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Abstract: The emergence of the COVID-19 pandemic over a relatively brief interval illustrates the
need for rapid data-driven approaches to facilitate clinical decision making. We examined a machine
learning process to predict inpatient mortality among COVID-19 patients using clinical and chest
radiographic data. Modeling was performed with a de-identified dataset of encounters prior to
widespread vaccine availability. Non-imaging predictors included demographics, pre-admission
clinical history, and past medical history variables. Imaging features were extracted from chest
radiographs by applying a deep convolutional neural network with transfer learning. A multi-layer
perceptron combining 64 deep learning features from chest radiographs with 98 patient clinical
features was trained to predict mortality. The Local Interpretable Model-Agnostic Explanations
(LIME) method was used to explain model predictions. Non-imaging data alone predicted mortality
with an ROC-AUC of 0.87 ± 0.03 (mean ± SD), while the addition of imaging data improved
prediction slightly (ROC-AUC: 0.91 ± 0.02). The application of LIME to the combined imaging and
clinical model found HbA1c values to contribute the most to model prediction (17.1 ± 1.7%), while
imaging contributed 8.8 ± 2.8%. Age, gender, and BMI contributed 8.7%, 8.2%, and 7.1%, respectively.
Our findings demonstrate a viable explainable AI approach to quantify the contributions of imaging
and clinical data to COVID mortality predictions.

Keywords: COVID; computer-aided diagnosis/prognosis; chest radiographs; multi-modal analysis;
transfer learning; machine learning; explainable AI

1. Introduction

Following the identification of a novel coronavirus (SARS-CoV-2) in late 2019 [1,2],
there have been over 500 million diagnoses of the resultant respiratory disease (COVID-19)
and over 6 million resultant deaths [3]. In severe cases of COVID-related pneumonia,
diffuse alveolar damage is identifiable from post mortem pathology assessments [4], and
COVID-related lung inflammation in affected patients can be detected with relatively high
sensitivity during chest CT imaging [5]. Given the status of this disease as an ongoing
pandemic and potential risks of future variants or new pandemics, there is a growing need
for the development of data-intensive methods to assist clinical prognosis, diagnosis, or
other decision making based on imaging or other medical data.

Artificial intelligence (AI)-based approaches, such as those employing machine learning
methods, have been used in a variety of settings in medical image analysis to extract clinically
useful information and have been proposed to assist the pandemic response [6]. Data-
driven models can process large amounts of multimodal data and learn or identify patterns
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embedded within large datasets. Many existing AI-based radiology studies on COVID-19
have addressed the task of detecting or diagnosing COVID-19 [7–10]. As summarized in [11],
AI-based detection of chest radiographic or CT findings has been extensively studied in recent
years, but there is a relative paucity of AI applications available to make other actionable
predictions beyond diagnosis or detection, such as risk assessment and prognosis.

In the current study, we developed and tested a machine learning model that takes
a combination of demographic, medical history, and early laboratory variables and chest
radiography images as inputs and predicts mortality during inpatient encounters with COVID-
positive patients. The aims of our study were twofold: (1) to develop a computational analytic
framework for quantifying and explaining the contributions of imaging and non-imaging data
in predicting a specified outcome variable (encounter-level mortality) and (2) to analyze and
interpret the mortality prediction model obtained via training and testing on a large COVID-19
patient dataset acquired early during the pandemic prior to widespread vaccine availability.
We sought to answer the following questions for COVID-positive inpatients: (1) How well do
demographic and other non-imaging clinical variables predict mortality during an inpatient
encounter? (2) Does a prediction model applied to a combination of chest radiography and
non-imaging data improve prediction over the use of clinical data alone?

2. Materials and Methods

For predicting the mortality outcome, we introduced a framework processing both
clinical (i.e., demographics, pre-admission clinical history, and past medical history) and
imaging (i.e., chest radiography) data. It consisted of two neural networks: (1) a transfer-
learned [12] VGG-16 network [13] to produce imaging features and (2) a custom multi-
layer perceptron (MLP) to process clinical and imaging features to produce the mortality
predictions (see Figure 1). In this section, (1) data information, (2) the prediction framework
architecture, and (3) the methodology for deriving prediction explanations are provided.
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Figure 1. The overview of the mortality prediction framework. The imaging features are acquired
using transfer-learned VGG-16 (f ) and are subsequently processed in tandem with the clinical data
features via an MLP to produce the patient’s mortality probability.

2.1. Data Source

This study used a public de-identified dataset (COVID-19-NY-SB) containing both
imaging and non-imaging clinical data [14,15]. This dataset consisted of clinical and imag-
ing data extracted from encounters with confirmed PCR-positive COVID-19 patients. For
patients with multiple encounters containing or within 7 days of a positive COVID PCR test,
an encounter selection algorithm was used that prioritized the most severe encounter. The
dataset contained 130 variables encoding demographic descriptors, encounter type, present-
ing symptoms, medical history and comorbidities, medication history, laboratory and vitals
data, and outcomes, including the primary outcome of interest for this study (last status of
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death vs. discharge for the encounter). Our analysis examined only the subset of inpatient
encounters in the dataset for which chest radiographs were available. The acquisition
parameters for the chest radiographs included in our study were as follows: kilovoltage
peak: median 90 kVp (inter-quartile range (IQR): 90–90); exposure: median 2.2 mAs (IQR:
2.2–3.2); and field of view: median 353 × 421 mm (IQR: 350 × 421–354 × 424). Exemption
from IRB review was formally obtained from our institutional IRB based on our study’s
secondary use of de-identified data.

2.2. Prediction Framework
2.2.1. Imaging Features

The framework processed chest X-ray (CXR) images for a given patient to produce
imaging features. Briefly, (1) the bounding box containing the lung fields was extracted
from a given CXR; (2) the extracted region of interest was then rescaled and processed by a
classification network (i.e., VGG-16), which was transfer-trained for the mortality prediction
task; and (3) the latent space representation extracted from this network was utilized to
produce the imaging features. These stages are further detailed in the following paragraphs.

The bounding box extraction used a segmentation-based approach in which a U-
Net [16] was trained using (1) the Japanese Society of Radiological Technology’s (JSRT)
CXR dataset [17] and (2) their corresponding segmentation masks that were publicly avail-
able [18]. The motivation for using the U-Net formulation for the task was its proven effec-
tiveness in medical image segmentation, which has led to its utilization in various studies
over the recent years [19,20]. The JSRT dataset contained 247 CXRs: (1) 154 CXRs with lung
nodules and (2) 93 CXRs without lung nodules. Each CXR image had 2048 × 2048 pixels,
spatial resolution of 0.175 mm/pixel, and a 12-bit grayscale color depth. An example set of
segmentation results of our U-Net is shown in Figure 2.
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The imaging features were extracted from the bounding box contents using a transfer
learning approach. For the task, the extracted regions were rescaled to fixed dimensions
(width: 600×, height: 800 pixels) with three identical channels (i.e., grayscale value was
copied to RGB channels). Next, the VGG-16 network, pre-trained with ImageNet [21], was
fine-tuned using the rescaled lung regions and their corresponding target outputs. For
this analysis, the target output was a binary value representing a patient’s last recorded
status as 0 (discharged) or 1 (deceased). Accordingly, (1) the network was updated to have
a single-node output, and (2) the dense layer before the output node was resized to the
desired imaging feature vector length (i.e., latent size) before the fine-tuning. The network’s
latent-sized intermediate output was later utilized as the imaging feature vector.

2.2.2. Clinical Features

Of the available variables in the public dataset, we selected those encoding demo-
graphic descriptors, past medical history and comorbidities, pre-admission medication
and symptom history, and selected laboratory or vitals data that were clearly specified
in the dataset documentation as having been obtained at or prior to admission or were
deemed unlikely to change over the course of the encounter (such as BMI). Most of the
laboratory and vitals data within the dataset were not included in our analysis because
(1) lack of precise information on the timing of acquisition of most of the laboratory and
vitals data in the dataset would compromise our intended goal of restricting clinical
predictors to early clinical data available at or prior to admission and (2) the large num-
ber of entries with missing values for laboratory data raises the risk of bias related to
inclusion of certain laboratory data that are more likely to be obtained in higher-severity
encounters. Table 1 describes the clinical data used in this study, including the value
types. The information was featurized by (1) one-hot encoding of the categorical fields
and (2) normalizing each categorical encoding and value field (e.g., integer, float, etc.) to
the [0,1] range. As missing data are commonly encountered in clinical or epidemiological
datasets, and it is often important for decision systems to be able to operate in the context
of missing clinical data, we opted to designate missingness status as a separate level of
each categorical variable.
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Table 1. Clinical data variables used for prediction.

Field Type Variable Description

Age Categorical: [18, 59], (59, 74], (74, 90] Age intervals (in years) at admission; truncated for patients > 90 years of age.

Gender Categorical: Male, Female, Unknown/Missing Documented gender in the electronic health record; dropped in select cases for de-identification.

Kidney replacement therapy Categorical: Yes, No, Unknown/Missing Documented renal replacement therapy.

Kidney transplant Categorical: Yes, No, Unknown/Missing History of kidney transplant.

Hypertension Categorical: Yes, No, Unknown/Missing Documented ICD-10 code for hypertension, taking anti-hypertensive medications, and/or
documented blood pressure > 140/90.

Diabetes mellitus Categorical: Yes, No, Unknown/Missing Documented ICD-10 code for diabetes type 1 or 2 or taking insulin or oral medications for diabetes.

Coronary artery disease Categorical: Yes, No, Unknown/Missing Documented ICD-10 code for coronary artery disease, history of stent placement, or existing
catheter report documenting disease.

Heart failure Categorical: HFpEF, HFrEF, No, Unknown/Missing
For HFrEF, documented ICD-10 code for HFrEF or echocardiogram documenting reduced ejection
fraction (reduced EF is <40%, 40% or higher is preserved EF). For HFpEF, documented ICD-10 code
for HFpEF or echocardiogram documenting diastolic dysfunction.

Chronic kidney disease Categorical: Yes, No, Unknown/Missing Documented ICD-10 code for chronic kidney disease or reduced GFR on lab work.

Malignancy Categorical: Yes, No, Unknown/Missing Documented ICD-10 code for malignancies or receiving treatment for active malignancy.

COPD Categorical: Yes, No, Unknown/Missing Documented ICD-10 code for chronic obstructive pulmonary disease or pulmonary function tests
documenting obstructive defect along with positive smoking history.

Other lung disease Categorical: Yes, No, Unknown/Missing Documented ICD-10 code for other lung diseases including asthma, interstitial lung disease,
pulmonary hypertension, chronic pulmonary embolism, or lung resection.

Smoking status Categorical: Current, Former, Never, Unknown/Missing Patient’s smoking status as either Current, Former, Never Smoker, or Unknown. This referred only
to cigarettes and cigars. E-cigarettes and marijuana were not counted.

ACE inhibitor use Categorical: Yes, No, Unknown/Missing Admission medication reconciliation documenting use of an ACE inhibitor as a home medication.

Angiotensin receptor blocker use Categorical: Yes, No, Unknown/Missing Admission medication reconciliation documenting use of an angiotensin receptor blocker as a
home medication.

Antibiotic use Categorical: Yes, No, Unknown/Missing On an antibiotic prior to presentation.

NSAID use Categorical: Yes, No, Unknown/Missing Admission medication reconciliation documenting use of a non-steroidal anti-inflammatory drug as
a home medication.

Cough Categorical: Yes, No, Unknown/Missing Reported cough on admission.

Dyspnea on admission Categorical: Yes, No, Unknown/Missing Reported shortness of breath on admission.

Nausea Categorical: Yes, No, Unknown/Missing Reported nausea on admission.

Vomiting Categorical: Yes, No, Unknown/Missing Reported vomiting on admission.

Diarrhea Categorical: Yes, No, Unknown/Missing Reported diarrhea on admission.
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Table 1. Cont.

Field Type Variable Description

Abdominal pain Categorical: Yes, No, Unknown/Missing Reported abdominal pain on admission.

Subjective fever Categorical: Yes, No, Unknown/Missing Subjective or objective fever at home. Fever in ED was not counted.

Days symptomatic Integer value or Unknown/Missing The number of days prior to presentation that symptoms began.

BMI Categorical: <30, [30, 35], >35, Unknown/Missing Body mass index (kg/m2)

HbA1c Categorical: <6.5, [6.5, 7.9], >7.9, Unknown/Missing Hemoglobin A1c (%)

Temperature over 38 C Categorical: Yes, No, Unknown/Missing Temperature at time of admission over 38 degrees centigrade.

Abbreviations: HFpEF: heart failure with preserved ejection fraction; HFrEF: heart failure with reduced ejection fraction.
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2.2.3. Processing Imaging and Clinical Features

The extracted imaging and clinical features were concatenated and processed by an
MLP consisting of two hidden dense layers, consisting of 32 and 4 units with rectified linear
activations and each followed by a dropout layer (with a dropout rate of 0.1). The dense
layers were initialized using the Glorot uniform initializer [22]. The sigmoid-type network
output predicted the probability of patient in-hospital mortality.

2.3. Deriving Prediction Explanations

The explanation for a machine learning (ML) system output may be summarized
as forming a human-understandable (e.g., visual or textual) relationship between the
system’s inputs and the corresponding output. The topic has gained significant im-
portance in recent years [23]. Highly parametric architectures of state-of-the-art ML
approaches (e.g., deep-learning-based prediction models) make it difficult to trace the
underlying logic of the models’ decisions. In this study, we utilized Local Interpretable
Model-Agnostic Explanations (LIME) [24] to derive the explanations of the frame-
work’s output, giving the relationship between the clinical and imaging features and the
mortality probability.

LIME explains each input/output pair by approximating the model’s behavior locally
around the samples. Briefly, the method (1) generates a random group of sample inputs
around an original training input and (2) derives the input features’ contributions using
a regression between these random samples’ proximity to the original sample and their
corresponding outputs. Accordingly, LIME can produce a normalized contribution vector
(c) for each sample:

cs = ( f1, f2, · · · fn) (1)

with ∑N
i fi = 1 (2)

where s is the sample identifier and n is the feature count. We computed the global
explanations, summarizing the contributions of features, by finding the mean and standard
deviation of normalized contribution vectors over all samples (i.e., c and cstd, both vectors
of length n). The process allowed us to visualize and understand the model’s attention
distribution over the features during the prediction process.

2.4. Statistical Analysis

Comparison of the distribution of the outcome variable across 10 categorical patient
variables was performed using the chi-square test of independence, with statistical signifi-
cance assessed based on an unadjusted p value less than an adjusted α of 0.005 (Bonferroni
adjustment for 10 multiple comparisons). Performance of predictive models was quantified
using areas under the ROC curve (ROC-AUC). Data for continuous variables are reported
as means ± standard deviations where appropriate. Differences in variance between mod-
els was assessed using the Brown–Forsythe test. Determination of statistical significance
was made based on α of 0.05.

3. Results
Patient Population

The data used for our analysis consisted of 5056 chest radiographs across 841 COVID-
positive inpatients, balanced for the mortality outcome variable, such that (1) 2486 radiographs
(49%) were of patients who died during the hospital encounter and (2) 2570 radiographs
(51%) were of discharged patients. The mean length of stay was 34 days. The demographic
and clinical characteristics of the patient population are shown in Table 2.
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Table 2. Characteristics of patients included in the analysis.

In-Hospital Mortality

All Column % Yes Column % No Column % p Value 1

Total patients 841 180 661
Gender <0.0001 *

Male 489 58% 97 54% 392 59%
Female 321 38% 54 30% 267 40%
Not recorded 31 4% 29 16% 2 0%

Age <0.0001 *
18–59 380 45% 29 16% 351 53%
60–74 252 30% 65 36% 187 28%
>75 209 25% 86 48% 123 19%

Comorbidities
Hypertension <0.0001 *

Yes 377 45% 108 60% 269 41%
No 339 40% 43 24% 296 45%
Not recorded 125 15% 29 16% 96 15%

Diabetes mellitus 0.16 NS
Yes 215 26% 55 31% 160 24%
No 503 60% 97 54% 406 61%
Not recorded 123 15% 28 16% 95 14%

Coronary artery disease <0.0001 *
Yes 131 16% 49 27% 82 12%
No 582 69% 99 55% 483 73%
Not recorded 128 15% 32 18% 96 15%

Heart failure <0.0001 *
Yes 62 7% 33 18% 29 4%
No 647 77% 114 63% 533 81%
Not recorded 132 16% 33 18% 99 15%

Chronic kidney disease 0.020 NS
Yes 69 8% 23 13% 46 7%
No 645 77% 126 70% 519 79%
Not recorded 127 15% 31 17% 96 15%

Malignancy 0.034 NS
Yes 69 8% 23 13% 46 7%
No 638 76% 127 71% 511 77%
Not recorded 134 16% 30 17% 104 16%

Chronic obstructive pulmonary disease 0.0053 NS
Yes 56 7% 21 12% 35 5%
No 660 78% 129 72% 531 80%
Not recorded 125 15% 30 17% 95 14%

Other lung disease 0.77 NS
Yes 109 13% 24 13% 85 13%
No 605 72% 126 70% 479 72%
Not recorded 127 15% 30 17% 97 15%

1 p values based on chi-square test of independence, with df = 2, uncorrected for multiple comparisons.
The * denotes comparisons that are significant based on a Bonferroni-adjusted α of 0.005.

Non-imaging data alone, based on the variables shown in Table 1, predicted mortality
with an ROC-AUC of 0.87 ± 0.03 (Figure 3a). At a default probability threshold of 0.5,
sensitivity was 0.63 ± 0.08 and specificity was 0.87 ± 0.04. The addition of deep learning
features extracted from chest radiographs to the model improved prediction slightly (ROC-
AUC 0.91 ± 0.02) (Figure 3b). This corresponded to a sensitivity of 0.74 ± 0.10 and a
specificity of 0.87 ± 0.04 at the default probability threshold. In addition, performance was
more consistent; with the Brown–Forsythe test, the variance in the errors of the model that
included both clinical and imaging data (0.145) was significantly lower (p < 0.001; F = 42.5,
df = 1, 10,052.9) than the variance in the errors in the model using clinical data alone (0.189).
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Following the application of LIME to the combined imaging and clinical model, we
quantified the relative contributions of variables to the prediction of in-hospital mortality.
HbA1c values contributed the most to model prediction (mean contribution of 17.1 ± 1.7%),
while imaging contributed 8.8 ± 2.8%. Age, gender, and BMI contributed 8.7%, 8.2%, and 7.1%,
respectively (Figure 4). The top five variables contributed approximately 50% of the prediction.
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The values of each variable contributing to higher or lower mortality are shown
in Table 3 for clinical variables contributing more than 5%. For instance, mortality was
increased for HbA1c above 6.6, male gender, age above 74 years, and BMI over 30.

Table 3. Effects of specific values of the most predictive clinical variables on increasing or decreas-
ing mortality.

Reduced Mortality Increased Mortality

Age 18–59 74–90
Gender Female Male

BMI Below 30 Over 30
HbA1c <6.6 >6.6

In addition, we assessed the performance of the model utilizing combined imaging
and non-imaging clinical data after partitioning the population into two groups based
on whether patients were admitted to the ICU. In our analyzed inpatient population, for
which a balanced mix of fatal and nonfatal cases was selected, 79% of subjects had an ICU
admission. In-hospital mortality was 44% for the ICU subgroup and 12% for the non-ICU
subgroup. The generated ROC curves are shown for the ICU subgroup (Figure 5a) and
the non-ICU subgroup (Figure 5b). The model predicted mortality with an ROC-AUC of
0.93 ± 0.03 for the ICU subgroup and 0.83 ± 0.05 for the non-ICU subgroup.
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4. Discussion

The current study showed that our best model, which used a combination of imaging
and non-imaging clinical data, predicted in-hospital mortality in COVID-19 patients with
an ROC-AUC of 0.91 ± 0.02. The largest contributions to prediction, in descending order
based on our LIME analysis, were HbA1c, imaging features, gender, age, and BMI. The
performance of this combined model was greater and variance across folds appeared
lower than when using non-imaging clinical data alone. In addition, test performance
of our best model was better for the subgroup admitted to the ICU than for the smaller
non-ICU subgroup, likely because 79% of the patients were admitted to the ICU. While
a chest radiograph may contain clues, such as the presence of lines and tubes, that could
assist in the determination of ICU status, the high performance within the ICU subgroup
suggested that the model was not relying solely on clues of ICU status and likely made use
of additional imaging findings to discriminate between fatal and nonfatal cases within this
high-risk group.
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While several studies have predicted COVID diagnosis or prognosis based on either
clinical data separately or imaging data separately, few have quantified the relative contri-
bution of imaging data vs. other clinical data within a combined multi-modal, multi-data
prediction strategy. Our results showed that non-imaging clinical data alone permitted a
satisfactory prediction of mortality (ROC-AUC: 0.87), but in the explainability analysis of
our combined model, imaging features contributed to approximately 9% of the prediction.
Several prior studies also similarly reported improvements in performance when adding
chest radiographic data to clinical prediction models [25,26], but with lower ROC-AUC
values for predicting mortality or disease progression with their combined imaging and
clinical models (0.73–0.83) than those of our mortality prediction model. When considering
only non-imaging clinical data, our ROC-AUC performance metric of 0.87 for in-hospital
COVID-19 mortality is identical to the value of 0.87 reported using the A-DROP clinical
criteria in a different dataset [27] and mildly higher than several other deep learning models
(ROC-AUC: 0.84) [28] or clinical scoring methods to quantify pneumonia severity, such as
qSOFA (ROC-AUC: 0.73) and CRB-65 (ROC-AUC: 0.80) [27]; that said, machine learning
models with higher ROC-AUC values have been reported [29,30].

Among prior studies that quantified the relative contributions of mortality predictors
when applying machine learning approaches to clinical data in COVID-19 is one study
based on data at the time of ICU admission that found that the most relevant predictors
of mortality were elevated BUN, Cr, INR, and RDW (red blood cell size variability); low
albumin; gender; and age [31]. Our model differed in that we did not emphasize laboratory
data as predictors and included both ICU and non-ICU inpatient encounters, but we
similarly found that gender and age were among the top five contributing predictors. A
meta-analysis of machine learning publications predicting disease severity in COVID-19
patients found that hypertension and diabetes were the most prevalent comorbidities
among COVID-19 patients [32]. In our model, HbA1c, a marker of diabetes control, was the
largest contributor to mortality risk. Our findings are corroborated by a recent meta-analysis
showing a linear relationship between higher HbA1c values and increased mortality or
disease worsening in COVID-19 [33].

A limitation of the study is that, due to the rapidly evolving and dynamic nature of
the ongoing pandemic, prediction models developed with earlier clinical datasets likely
have limited applicability to more recent COVID-19 cases, as it would not be possible to
generalize to more recent variants or post-vaccination settings. Nonetheless, our described
methodology and analyses represent reasonable approaches to quantify the contributions
of multi-data inputs to an outcome prediction model that could be applied to updated
clinical datasets for additional fine-tuning. The absence of recorded values for some
variables in our dataset can be a source of bias that is challenging to address; in our study,
restricting our analysis to only patients without missing data was not feasible due to
the prevalence of missing data in our dataset population. A limitation of our analysis
comparing relative contributions of different variables in our prediction model is that
some variables could have had higher contributions to prediction if fewer entries had
missing data. In addition, there may be potential for selection bias related to our use of
only patients with chest radiographs. Moreover, as the explainability component of our
current analysis did not include imaging features, we were not able to identify specific
imaging features or areas of interest pertinent to the model’s predictive performance. Other
limitations of the study include the use of single-institution data and the use of encounter-
level mortality that does not take into consideration the timing of chest radiographs relative
to death or discharge. Future studies may address these limitations by offering additional
analyses of transferability to datasets from other institutions and/or to encounters from
later COVID waves.
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