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Abstract: The cause of amyotrophic lateral sclerosis (ALS) is still unknown, and consequently, early
diagnosis of the disease can be difficult and effective treatment is lacking. The pathology of ALS
seems to involve specific disturbances in carbohydrate metabolism, which may be diagnostic and
therapeutic targets. Magnetic resonance imaging (MRI) with hyperpolarized [1-13C]pyruvate is
emerging as a technology for the evaluation of pathway-specific changes in the brain’s metabolism.
By imaging pyruvate and the lactate and bicarbonate it is metabolized into, the technology is sensitive
to the metabolic changes of inflammation and mitochondrial dysfunction. In this study, we performed
hyperpolarized MRI of a patient with newly diagnosed ALS. We found a lateralized difference in
[1-13C]pyruvate-to-[1-13C]lactate exchange with no changes in exchange from [1-13C]pyruvate to 13C-
bicarbonate. The 40% increase in [1-13C]pyruvate-to-[1-13C]lactate exchange corresponded with the
patient’s symptoms and presentation with upper-motor neuron affection and cortical hyperexcitability.
The data presented here demonstrate the feasibility of performing hyperpolarized MRI in ALS. They
indicate potential in pathway-specific imaging of dysfunctional carbohydrate metabolism in ALS, an
enigmatic neurodegenerative disease.

Keywords: metabolic; magnetic resonance imaging; hyperpolarized; pyruvate; amyotrophic lateral
sclerosis; neurodegeneration

1. Introduction

Magnetic resonance imaging (MRI) with hyperpolarized metabolically active molecules
is an emerging technology that enables the imaging of specific metabolic pathways [1].
Hyperpolarization with dynamic nuclear polarization increases the signal of 13C-enriched
molecules by four to five orders of magnitude. In this process, the high polarization
of free electrons in a strong magnetic field at ~0.7 K is transferred to the 13C-spins in
the molecule of interest using microwave irradiation [2]. Once hyperpolarized, the 13C-
enriched molecules are detectable using the MR system. A wealth of molecules is being
investigated as probes for various purposes. The probe closest to clinical application is
hyperpolarized [1-13C]pyruvate. When hyperpolarized [1-13C]pyruvate is administered
intravenously, its delivery to the brain and subsequent metabolism to lactate and bicar-
bonate can be imaged due to the chemical shift effect. This metabolism is conveyed by
uptake through the monocarboxylate transporters over the blood-brain barrier and cell
membranes as well as by intracellular metabolism catalyzed by the lactate dehydrogenase
and the pyruvate dehydrogenase (Figure 1). The lactate and bicarbonate signals thus
represent imaging readouts that are sensitive to blood–brain barrier uptake and subsequent
glycolytic and oxidative metabolism. The technology is currently under clinical translation
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with a particulate focus on cancer imaging [3]. Here, we present an initial experience on its
feasibility and potential in neurodegenerative disease.
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Figure 1. In hyperpolarized MRI, [1-13C]pyruvate is brought to a state of polarization >10.000 times 
above the thermal equilibrium using dynamic nuclear polarization (DNP). Following hyperpolari-
zation, the product is administered intravenously. In the target organ, the [1-13C]pyruvate is taken 
up and metabolized to lactate or bicarbonate through the lactate dehydrogenase (LDH) or the py-
ruvate dehydrogenase (PDH), respectively. This yields three separate peaks that are shifted enough 
to be imaged separately using spectral-spatial (SPSP) imaging. The spectrum shown is from the 
patient of this case report. It was obtained after imaging where the signal-to-noise was too low to 
observe bicarbonate. 

Albeit immense research efforts, amyotrophic lateral sclerosis (ALS) remains a poorly 
understood disease and a challenge for researchers and clinicians alike. The diagnostic 
process is long, requires many tests, and is encumbered with uncertainty as mimics must 
be considered [4]. The prognosis is dismal, with considerable morbidity and a few years 
of expected survival after diagnosis [5]. ALS is a neurodegenerative disease associated 
with the accumulation of TAR DNA-binding protein 43 (TDP43) in motor neurons [5]. 
However, the causes of this TDP43 proteinopathy are mostly unknown. The disease is 
considered multifactorial with several known environmental and genetic risk factors. In-
terestingly, several of these factors are involved in metabolism. For example, mutations in 
the genes coding for the superoxide dismutase 1 (SOD1) and the TDP43 are associated 
with mitochondrial dysfunction and oxidative stress [5]. Markers of energy deprivation 
are increased in motor neurons of ALS patients and correlate with proteinopathy [6]. Spe-
cifically, the intricate pathophysiology of ALS involves dysfunction of carbohydrate me-
tabolism from uptake to utilization [7–9]. The metabolic dysfunction is not necessarily 
confined to neurons but likely also involves glial cells, which are thought to support neu-
rons metabolically and which may be an overlooked element of ALS pathophysiology 
[7,10]. Importantly, these metabolic disturbances are emerging as therapeutic targets [11]. 

Clinically, fluorodeoxyglucose positron emission tomography ([18F]FDG PET) can 
detect hypometabolic signatures that are useful in the diagnostic process, especially when 
dementia is considered. However, [18F]FDG PET is unable to detect changes in pathways 
downstream of glucose uptake, and the observed hypometabolism may be caused by neu-
ronal death rather than underlying metabolic dysfunction. As such, assessment of oxida-
tive versus glycolytic metabolism with hyperpolarized [1-13C]pyruvate MRI could ad-
vance our understanding of the roles of metabolism of ALS as well as serve as a biomarker 
in clinical studies targeting metabolic dysregulation. 

2. Case 
2.1. Clinical Presentation 

A 59-year-old woman presented with bulbar onset ALS. Her initial symptoms were 
dyspnea, dysarthria, dysphagia, and a ten-kilogram weight loss in the last 12 months prior 
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Albeit immense research efforts, amyotrophic lateral sclerosis (ALS) remains a poorly
understood disease and a challenge for researchers and clinicians alike. The diagnostic
process is long, requires many tests, and is encumbered with uncertainty as mimics must
be considered [4]. The prognosis is dismal, with considerable morbidity and a few years
of expected survival after diagnosis [5]. ALS is a neurodegenerative disease associated
with the accumulation of TAR DNA-binding protein 43 (TDP43) in motor neurons [5].
However, the causes of this TDP43 proteinopathy are mostly unknown. The disease
is considered multifactorial with several known environmental and genetic risk factors.
Interestingly, several of these factors are involved in metabolism. For example, mutations
in the genes coding for the superoxide dismutase 1 (SOD1) and the TDP43 are associated
with mitochondrial dysfunction and oxidative stress [5]. Markers of energy deprivation
are increased in motor neurons of ALS patients and correlate with proteinopathy [6].
Specifically, the intricate pathophysiology of ALS involves dysfunction of carbohydrate
metabolism from uptake to utilization [7–9]. The metabolic dysfunction is not necessarily
confined to neurons but likely also involves glial cells, which are thought to support neurons
metabolically and which may be an overlooked element of ALS pathophysiology [7,10].
Importantly, these metabolic disturbances are emerging as therapeutic targets [11].

Clinically, fluorodeoxyglucose positron emission tomography ([18F]FDG PET) can
detect hypometabolic signatures that are useful in the diagnostic process, especially when
dementia is considered. However, [18F]FDG PET is unable to detect changes in pathways
downstream of glucose uptake, and the observed hypometabolism may be caused by
neuronal death rather than underlying metabolic dysfunction. As such, assessment of
oxidative versus glycolytic metabolism with hyperpolarized [1-13C]pyruvate MRI could
advance our understanding of the roles of metabolism of ALS as well as serve as a biomarker
in clinical studies targeting metabolic dysregulation.

2. Case
2.1. Clinical Presentation

A 59-year-old woman presented with bulbar onset ALS. Her initial symptoms were
dyspnea, dysarthria, dysphagia, and a ten-kilogram weight loss in the last 12 months prior
to the diagnosis. She had no other health issue except for a right shoulder biceps-tendinitis
and essential thrombocytosis. She had no family history of ALS or dementia.
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At the time of referral, clinical examination of the cranial nerves revealed tongue
atrophy and fasciculations as well as a hyperactive jaw reflex. In the upper extremities, the
force was normal, but the triceps, biceps, and brachioradialis reflexes were hyperactive, and
there was a positive Hoffmann’s reflex bilaterally. The blood samples were normal. The
cerebrospinal fluid samples were normal except for elevated levels of Neurofilament light
chain (4805 ng/L). Structural MRI of the brain was normal. Quantitative electromyography
(EMG) showed signs of both acute (fibrillations and fasciculations) and chronic (increased
Motor Unit Potential duration and amplitude) denervation in the tongue and the right
biceps, left vastus medialis, and right tibialis anterior muscles. Transcranial magnetic
stimulation (TMS) showed marked cortical disinhibition in the left motor cortex using both
standard paired-pulse TMS as well as threshold tracking TMS [12]. Consequently, the pa-
tient was diagnosed with ALS. Riluzole treatment was initiated but was later discontinued
due to gastrointestinal side effects.

At the time of scanning with hyperpolarized [1-13C]pyruvate, the patient had devel-
oped a right-sided drop-foot and weakness in both hands. She had a Penn Upper Motor
Neuron score of 9/32 (lower is better; [13]), a revised ALS Functional Rating Scale (ALSFRS-
R) score of 37/48 (higher is better; [14]), and no signs of cognitive or behavioral deficits
on the Edinburgh Cognitive and Behavioral ALS screen [15]. Collectively, her symptoms
were dominated by right-sided and bulbar motor issues with considerable upper motor
neuron pathology. She did not receive Riluzole at the time of MRI with hyperpolarized
[1-13C]pyruvate.

2.2. Hyperpolarized Pyruvate MRI

After informed consent, the patient underwent MRI with hyperpolarized [1-13C]pyruvate
following a protocol approved by the Danish Medicines Agency and the Committee on
Health Research Ethics for Central Denmark (EudraCT 2020-000352-36). Imaging was
performed on a 3T scanner (MR750, GE Healthcare, Chicago, IL, USA) using a 13C/1H-
tuned birdcage transceiver coil (PulseTeq, Surrey, UK). The patient was fully awake and not
sedated for the examination. A basic proton exam was performed (Figure 2). This included
a T1-weighted anatomical reference (2D fast spoiled gradient echo, echo time/repetition
time = 2.3/163 ms, flip angle = 85◦, matrix size = 256 × 256, field of view = 24 × 24 cm2,
slice thickness = 4 mm), perfusion imaging (3D pseudo-continuous arterial spin labeling
with a spiral readout, in-plane resolution = 3.6 mm2, slice thickness = 6 mm, post label
delay = 2025 ms, scan time = 4 min 15 s), and spectroscopy (single-voxel point resolved
spectroscopy, 2 × 2 × 2 cm3 voxel placed at the hand knob, 8 averages, echo time/repetition
time = 135/2000 ms). Shimming was performed as second-order shimming. There were
no structural abnormalities. No apparent change in perfusion was observed (81.8 versus
82.6 mL/100 mL/min). The N-acetylaspartate/creatine ratio was 1.76 versus 1.59 in the
left and right motor cortices, respectively.
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Figure 2. Routine magnetic resonance imaging with T1 weighted (a), arterial spin labeling perfusion
imaging (b), and spectroscopy (c) revealed no apparent pathology.
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For hyperpolarized MRI, the [1-13C]pyruvic acid was polarized using commercial
equipment (SPINlab, GE Healthcare) as previously described [16]. In short, 1.47 g of
good manufacturing practice grade [1-13C]pyruvic acid (Sigma-Aldrich, Søborg, Denmark)
underwent dynamic nuclear polarization at 5 T and 0.7 K [2] with 15 mM AH111501 (Syn-
com, Groningen, The Netherlands). After hyperpolarization, the product was dissolved,
buffered, filtered, and underwent quality control. The final product was administered to
the patient at a dose of 0.43 mL/kg at 5 mL/s chased by 20 mL of saline at the same rate.
Following IV administration of hyperpolarized [1-13C]pyruvate, the [1-13C]pyruvate and
downstream [1-13C]lactate and [13C]bicarbonate resonances were imaged separately using
spectral-spatial metabolite-selective excitation (flip angles = 12◦/70◦/70◦ for pyruvate,
lactate, and bicarbonate, respectively; [17]). A dual-resolution spiral readout was employed
(pyruvate resolution = 0.875 × 0.875 mm2, metabolite resolution = 1.75 × 1.75 mm2). In
total, six slices of 2 cm thickness were acquired from the vertex and down. This yielded
dynamic images of pyruvate, lactate, and bicarbonate with a time resolution of 2 s. The
imaging was initiated immediately after the saline flush, and the total scan time for the 13C
sequence was 80 s. The conversion of pyruvate to lactate (kPL) and pyruvate to bicarbonate
(kPB) were quantified with a one-way metabolic exchange kinetic model (Figure 3). The
employed model did not consider the pyruvate input curve, the relaxation rates were
fixed, and 0.02 s−1 and 0.005 s−1 were used as starting values for kPL and kPB, respectively.
The modeling was performed with the Hyperpolarized MRI Toolbox (doi: 10.5281/zen-
odo.1198915; [18]). In addition to kinetic modeling, we computed the ratio of the lactate
signal to the bicarbonate signal. Calibration of transmit power was performed on a glycerol
head phantom with a 90◦ hard pulse. The center frequency was extrapolated from the pro-
ton frequency [19] and confirmed after imaging with a pulse-acquire spectrum of a single
axial slice over the brain (soft pulse, 100 mm thickness, 30◦ degree flip angle, 2048 points
over 5000 Hz).
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Figure 3. After administration of hyperpolarized [1-13C]pyruvate, dynamic images were acquired,
yielding time curves in the motor cortex as presented in (a). The signal-to-noise ratio summed over
time is presented in (b). Kinetic fitting (c) of the dynamic data allows estimation of conversion
of pyruvate to lactate (kPL) and bicarbonate (kPB). Further, the model-free ratio of the lactate to
bicarbonate signals is shown. Increased conversion to lactate was observed in the left hand motor
area compared to the right (solid versus dashed lines).
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Using hyperpolarized [1-13C]pyruvate MRI, we found that the left motor cortex dis-
played ~40 % larger conversion from pyruvate to lactate than the right (kPL = 0.023 s−1

versus 0.014 s−1). There was no change in kPB (0.0064 s−1 versus 0.0065 s−1). The lactate-to-
bicarbonate ratios were 0.45 in the left hemisphere versus 0.4 in the right. The mean transit
time of pyruvate, estimated as previously described [16], was 15.5 s in the left hemisphere
and 19.6 s in the right hemisphere.

3. Discussion

To our knowledge, this is the first report of in vivo imaging of neurodegenerative cor-
tical metabolism with hyperpolarized [1-13C]pyruvate MRI in humans. The case seemingly
displayed increased pyruvate-to-lactate conversion in the left motor area, corresponding
with an increased symptom burden in the right hand and leg. Previous studies in healthy
volunteers have found no lateralized differences in kPL [20]. We found no apparent changes
in pyruvate-to-bicarbonate metabolism or perfusion from arterial spin labeling.

Preclinical research in a mouse model of multiple sclerosis suggests that conversion to
lactate may be a marker of inflammatory metabolism [21]. As for many other neurodegener-
ative diseases, chronic neuroinflammation seems to be a pathological feature of ALS [22]. In
addition to inflammatory cells, lactate is produced by astrocytes and oligodendroglia. This
lactate is then excreted to be utilized by neurons for oxidation, according to the astrocyte-
neuron lactate shuttle hypothesis [23–25]. A build-up of lactate could suggest the failure
of this supportive mechanism. A third explanation might be the cortical hyperexcitability
observed in ALS generally and this patient specifically [12], potentially leading to increased
flux through the astrocyte-neuron lactate shuttle. The molecular and pathophysiological
correlates of changes in pyruvate-to-lactate conversion could be explored in future ba-
sic and translational studies. Similar to the kPL, the mean transit time of pyruvate was
shorter in the left hemisphere than in the right hemisphere, while the perfusion measured
with arterial spin labeling was similar between the two sides. One possible explanation
for this may be increased uptake of pyruvate into reactive glial cells (i.e., astrocytes and
microglia) followed by swift metabolism. This would cause a shorter apparent transit
time. As glia cells may contribute significantly to ALS pathogenesis, further exploring this
idea may prove fruitful [10]. A recent study from our group shows that hyperpolarized
[1-13C]pyruvate MRI might be able to provide unique insight into the metabolic interplay
of neurons and glial cells [26].

Interestingly, the kPB, a marker of mitochondrial metabolism, was unaltered between
hemispheres in this case. This could suggest that hyperpolarized MRI is insensitive to
subtle changes in mitochondrial function. One reason for this could be the low signal-
to-noise ratio of bicarbonate in a hyperpolarization experiment. Several means exist to
improve this, including optimized coil setups and flip angle schemes [26,27], and future
work should explore if an improved signal-to-noise ratio will reveal any changes in the
bicarbonate signal in neurodegenerative disease. An alternative explanation of similar kPB
between hemispheres is that mitochondrial dysfunction might not have been present in
this case. This could be due to the patient being in a relatively early stage of disease or due
to a less prevalent role of mitochondrial dysfunction in non-SOD1 ALS than in the less
prevalent but much-studied SOD1 model [5].

Naturally, the conclusions that can be drawn from a single case are limited. As such,
we are unable to more than speculate about the slightly lower N-acetylaspartate/creatine
ratio of the right M1 and its relation to the hyperpolarized data or the changes that could be
expected in the more frontal parts of the brain in some ALS patients. Likewise, this patient
presented with bulbar onset, and it is hard to evaluate the laterality of bulbar upper motor
neuron symptoms. However, the lateralized differences that we observed in the hand and
arm areas are of interest. Patients with ALS often present with lateralized symptoms, of
which it can be difficult to assess the contributions of pathology in upper and lower motor
neurons. Determining metabolic dysfunctions that may correlate with lateralized upper
motor neuron pathology would thus be of clinical and research interest. Nevertheless,
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more cases and comparison to healthy, age-matched controls is warranted to draw any
clear conclusions. The data presented here merely suggest an avenue of exploration into
enigmatic neurodegenerative diseases.

MRI with hyperpolarized [1-13C]pyruvate is a technology under development. Since
the initial clinical trial, an abundance of smaller trials has been published [3]. Now, larger
single-center studies are ongoing, multisite trials are possible [28], and the technology is able
to provide good quality data routinely. Throughput and availability are expected to increase
as the process of making the hyperpolarized probes are further developed [29–31]. Looking
beyond hyperpolarized [1-13C]pyruvate, numerous other probes exist for investigations
of other facets of metabolism [32]. This includes hyperpolarized 2-keto[1-13C]isocaproate,
which might be indicative of glutamate metabolism, and hyperpolarized [1-13C]acetate,
which is also metabolized by the brain, and several markers of oxidative stress. These are
all, however, still at the preclinical stage, and [1-13C]pyruvate is likely to be the probe that
the field focuses the most on for the immediate future.

In conclusion, these results demonstrate the emerging potential of hyperpolarized MRI
in the imaging of cortical pathology in ALS. Further investigations will evaluate the findings
presented here as well as provide guidance on the potential usability of hyperpolarized
MRI as a clinical and research tool.
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