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Abstract: This study aimed to generate synthetic MR images from real CT images. CT# mean
and standard deviation of a moving window across every pixel in the reconstructed CT images
were mapped to their corresponding tissue-mimicking types. Identification of the tissue enabled
remapping it to its corresponding intrinsic parameters: T1, T2, and proton density (o). Lastly,
synthetic weighted MR images of a selected slice were generated by simulating a spin-echo sequence
using the intrinsic parameters and proper contrast parameters (TE and TR). Experiments were
performed on a 3D multimodality abdominal phantom and on human knees at different TE and TR
parameters to confirm the clinical effectiveness of the approach. Results demonstrated the validity of
the approach of generating synthetic MR images at different weightings using only CT images and the
three predefined mapping functions. The slope of the fitting line and percentage root-mean-square
difference (PRD) between real and synthetic image vector representations were (0.73, 10%), (0.9, 18%),
and (0.2, 8.7%) for T1-, T2-, and p-weighted images of the phantom, respectively. The slope and PRD
for human knee images, on average, were 0.89% and 18.8%, respectively. The generated MR images
provide valuable guidance for physicians with regard to deciding whether acquiring real MR images

is crucial.

Keywords: synthetic MRI; computed tomography; spin echo

1. Introduction

Magnetic resonance imaging (MRI) and computed tomography (CT) are complemen-
tary imaging technologies, each with advantages and limitations for certain applications.
One of the advantages of CT imaging is its relatively short scanning time, which renders it
less sensitive to patient movement than MRI. MRI has a number of drawbacks; it is time-
consuming, noisy, and one in six patients suffer from claustrophobia in MRI scanners [1].
However, MR images often provide superior anatomical and functional information over
CT images, in addition to the superior information richness of MRI over CT with various
techniques for weighting imaging that can be performed in a combination with different
MR sequence protocols. This variety of functions gives the MRI flexibility in the display
of tissue anatomy, enabling it to focus on the particular information critical to a given
clinical application. In fact, biological tissue is often heterogeneous and, therefore, has
heterogeneous MR parameters, including proton density, T relaxation time, T2 relaxation
time, diffusion coefficients, and others.

Accordingly, in many clinical settings, it would often be desirable to perform multiple
MR acquisitions, each focusing on a different contrast mechanism to ensure that the clinician
is provided with a broad spectrum of information to form, ideally, a comprehensive and
accurate picture of the subject. Several studies have been dedicated to the generation
of synthetic images from other real acquired images by different imaging modalities,
including the generation of synthetic CT images from real MR images for the purpose of
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dose-calculation accuracy, or the generation of a pseudo-CT of the head from anatomical MR
images using well-defined anatomical atlases, image registration, and fusion technique [2].

A simple method of creating pseudo-CT images from MRI images for improving
dose calculations involves the manual segmentation of some tissue classes and allocating
a different CT# value to each class [3]. Research works that have investigated the automatic
mapping of MR images to electron density data have used either atlas-based [4-9] or
data-based approaches [10-15].

The problem of mapping the relationship between the MR information and the cor-
responding CT information was addressed by many researchers and reported in many
scientific papers in the interest of generating clinically relevant synthetic/pseudo-CT
anatomical data from MRI images for the purpose of attenuation correction in PET imag-
ing, dose delivery and treatment planning in radiotherapy, and patient positioning for
integration of PET and MR modalities into a combined PET/MR scanner [16]. For in-
stance, Johansson et al. [13] presented a method for generating a substitute CT image from
a set of MR images for the head and neck regions using a Gaussian mixture regression
model to link the voxel HU (relative electron density) values in CT images to the voxel
values in T2-weighted MR images acquired using a 3D spin echo-based sequence and two
dual-echo ultrashort echo time-pulse sequences with different echo times and flip angles.
The relation between MRI intensity and electron density was derived from calibrated HU
values by Kapanen et al. [12]. Their proposed method enabled the generation of clini-
cally relevant pseudo-CT images for the pelvic bones from T1/T2 *-weighted gradient
echo MRI image series. Sjolund et al. [17] proposed a method of atlas-based regression to
generate a patient-specific, pseudo-CT image of the head from corresponding anatomical
MR images. On the other hand, Andreasen et al. [18] generated pseudo-CT images from
T1-weighted MR images using the patch method instead of using the voxel- or atlas-based
method, while Demol et al. [19] generate pseudo-CT images from MR images for radiother-
apy treatment dose-calculations purposes by combining an atlas-based method with MR
intensity transformation.

Deep-learning methodology has also been used to generate CT images from MR
images [20,21]. The method was fast and accurate and achieved better results than con-
ventional methods, such as atlas-based or batch methods. However, the method mainly
depended on the alignment between MR and CT images for the same patient. Therefore,
J. M. Wolterink [22] proposed a new model called generative adversarial network (GAN)
with unpaired MR and CT images. The model consisted of two synthetic convolutional
CNN models followed by two discriminator CNNs. The result was accurate and very close
to real CT images.

On the other hand, most recent studies, including the study by Li Y et al. [23], em-
ployed artificial intelligence techniques to produce a counterpart to pseudo-MR/CT. The
approach of Li Y et al. mainly depended on supervised and unsupervised algorithms of CT
generation from MR or even MR from CT. For the supervised method, they employed U-
Net, while for the unsupervised method, they used cycle-consistent adversarial networks.
Their results were subjective to the parameters of their model. Meanwhile, Groot Ko-
erkamp et al. [24] evaluated the dosimetric accuracy of dose calculations based on synthetic
CT for breast radiotherapy, and investigated the required number of bulk-density levels.

Investigating the research work in the literature, including the aforementioned studies,
indicated that literature is still lacking studies of the generation of synthetic MR images
from real CT images. Therefore, the aim of this research study was to initiate a new
approach to generating synthetic MR images from real CT images, and to investigate the
validity of this new approach.

2. Materials and Methods
2.1. Phantom Imaging

CT images were acquired first, using a CT scanner (Optima CT660, GE Healthcare,
Chicago, IL, USA) for a selected slice of a Triple-Modality 3D Abdominal Phantom (Model
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057A, Computerized Imaging Reference Systems, Incorporated (CIRS), Norfolk, VA, USA).
Figure 1 illustrates the internal structure of the selected slice.

Figure 1. Tri-Modality Abdominal Phantom.

The CT acquisition parameters were 120 kVp /560 mAs, slice thickness = 2.5 mm, field
of view (FOV) = 30 cm, and matrix size = 256 x 256 pixels. The acquisition was repeated
9 times, then the images were averaged to increase the signal-to-noise ratio (SNR).

After imaging the phantom with the CT scanner, the same slice was imaged with
a clinical 1.5-T MRI system (Optima MR360, GE Healthcare, Chicago, IL, USA). The MRI
system was equipped with a phased-array body coil to receive RF signals. All MR im-
ages were acquired using a spin echo (SE) pulse sequence with the following parame-
ters: Slice thickness = 2.5 mm, FOV = 30 cm x 30 cm, matrix size = 256 x 256 pixels,
bandwidth (BW) = 15.6 kHz.

For T1-map and p-map calculations, a series of MR images was acquired for the same
slice as imaged by the CT, with echo time (TE) = 20 ms and repetition times (TR) = 100,
200, 400, 800, 1250, 2000, 4000, and 5000 ms. For T2-map calculation, another series of MR
images was acquired with TE =10, 15, 25, 40, 60, 90, 130, 180, and 240 ms; and TR = 2000 ms.

To test the validity of the approach used in this study, the generated synthetic MR
images were compared to their corresponding real MR images (T1-weighted image with
TR/TE =500 ms/10 ms, T2-weighted image with TR/TE = 2000 ms/130 ms, and p-weighted
image with TR/TE = 4000 ms/10 ms).

2.2. Knee Imaging

In order to confirm the applicability of the proposed approach to clinical imaging
on human subjects, the procedure performed on the phantom was repeated on human
subjects, whose right knee was firstly imaged by the CT scanner using the same parameters
as described in Section 2.1. Then, the same slice was imaged using the 1.5-T MRI scanner,
and a volume birdcage RF coil was utilized to receive and detect the RF signal. The same
pulse sequence was used for knee imaging as for the phantom imaging, as well as the same
values of slice thickness, FOV, matrix size, and BW. However, the series of MR images that
was acquired to calculate the T1- and p- maps used TR = 100, 200, 400, 800, 2000, 3000, and
4000 ms while keeping TE constant at 20 ms. Another series of images with TR = 2000 ms
and TE =10, 15, 40, 60, 90, 130, 180, and 240 ms was acquired to calculate the T2-map.

Two generated synthetic MR images were compared (Details in Section 3.5) to the corre-
sponding real MR images of the right knee of a volunteer subject (TR/TE = 1200 ms/20 ms,
and TR/TE = 2000 ms/25 ms). Prior to scanning, the volunteer was asked to sign a con-
sent form describing the purpose and procedure of the experiment, in addition to all
associated risks.
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2.3. Theory
2.3.1. Spin-Echo Pulse Sequence Steady State
The MR imaging spin-echo pulse sequence was selected for acquiring the real MR

images and for simulating and generating the corresponding synthetic MR images. The
amplitude of the spin-echo signal is given:

7(TR7TE/2) 7T7R _T7E
AE:p(12e n e Tl)e T @D
When TE <« TR, Equation (1) can be simplified to:
Ap = p<1 _ efTR/n)eng/Tz @)

The acquired CT and MR series images with T1, T2, and p weightings were subjected to
two main processes: registration and segmentation. The averaged CT image was considered
as the reference image for registration purposes, while the 2D MR images were defined
as the distorted images. Registration between the MR and the CT images was performed
using a rigid transformation model with bicubic interpolation taking in consideration the
optimization issues. On the other hand, the CT image was segmented using fuzzy C-means
algorithm [25] in order to extract the liver partition.

2.3.2. T1-Map Calculation

Equation (1) can be re-written as a function of TR:
Ap(b) = Cy + Cpb& ®)
where, b=¢"T8, C; = pe_TE/TZ,
C, = —pe T/ T2 (2e*TE/2T1 - 1)and G =1/Ty @)

2.3.3. T2-Map Calculation
The simplified equation of MR image intensity (Equation (2)) can be manipulated as:

In(Ag) = C1 + CoTg 5)

where

C,=In [p(l - e_TR/Tl)}and Co=—1/Ty ®)

2.3.4. p-Map Calculation

The proton density map is derived from the series of Ty images using the linear equation:

Ag(x) = px (7)
7(TR*TE/Z) 7T7R _E
wherex:<12e h +e Tl)e T2,

2.3.5. CT# to MRI Contrast Parameter Mapping

Once the T1, T2, and p parameter maps for the selected slice were calculated from the
acquired MR image series, where these parameters should be well-defined for each pixel
of tissue-mimicking type, the mapping functions that related these contrast parameters to
the corresponding pixel’s CT numbers (CT#) were obtained individually using a surface
fitting model of piecewise linear interpolation. This model employed the MRI contrast
parameter of each individual map as the dependent variable versus two independent
variables, namely, the CT# mean and standard deviation, which were extracted from
a5 x 5 window around each CT liver pixel.
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In order to generate variously weighted, simulated (synthetic) MR images of a new
slice localized close in position to the former CT slice, MRI- T1, T2, and p maps from
the new real CT image were calculated by applying the obtained mapping functions and
calculating the signal intensity, assuming proper TE and TR times.

A new CT image was acquired for a different phantom slice location near the original
slice. The acquisition was repeated 9 times for averaging purposes in order to enhance
the SNR. The positions of the newly selected real slices imaged by CT were marked
to avoid misalignment with the real MR images that were acquired in the validation
stage. Real MR images of the same new slice were acquired using the same practical
contrast parameters (TE and TR times) used in the simulation procedure for each weighted
MR image. The resultant real MR differently weighted images were compared with the
corresponding simulated images to investigate the validity of the proposed approach. The
similarities between the generated synthetic MR images from the real CT image and the
real MR images of the same slice were tested using two parameters. The first was the slope
between the generated /synthetic MR image segment array (liver segment) and the real MR
image segment array after they had been reshaped to vectors. The other similarity-testing
parameter was the percentage root-mean-square difference (PRD) which is given by:

YN (Real (i) — Synthetic(i))2
Yy (Real (i))?

PRD = 8)

where the real and synthetic are the vectors with size N of the real and the generated /synthetic
MR image segments, respectively.

3. Results
3.1. CT Reference Image Acquisition and Liver-Region Segmentation

The reference CT image was acquired for the slice in which the liver partition had the
greatest richness of information (hepatic tissue, lesions, blood vessels, pile ducts, ... ... ).
The liver was then segmented, and five ROI were specified, as shown in Figure 2.

(b)

Figure 2. (a) The selected CT slice reference image, and (b) The liver partition segmentation.

3.2. T1 Maps

To calculate the T1 value for each pixel in the liver segment, Equation (3) was utilized,
where b was plotted versus Ag, and the equation of the best fitting line was found to
calculate C3. The T1 map (calculated by taking the reciprocal of C3 in Equation (4)) for the
entire liver segment is shown Figure 3a.
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Figure 3. The calculated T1-map (a), To-map (b), and p-map (c) of the liver segment in the selected
phantom slice.

3.3. T2 Maps

For calculating the T2 value for each pixel in the liver segment, Equation (5) was
utilized, where TE was plotted versus the natural logarithm of the gray-level (In Ag) for
the different positions, and the equation of the best fitting line was found to calculate C2 in
order to obtain T2 value. The calculated T2 map for the entire liver segment is shown in
Figure 3b.

3.4. p Maps

The images that were used to calculate the T1-map were also used to calculate the
proton density map (p-map). The calculated p-map for the entire liver segment is shown in
Figure 3c.

3.5. Mapping between CT# and MRI Contrast Parameters

The relationship between the CT# in the liver pixels with their corresponding T1,
T2, and p contrast parameters are shown in Figure 4. The mapping of the CT# with each
contrast parameter shows one to many mappings, which means that the relationship of each
contrast parameter with CT# is not a reversible transformation. Therefore, the mapping
was performed instead between the mean and the standard deviation values extracted
from the CT# of each liver pixel and its surrounding neighbors with a window size of 5 x 5.
The resultant surface fitting using piecewise linear interpolation between each contrast
parameter, and the corresponding CT# mean () and standard deviation (o) values, are
illustrated in Figure 5, where the three mapping functions were obtained and saved to
achieve the goal of generating synthetic MR images from a real CT image.

T2 value (sec) p value (AU)
0.8 - v 2500 .
€
0.7 e,
S 2000
0.6
0.3 1500
0.4
0.3 1000
02
500
0.1
0 - - 0 .
200 -100 100 200 -100 100 200

0 0
CT # (HU) CT# (HU)

Figure 4. The relationship between CT# and the corresponding T; contrast parameter (Left), T,
contrast parameter (Middle), and p contrast parameter (Right). The relationships in the three plots
show one to many mapping.
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Figure 5. The surface fitting for CT-MRI mapping, using piecewise linear interpolation between the
contrast parameters (T, T, and p), and the corresponding CT# mean (i) and standard deviation (o)
values are shown in the (Left), (Middle), and (Right) graphs, respectively.

3.6. Regeneration of the MRI Three Contrast-Parameter Maps for the Selected Slice

To ensure the validity of the mapping functions that were built using piecewise linear
interpolation as was described in Section 3.5, the T1, T2, and p maps were regenerated
and compared with the calculated maps. Figures 6-8 illustrate the calculated map, the
regenerated map, and the relationship between them in the T1, T2, and p maps, respectively.
The calculated similarity parameters of the slope and PRD achieved the values (0.98, 2.3%),
(0.99, 2%), and (0.91, 1.3%) for T1, T2, and p maps, respectively, showing a high degree
of similarity.

(a} . ﬂsec (b) . i |
15 1.5
05 0.5

0

Figure 6. (a) The calculated (Real) T1 map, and (b) the regenerated T map.

[d) . ﬂsec (b}
0.2

Figure 7. (a) The calculated (Real) T, map, and (b) the regenerated T, map.

sec

1]

AU AU

(a). ﬂw | . ﬂ

Figure 8. (a) The calculated (Real) p map, and (b) the regenerated p map.

2000

1500

1000
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3.7. Regeneration of the MR T1 and T2 Images for the Selected Slice

Some of the MR images of TE and TR series, which were acquired to calculate the
T1 and T2 maps, were produced using the regenerated T1, T2, and p maps, as described
in Section 3.6, to ensure the validity of the approach followed in generating synthetic
MR images from the generated T1, T2, and p maps using only the CT image and the
stored mapping functions for a specific region in the phantom. As an illustrative example,
Figure 9 shows the real and the generated MR images with TE = 20 ms and TR = 200 ms
with their relationship of their liver segments after they were reshaped to vectors, where
the calculated similarity parameters of slope and PRD were 0.85 and 8.2%, respectively.
The same procedures were followed for the MR images of (TR = 800 ms, TE = 20 ms),
(TR = 2000 ms, TE = 25 ms), and (TR = 2000 ms, TE = 130 ms) as shown in Figures 10-12.
The calculated similarity parameters of slope and PRD of values were (0.83, 4.5%), (0.94,
5.2%), and (0.95, 6%) respectively.

(a) (b)

AU AU

500 U 500

Figure 9. (a) The real MR image, and (b) the generated MR image using Tr and Tg of 20 ms and

400 400

300
200 200

100 100

0 0

200 ms, respectively.

(a) AU (b)

AU
1200 1500
1000 650
1 800 200
600 600
400 At
200 D 200
0 0

Figure 10. (a) The real MR image, and (b) the generated MR image using Tr and T of 20 ms and
800 ms, respectively.
AU

1500 1500

| 1000 | 1000

500

Figure 11. (a) The real MR image, and (b) the generated MR image using Tr and Tg of 25 ms and
2000 ms, respectively.
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Figure 12. (a) The real MR image, and (b) the generated MR image using Tr and Ty of 130 ms and
2000 ms, respectively.

3.8. Generation of Synthetic MR Images with Different Weightings for a Nearby Slice Using the
Three Mapping Functions Evaluated from the Reference CT Image

The validity of the proposed approach was verified by generating synthetic pseudo-
MR images with different weightings from the real CT image of a specific slice in close
proximity, with well-defined mapping functions between the CT# parameters (i and o) and
the MRI contrast parameters maps (T1, T2, and p). To confirm this validity, a slice 10 mm
away from the reference CT image slice shown in Figure 2 was acquired. The new-slice CT
image and its segmented liver image are shown in Figure 13.

(b)

Figure 13. (a) The CT image of the new phantom slice, and (b) the liver segment image of the image
in (a).

The MRI T1, T2, and p maps of the new slice were then generated for the new CT slice
using the mapping functions built for the reference slice. The three generated maps are

shown in Figure 14.
(a) ()
Finally, the MR synthetic images with different weightings were generated for the new

Figure 14. The MRI-generated T (a), T, (b) and p (c) maps.
slice by calculating the signal (gray-level) of each pixel by substituting the contrast map
parameters in the corresponding pixels of the T1, T2, and p maps in Equation (1).

(b)
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To verify the validity of the obtained results, real MR images were acquired with
different weightings: T1-weighting (TE = 10 ms, TR = 500 ms), T2-weighting (TE = 130 ms,
TR = 2000 ms), and p-weighting (TE = 10 ms, TR = 4000 ms), which were then registered
with the new CT image followed by liver segmentation. The real MR images were finally
compared to the generated synthetic MR images using the same TE and TR times. The
MR real and synthetic images are shown in Figures 15-17, for the T1-, T2-, and p-weighted
images, respectively. The similarity results showed an acceptable degree of similarity with
slope and PRD values of (0.73, 10%), (0.9, 18%), and (0.2, 8.7%), respectively.

AU

{a) wo ()

0
Figure 15. (a) The real MR image with Tr = 10 ms and Tg = 500 ms, and (b) the generated synthetic
MR image using the same T and Ty values.

AU AT
1200 1200

1000 {L-‘)

800

1000

8OO

600

400

200

o

Figure 16. (a) The real MR image with T = 130 ms and Tr = 2000 ms, and (b) the generated synthetic
MR image using the same T and Ty values.

AU

(@) (b)

Figure 17. (a) The real MR image with Tr = 10 ms and Tr = 4000 ms, and (b) the generated synthetic
MR image using the same T and Ty values.

3.9. Preliminary Clinical Data

The procedure performed on the phantom was repeated on the right knee of a human
subject. The T1-, T2-, and p-maps of the knee MR images are shown in Figure 18, while the
mapping results of CT# with those maps using nearest interpolation method are illustrated
in Figure 19.
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(b)
Figure 18. The generated T1-map (a), To-map (b), and p-map (c).

@ ) . ©

7 (AU)

4t (HU) o (HU)

Figure 19. Mapping results of CT# with (a) T1-map (b) T2-map (c) p-map using nearest interpola-
tion method.

Figures 20-22 support the feasibility of using the approach for clinical human imaging
by showing the calculated maps along with the regenerated maps, in the T1, T2, and p
maps, respectively. The calculated similarity parameters of the slope and PRD were (0.98,
8.9%), (0.99, 4.85%), and (0.94, 10.65%) for T1, T2, and p maps, respectively.

@) (b)

(b)

Figure 21. (a) The calculated (Real) T, map, and (b) the regenerated T, map.
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(a)

AU AU

Figure 22. (a) The calculated (real) p map, and (b) the regenerated p map.

For validation purposes, knee MR images were acquired and registered with the new
CT image. The real MR images were finally compared to the generated synthetic MR images
using the same TE and TR times. The MR real and synthetic images, in addition to the
absolute difference image (the result of their subtraction), are shown in Figures 23 and 24
for the (TE = 20 ms, TR = 1200 ms), and (TE = 25 ms, TR = 2000 ms) cases, respectively. The
similarity results showed good degrees of similarity with slope and PRD values of (0.87,
18.3%) and (0.9, 19.2%), respectively.

AU (b) AU (¢) AU
15,000 15,000 15,000
10,000 10,000 10,000
5000 5000 5000
0 0 0

Figure 23. (a) The real MR image, (b) the generated synthetic MR image; both with Tr = 20 ms and
Tr = 1200 ms, and (c) the absolute difference image.

AU (b) AU

15,000

AU

15,000 15,000

10,000

10,000 10,000

5000 5000 5000

0 0

Figure 24. (a) The real MR image, (b) the generated synthetic MR image; both with Tr = 25 ms and
Tr = 2000 ms, and (c) the absolute difference image.

4. Discussion

The novelty of this research study lies in generating synthetic MR images with different
weightings from a single real CT image using predefined mapping functions. Creating
these mapping functions, which were used to find the relationship between CT#s in the CT
image and MR values of T1, T2, and p for the same tissue type, is considered one of the
biggest challenges of this study.
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To overcome the limitation of producing the one to many mappings, which resulted
from using the CT# values alone directly in creating the mapping functions, two indepen-
dent features were used (mean value and standard deviation of CT#s of a 5 x 5 window
around each pixel). The window size 5 x 5 was chosen to sufficiently represent the distri-
bution of tissue type without overlapping with other surrounding tissue types that might
result if a larger window size was used.

The regenerated maps using the mapping functions were plotted versus the original
maps after both maps have been reshaped to vectors, then the slope and PRD values of
the fitting line were calculated to quantitatively evaluate the similarities between the maps.
For identical images, the slope value should ideally be equal to one and PRD should be 0%.
The similarity values (represented by slope values) were very high (0.976, 0.999, and 0.914
for T1, T2, and p maps, respectively) with very small PRD (2.3%, 1.9%, and 1.4% for T1, T2,
and p maps, respectively) which demonstrated the effectiveness and consistency of these
mapping functions.

After the mapping functions were stored for the selected slice, they were used to
generate different weighted MR images (by properly selecting the values of TR and TE) at
different locations in the surrounding region. The new tested location was 10-mm away
from the original slice in the axial plane. The quality of these generated weighted images
was quantitatively evaluated by comparing them to real MR images acquired by an MRI
scanner at the same location using the same TR and TE values. The results obtained for
the similarity and PRD values confirmed the validity of the approach. The generated
T2-weighted images showed the best matching upon the calculation of their similarities to
the corresponding real images (slope value was 0.903 for the slice 10 mm away from the
original slice). On the other hand, T1-weighted and p-weighted images showed similarity
values that were poorer, but still satisfactory, when compared to their corresponding real
images (slope values for the slice 10 mm away from the original slice were 0.731 and 0.232
for T1-weighted and p-weighted images, respectively).

The low slope values between the liver segment of the generated synthetic images and
the real acquired p-weighted images could be attributed to various factors that ultimately
formed the signal Ag of Equation(1) in each pixel, such as the static magnetic field (B)
and the phantom temperature, where the acquired MRI signal was proportional to By and
inversely proportional to absolute temperature, the RF-coil receiver amplifier gain which
had the largest impact on signal scale, as well as other factors. However, these factors
were the same for all pixels and considered as a constant scale multiplied with the proton
density (p) of each tissue-mimicking pixel. The signal’s scale variety can be equalized by
scale normalization.

The PRD values for the three MR weighting images were larger for the new location
(10-mm away in the axial plane) compared to those for the original /reference slice. This
increase in the PRD values could be related to the fact that mapping functions became less
effective with increasing distance from the original slice, because new tissue types could be
part of the new slice position, and therefore, different mapping parameters were required
to describe the relatedness between the CT# and the T1, T2, and p parameters. It could
also be related to the inhomogeneity of the synthetic tissue-mimicking materials caused by
air bubbles that were noticed in the phantom during imaging, or to other manufacturing
factors. This limitation can be avoided, and PRD values can be reduced by dividing the
body volume into a number of slabs (regions) and creating a separate mapping function for
each slab. Doing so will improve the quality of the generated weighted images because
the variation in tissue properties and structures will be minimized. The contribution of
more features (Entropy, energy, correlation, ... etc.) extracted from the CT# pixel and its
neighborhood should emphasize the identity of the CT tissue pixel, and therefore, could
improve the mapping functions and consequently improve the quality of the generated
synthetic MR images.

Figure 4 showed one to many mapping when the CT# was mapped with the corre-
sponding parameters of T1, T2 and p, which means that either the mapping was not unique
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or the inverse mapping did not occur. This was due to the relatively large span of CT#
in human tissue and the overlapping ranges of CT# for different tissues. For example,
the CT#s of the liver and spleen tissues span from 40-60 HU. Furthermore, taking into
consideration that the voxel, depending on its thickness, may include more than one tissue
type, the measured attenuation coefficient value, and consequently the CT#, is an average
value of the voxel’s tissue composition. To obtain a unique mapping for each slice voxel
(pixel), we must engage more tissue CT# statistical features, such as the CT# mean and
standard deviation of a window centered at the voxel (pixel) coordinates, as employed in
this study and shown in Figure 5.

The human knee was chosen to clinically validate the effectiveness of the proposed
approach because of the large diversity of its tissues (e.g., cartilage, tendons, ligaments,
muscles, fat, bones with different density . .. etc.). In addition, the knee has no involuntarily
moving parts, in contrast to the abdominal region, which would have caused motion
artifacts if it had been chosen, especially as the acquisition of an MR image using the
selected MRI sequence (spin-echo) takes several minutes. Another reason for choosing the
knee is the availability of the knee external RF receive coil, which can provide MR images
with high contrast to noise ratio and so minimize the need for averaging, consequently
shortening image acquisition time.

The knee clinical preliminary results showed very good agreement with the results
obtained from the phantom, where the generated synthetic pseudo-MR images obtained
from CT-MRI mapping had high similarity to those actually acquired by the MRI scanner
using the same TE and TR times. These promising results encourage more extensive study
of the human knee in future using a larger subject dataset. Additionally, future work could
include generating CT-MRI mapping functions for other organs to establish an atlas for a
complete anatomical region.

Magnetic resonance imaging (MRI) relies on optimal scanning parameters to achieve
maximal signal-to-noise ratio (SNR) and high contrast-to-noise ratio (CNR) between tissues,
resulting in high quality images. The optimization of such parameters is often laborious,
time consuming, and user-dependent, making harmonization of imaging parameters a
difficult task. The clinical preliminary results of knee images suggest that the current study,
in the context of the completion of the composition of atlases for certain regions of the
body and further validation with a larger cohort, has many possible clinical applications,
including generating synthetic MR images of these regions, for which radiologists can try
different TE and TR values in a short time and at no cost, then decide which values produce
the best synthetic weighted image (the optimal in vivo scanning parameters) to be used in
the real acquisition. However, it is worth noting that the proposed approach is not in any
way an alternative to the acquisition of real MR images for accurate and efficient diagnosis.
The simulation program may also be used to harmonize MRI acquisition parameters across
scanners from different vendors [26]. Additionally, a potential objective of the current
work that may be considered in future is the generation of another MRI image set using
different MRI sequences, once the T1, T2 and p maps have been obtained from the real
CT image using the already built mapping models (gradient-echo (GRE) sequence, for
example). However, the confirmation and validation of those applications require more
analysis and experimentation.

5. Conclusions

This study introduced and validated a novel approach to generating different synthetic
weighted MR images from a real CT image using a tri-modality abdominal phantom. The
analyzed results were practically based, using clinical CT and MRI scanners and grounded
on evidence-based research. The major challenge of the proposed approach was building
optimal mapping mathematical models between the CT#-related parameters in the CT real
image and the three intrinsic MRI contrast parameters, which was accomplished efficiently
using the CT pixel neighborhood mean and standard deviation values. The ultimate goal
of generating synthetic MR images was achieved, and the quality of the generated MR
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images was evaluated. This work on the abdominal phantom as well as on the human
knee shows promising results for the validity of this novel approach. However, to evaluate
the performance and effectiveness of this approach clinically and profoundly, the followed
methodology must be implemented on a larger dataset of human subjects and in different
human anatomical regions, because the mapping model built herein is not generalizable
for the whole human tissue; rather, it is restricted to the specific organ or region. In future,
more volunteer clinical data of the knee region can be collected and employed for training
and testing phases in order to build more reliable mapping models for the knee region. The
ultimate goal of the research group of this study is building mapping models for most of
the human body organs and regions and to ultimately produce an atlas of human mapping
models for the generation of pseudo-MR images from the corresponding real CT images.
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