the largest areas of the tumors shown on T2w images. The imaging
parameters for APT sequences were as follows: Tsat = 2 s, B1 = 2 µT, echo time = 8.3 ms,
repetition time = 5 s, slice thickness = 7 mm and field-of-view = 220 × 201 mm2 with
an acquisition voxel size = 2.5 × 2.5 × 7 mm3. ∆B0 maps were generated using the
3-echo Dixon. Multi-slice T2w images and Gd-T1w images were acquired with a 5 mm
slice thickness.
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3.5. Evaluation Metrics

Using the gold standard as described in Section 3.4, Z-spectra errors and MTRasym
errors were employed to evaluate the accuracy of B0 correction, which are defined as
Equations (4) and (5).

Z-spectra errors = |Z-spectra(2-pool/comparisons) − Z-spectra(gold standard)|, (4)

MTRasym errors = |MTRasym(2-pool/comparisons) − MTRasym(gold standard)|. (5)

One-tailed, paired Student’s t-tests were used to evaluate the differences between two
groups in this study, which were considered to be statistically significant when p < 0.05.

4. Results
4.1. Accuracy Evaluation

Figure 2 shows the MTRasym maps and the corresponding error maps of a representa-
tive brain tumor patient. As seen in Figure 2a, before B0 correction, MTRasym maps had
severe B0 artifacts, which would have influenced the identification and analysis of tumors
(as shown in Figure 2b), especially for 2.7 ppm. The spline-based correction method allevi-
ated some B0 artifacts; however, in the regions with high B0 inhomogeneity (∆B0 > 0.5 ppm),
the artifacts still appeared on MTRasym (2.7 ppm) and MTRasym (4.3 ppm). The one-pool
Lorentzian-based method seemed to eliminate artifacts in regions with high B0 inhomo-
geneity, but generated wrong MTRasym (4.3 ppm) maps, which were quite different from
the gold standard. Compared with the maps generated using the spline and one-pool
methods, the three MTRasym maps corrected using the proposed two-pool Lorentzian-based
method not only were more similar to the gold standard, but also had fewer B0 artifacts.
This can also be validated by the MTRasym error maps, shown in Figure 2c. Using our
method, there were fewer MTRasym errors of limbic offsets than when using the spline and
one-pool methods, especially in the regions with relatively high B0 inhomogeneity. The
MTRasym maps and MTRasym error maps of a representative healthy volunteer are shown
in Figure S2 in the Supplementary Materials.

The corresponding region-of-interest (ROI) analyses of the representative tumor pa-
tient are shown in Figure 3. Four circle ROIs (radius = 5 voxels) with different B0 inhomo-
geneities (∆B0) are displayed on T2w and a ∆B0 map (Figure 3a). As seen in Figure 3b,
for the ROIs with relatively low ∆B0 (~0.1 ppm), i.e., ROI 2 and 3, the line shape of two
ROIs were similar to each other, showing almost a direct line from 2.7 to 4.3 ppm and an
almost ‘invisible’ peak at −3.5 ppm. Using the corrected Z-spectra with low ∆B0 as the
internal standard, we found that the Z-spectral line-shape of high ∆B0 (~0.4 ppm) ROIs,
corrected using our method, were similar to the internal standard. In contrast, Z-spectra
corrected using the spline showed more obvious peaks at 3.5 ppm. Furthermore, Figure 3c
shows that the Z-spectra errors using our method were nearly less than 0.5%, and were
also less than those generated using the spline and one-pool methods. Similarly, four ROIs,
the mean Z-spectra of ROIs and the corresponding Z-spectra errors of the representative
healthy volunteer are shown in Figure S3 in the Supplementary Materials.

We statistically analyzed the Z-spectra errors and MTRasym errors of eight subjects
(four healthy volunteers and four brain tumor patients). The results are shown in
Figure 4, which were consistent with the experimental results from the representative
subject (Figures 2 and 3). As seen in Figure 4a, the spline and one-pool methods performed
poorly at the limbic offsets, especially for 4.3 ppm, for which the Z-spectra errors of those
two methods were around 1%. In contrast, the Z-spectra error from our method for 4.3 ppm
was half of that caused by the spline and one-pool methods (~0.5%). For all the offsets, the
Z-spectra errors from our method were the lowest among the three correction methods.
From Figure 4b, for all the offsets, the MTRasym errors from our method were less than 0.5%
and were significantly lower than those from the spline and one-pool methods (p < 0.01).
In particular, our method dramatically decreased the MTRasym error of 4.3 ppm.
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ing MTRasym error maps with gold standard.
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Figure 4. Statistical analysis of 8 subjects (4 healthy volunteers and 4 brain tumor patients).
(a) The statistical results of mean Z-spectra errors corrected using spline, 1-pool Lorentzian and
2-pool Lorentzian methods at 6 offsets. (b) The statistical results of mean MTRasym error corrected
using spline, 1-pool Lorentzian and 2-pool Lorentzian methods; * p < 0.05; ** p < 0.01.

As suggested by the experiments with the gold standard, and especially by the statisti-
cal results, our method reduced the Z-spectra error and MTRasym error more effectively than
the interpolation-based method (i.e., spline) and the one-pool Lorentzian-based method
(i.e., one-pool).

4.2. Comparison with Vendor

To compare our method with the vendor, the six-offset APT data of nine brain tumor
patients were acquired, as described in Section 3.4. Figure 5 displays the MTRasym maps
and corresponding ROI analyses of a representative meningioma patient. Four circle ROIs
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(radius = 5 voxels) with different ∆B0 are shown in T2w, Gd-T1w and a ∆B0 map (Figure 5a).
Figure 5b shows MTRasym without B0 correction and MTRasym corrected using the vendor,
spline, one-pool Lorentzian and two-pool Lorentzian methods. As seen in Figure 5b, the
correction results from the vendor still showed obvious B0 artifacts on MTRasym maps,
even for MTRasym (3.5 ppm). Due to the interference of B0 artifacts, we could not identify
the tumor region without Gd-T1w and T2w. The one-pool-Lorentzian-based method also
had severe B0 artifacts, like the vendor. The spline method and our two-pool-Lorentzian-
based method efficiently reduced B0 artifacts, which could help in the identification of
tumors. However, the spline-based method still displayed some B0 artifacts at limbic offsets,
especially at 4.3 ppm, while our two-pool-Lorentzian-based method also reduced those
artifacts. Similar to the method used in Section 4.1, the corrected Z-spectra of low ∆B0 ROIs
(<0.1 ppm) were considered to be the internal standard for comparison with the corrected
Z-spectra of high ∆B0 ROIs (>0.3 ppm). As seen in Figure 5c, the corrected Z-spectral line
shapes observed using our method were close to the internal standard, while the use of the
spline method caused a peak at 3.5 ppm, and the line shapes observed using the one-pool
method were too symmetric.
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To further evaluate the effects of B0 inhomogeneity on tumor analysis, we compared
the mean MTRasym values of tumor ROIs and high ∆B0 ROIs (|∆B0|>0.25 ppm), corrected
using the vendor, spline and two-pool Lorentzian methods. Tumor ROIs were annotated
on Gd-T1w by one experienced radiologist, and high ∆B0 ROIs were generated via thresh-
old segmentation with threshold values = 0.25 ppm. Figure 6a shows the tumor ROI
(overlapped on Gd-T1w), high ∆B0 ROI (overlapped on ∆B0 map) and T2w of another
representative patient. As seen in Figures 5b and 6b, MTRasym (4.3 ppm) corrected using
the vendor filtered too many voxels; therefore, we excluded it from the statistical analysis.
Figure 6c shows that MTRasym corrected using the vendor could not differentiate tumors
from B0 artifacts, while the spline method and our two-pool Lorentzian method could
efficiently reduce B0 artifacts, which enabled tumors and B0 artifacts to be distinguished
(p < 0.05). The mean MTRasym values of high ∆B0 ROIs corrected using our two-pool
Lorentzian method were slightly lower than those obtained using the spline method at
2.7 and 4.3 ppm, which may have been due to the reduced B0 artifacts, such as the regions
indicated by black arrows in Figures 2, 5b and 6b.
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5. Discussion

In this study, to improve B0 correction performance and fully use all the acquisition
offsets, we proposed a practical B0 correction approach for the most popular six-offset
acquisition APT protocol. This approach employed a two-pool (symmetric water and
asymmetric solutes) Lorentzian line to fit the Z-spectral shape of human brains at 3T with
B1 = 2 µT, in a voxel-by-voxel manner (Figure 1). We evaluated our method through two
kinds of experiments. Firstly, to validate the accuracy of our method, we acquired densely
sampled 16-offset APT data of eight subjects, using its spline-interpolation correction results
as the gold standard. As suggested by this experiment, and especially by the statistical
results, the use of our method reduced MTRasym errors more efficiently than the spline-



Tomography 2022, 8 1983

interpolation-based method and one-pool-Lorentzian-based method (p < 0.01). For 4.3 ppm,
the error of Z-spectra and MTRasym corrected using our method were almost half of the
errors caused by the spline and one-pool Lorentzian methods (Figures 2–4). Secondly,
for comparison with the vendor, we recruited nine brain tumor patients, from whom
we acquired six-offset APT data. The experimental results suggested that our two-pool
Lorentzian methods efficiently reduced B0 artifacts, which enabled tumor regions and B0
artifacts to be distinguished (p < 0.01), while the vendor could not differentiate tumors
from artifacts (Figures 5 and 6).

Interpolation-based methods are very commonly used in B0 correction. Debnath et al.
compared the B0 correction performance of different interpolation algorithms with different
step sizes on 64-offset APT data (B0 = 3T, B1 = 2 µT), and found that linear interpolation-
based methods were suitable [15]. As seen in Figure S1, the performance of different
interpolation-based methods (linear, cubic-Hermite, and cubic-spline) were similar when
using 16 densely sampled offsets. However, for the sparse acquisition scenario (i.e., six
offsets), linear and cubic-Hermite showed severe B0 artifacts on MTRasym (2.7 ppm); cubic-
spline (spline) outperformed these two algorithms but still displayed B0 artifacts. This may
suggest that we need to choose interpolation algorithms for B0 correction with caution
when sampled offsets are few, and spline interpolation may be suitable.

The step size of 6-offset APT data is the same with 16-offset data, but 6-offset acqui-
sition does not cover the entire Z-spectrum. Windschuh et al. and Stancanello et al. also
indicated that a full Z-spectrum is important for B0 correction [12,28]. These results may
suggest that Z-spectral line shapes are necessary for accurate B0 correction. Zhou et al. re-
ported that the Z-spectral line shape under 3T with high B1 is determined via the symmetric
effect around water frequency (i.e., direct water saturation) and asymmetric effects (i.e.,
MT, NOE and CEST) [9,24]. Lee et al. separated Z-spectra into symmetric and asymmetric
components for analysis and used a Lorentzian model to fit the symmetric component [23].
In addition, the broadening Z-spectra under 3T with high power did not show specific “vis-
ible” peaks. Therefore, a two-pool (symmetric water and asymmetric solutes) Lorentzian
model may accurately describe the Z-spectral line shape, which could provide important
a priori line-shape information for the B0 correction of six-offset APT data. As seen in
Figure 3, using the Z-spectra of regions with low B0 inhomogeneity as the internal standard,
we found that the Z-spectral line shapes corrected using our method were similar to the
internal standard, while those corrected using the spline-based method were determined
by acquired data, and those corrected using the one-pool-Lorentzian-based method were
too symmetric (Figure 3). The statistical analysis of Z-spectra errors in eight subjects also
demonstrated that our method was close to the gold standard and reduced errors more
effectively than the spline and one-pool Lorentzian methods (Figure 4).

The proposed method could alleviate the analysis errors caused by B0 inhomogeneity
and could be combined with CEST analysis methods to provide more metabolic information.
For example, in this study, we provided more MTRasym maps with higher image quality
and less B0 artifacts than the vendor (Figures 5 and 6), i.e., MTRasym (2.7 ppm) reflecting
fast exchange amide, including glutamate and MTRasym (4.3 ppm) reflecting semi-solid MT
components. Glutamate is an important energy source for tumor cells, and it always appears
in tumor cells that are rapidly growing and dividing [29,30]. In addition, it is a biomarker
for the diagnosis and assessment of various psychiatric and neurological disorders [31,32].
MT reflects myelin integrity and, to a lesser extent, cell membrane integrity, which could
be used as a biomarker for neurological diseases in which the myelination of the brain is
altered, such as in multiple sclerosis [33,34]. Moreover, Mehrabian et al. also found that
MT is sensitive to treatment-induced changes in glioblastomas [35].

As the next step, we will combine our method with more CEST analysis methods to
provide a comprehensively metabolic delineation of brain tumors. In addition to MTRasym,
CEST frequency importance analysis could provide more metabolic features of all the
acquired offsets, including upfield NOE offsets [36]. We will also combine our B0 correc-
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tion method with the CEST frequency importance analysis method to fully use all the
acquired offsets.

Although our method showed better performance than the interpolation-based method,
some limitations remain. (1) In this study, we employed 17 subjects to demonstrate the
performance of our method; however, for clinical application, our findings need to be
supported by experimental results from studies that have used a larger number of sub-
jects. We will collect more data to evaluate the proposed method more comprehensively.
(2) A drawback of the Lorentzian fitting method is the relatively lengthy computation
time required. Due to the voxel-by-voxel correction, the computation time of our method
was about 7 min for one subject. (3) The Lorentzian fitting method is sensitive to the
starting points and boundaries of parameters, and there is not a common method used to
determine appropriate starting points and boundaries. Meanwhile, the choice of parameter
boundaries influences the fitting time. (4) Limited by the small number of acquisition
offsets, we used a simplified two-pool Lorentzian model to replace the multiple-pool model.
Fortunately, some studies have focused on accelerating Lorentzian fitting. For example,
Yao et al. classified voxels into several clusters, and only conducted Lorentzian fitting
once for a cluster to reduce the fitting time [22]. Zaiss et al. employed neural networks to
predict the parameters of Lorentzian function, and accelerated Lorentzian fitting to several
seconds [37]. In this study, we demonstrated the feasibility of our method. As the next
step, we will combine our method, neural networks and densely sampled simulation data,
which will enable us to realize a quick multiple-pool Lorentzian-based correction method
without tuning fitting parameters.

6. Conclusions

In this study, a practical B0-correction approach is proposed, which employed a
simplified two-pool Lorentzian model for Z-spectral fitting with B1 ≥ 1 µT under 3T.
For both healthy subjects and tumor patients, our approach outperformed conventional
interpolation, allowing for better correction at limbic offsets. Therefore, this approach
may allow for the efficient extraction of CEST contrast at multiple frequency offsets, and
facilitate the more comprehensive metabolic analysis of brain tumors.
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//www.mdpi.com/article/10.3390/tomography8040165/s1, Figure S1. MTRasym maps corrected
employing three interpolation-based methods (i.e., linear, cubic-Hermiter, and cubic-spline), using
16 offsets and 6 offsets, respectively. Figure S2. MTRasym maps and MTRasym error maps of a
representative healthy volunteer. (a) MTRasym maps without B0 correction, gold standard and
MTRasym maps corrected using spline, 1-pool Lorentzian and 2-pool Lorentzian methods; (b) T2w,
Gd-T1w and ∆B0 map; (c) the corresponding MTRasym error maps with gold standard. Figure S3. ROI
analysis of a representative healthy volunteer. (a) Four circle ROIs (radius = 5 voxels) with different B0
inhomogeneities, shown on T2w and ∆B0 map; (b) mean Z-spectra of ROIs, including gold standard,
and Z-spectra corrected using spline, 1-pool Lorentzian, and 2-pool Lorentzian methods; (c) the
corresponding Z-spectra errors with gold standard.
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Abbreviations

APT amide proton transfer
MTRasym asymmetry analysis of magnetization transfer ratio
CEST chemical exchange saturation transfer
∆B0 B0 inhomogeneity
WASSR water saturation shift referencing
DS direct water saturation
MT magnetization transfer
NOE nuclear Overhauser effect
∆i central offset of the Lorentzian line
FWHM peak full width at half maximum
Ai peak amplitude
ROI region-of-interest
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