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Abstract: There is a growing demand for high-resolution (HR) medical images for both clinical
and research applications. Image quality is inevitably traded off with acquisition time, which in
turn impacts patient comfort, examination costs, dose, and motion-induced artifacts. For many
image-based tasks, increasing the apparent spatial resolution in the perpendicular plane to produce
multi-planar reformats or 3D images is commonly used. Single-image super-resolution (SR) is a
promising technique to provide HR images based on deep learning to increase the resolution of a
2D image, but there are few reports on 3D SR. Further, perceptual loss is proposed in the literature
to better capture the textural details and edges versus pixel-wise loss functions, by comparing the
semantic distances in the high-dimensional feature space of a pre-trained 2D network (e.g., VGG).
However, it is not clear how one should generalize it to 3D medical images, and the attendant
implications are unclear. In this paper, we propose a framework called SOUP-GAN: Super-resolution
Optimized Using Perceptual-tuned Generative Adversarial Network (GAN), in order to produce
thinner slices (e.g., higher resolution in the ‘Z’ plane) with anti-aliasing and deblurring. The proposed
method outperforms other conventional resolution-enhancement methods and previous SR work on
medical images based on both qualitative and quantitative comparisons. Moreover, we examine the
model in terms of its generalization for arbitrarily user-selected SR ratios and imaging modalities.
Our model shows promise as a novel 3D SR interpolation technique, providing potential applications
for both clinical and research applications.

Keywords: super-resolution; magnetic resonance imaging (MRI); generative adversarial networks
(GAN); 3D perceptual loss; medical imaging interpolation; deep learning

1. Introduction

Medical imaging modalities (e.g., MRI, CT, and ultrasound imaging) are widely used
for clinical diagnosis and research [1]. They reveal internal anatomy and can provide
quantitative measurements of the human body. Acquisition of a medical image depends
on both the technical quality of the instrument and the conditions of the scan (e.g., patient
properties, nature of the image being acquired), and in most cases, involves compromise,
i.e., choosing a shorter acquisition time in MRI, reducing the radiation dose in CT, and
using slower sweep speed in ultrasound. Thus, the acquired images may have low spatial
resolution, typically in the ‘Z’ plane. For instance, an MRI using the 2D spin-echo technique
can provide good in-plane resolution, but it typically has a high thickness for a clinically
reasonable acquisition time, constraining the possibility of capturing important signals
of lesions that are small compared to slice thickness. Moreover, the thick-slice images
produce poor quality multiplanar or 3D reconstructions. There is active demand in practice

Tomography 2022, 8, 905–919. https://doi.org/10.3390/tomography8020073 https://www.mdpi.com/journal/tomography

https://doi.org/10.3390/tomography8020073
https://doi.org/10.3390/tomography8020073
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/tomography
https://www.mdpi.com
https://orcid.org/0000-0001-5926-7517
https://doi.org/10.3390/tomography8020073
https://www.mdpi.com/journal/tomography
https://www.mdpi.com/article/10.3390/tomography8020073?type=check_update&version=1


Tomography 2022, 8 906

to generate HR thin-slice images in order to reduce acquisition time, examination costs,
and motion-induced artifacts.

One of the main approaches to accelerate MRI acquisition is through under-sampling
in k-space, which inevitably results in aliasing artifacts by violating the Nyquist–Shannon
sampling criteria [2], and then performing reconstruction of the under-sampled MRI, by
solving an ill-posed inverse problem from an optimization point of view [3]. Currently,
parallel imaging (PI) and compressed sensing (CS) [4] are widely used in clinical practice,
and while the former method adopts multiple independent channels to simultaneously
receive each view of the tissue area and utilizes software tools such as SENSE [5] or
GRAPPA [6] to combine the multiple signals, the latter provides a framework for imaging
reconstruction by adding a regularization term subject to prior sparsity constraints into the
optimization problem. Beyond the conventional techniques, deep learning methods for MRI
reconstruction have been extensively studied to learn the relationship between high-quality
ground truths as target and the corresponding under-sampled images as input [7–10]. More
advanced networks and algorithms are proposed following the idea of incorporating more
“physics” from conventional methods (CS and PI), e.g., the development of variational
networks [11–13]. In the case of CT, higher radiation dose is required to obtain thinner
slices at a given noise level.

Single-image SR focuses on the 2D spatial domain and refers to the process of gener-
ating HR images from low-resolution (LR) images. Deep-learning-based SR models have
been actively explored and they achieve state-of-the-art performance on natural image
datasets [14–18]. One important breakthrough is the perceptual loss function [19–21],
which may address the problem of blurring generated by the optimization of pixel-wise
loss functions such as MSE. Together with GAN loss, perceptual loss has the potential to
create images that are visually indistinguishable from the ground truth images.

Basic SR techniques have been applied to medical images [22]. Single-image methods
using 2D convolutional neural networks (CNNs) are applied to CT in [23,24] and MRI
in [25,26]. More advanced 2D models based on SRGAN with perceptual loss are investi-
gated in [27,28]. SR using 3D CNNs are proposed for volumetric CT data [29–31]. For 3D
SR MRI, Chaudhari et al. [32] implement CNNs to learn residual information between HR
thin-slice images and LR thick-slice images using MSE loss. A self-supervised anti-aliasing
algorithm is developed by [33,34] to resolve the LR out-of-plane slices by learning from
the HR in-plane slices, thus requiring no external training dataset. High-quality results are
reported by the SR MRI approaches in the literature [35–39]. However, there are certain lim-
itations that preclude their application in real-world scenarios. Given the blurred textures
produced by MSE loss, perceptual loss with GAN seems necessary in the single-image SR
model, but it is unclear how to generalize a pre-trained 2D model based perceptual loss to
3D medical images. In modern medical-image deep-learning tasks, data augmentation is
often applied during data preprocessing when the acquired data are insufficient. The adap-
tation of the SR MRI model to address a range of SR scenarios such as various sampling
ratios, acquisition processes, or medical modalities is still limited. As a result, interpolation
is still used instead of SR for routine data interpolation and augmentation.

In this study, we aimed to generate thinner SR of MR images from thicker (clinical)
images. We propose a new algorithm termed SOUP-GAN: Super-resolution Optimized
Using a Perceptual-tuned GAN network for generating HR thin-slice images. Our main
contributions are:

• We develop a scale-attention SR architecture that works for arbitrarily user-selected
sampling factors with an overall satisfactory performance.

• We generalize the application of perceptual loss previously defined on 2D pre-trained
VGG onto 3D medical images. Together with GAN, the new scheme with 3D perceptual
loss significantly improves the perceived image quality over the MSE trained results.

• Two criteria of data preprocessing are proposed accounting for different acquisition
protocols. Without examining the acquisition process carefully, the extracted datasets
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will not provide accurate mapping from LR slices into HR slices, and therefore may
not work well for all the SR tasks.

• We evaluate the feasibility of designing one model that works for all the medical
images. The proposed model is applied to datasets from other imaging modalities,
e.g., T2-weighted MRI and CT, as well as many body parts.

Combining the above aspects, our model shows potential to be applied for the novel
SR interpolations on medical images (Our SR interpolation tool based on SOUP-GAN is
available at https://github.com/Mayo-Radiology-Informatics-Lab/SOUP-GAN, accessed
on 11 March 2022).

2. Materials and Methods
2.1. Residual CNNs for 3D SR-MRI

Generally, image reconstruction is the transformation of signals acquired to images that
are meaningful to humans and can be formulated as the multi-dimensional linear system:

Ex = y + ε, (1)

which tries to generate the desired images x = {xi, i ≤ N} based on the observed signals
y = {yi, i ≤ n}with N and n as the numbers of desired and observed slices (images in the z-
dimension), respectively. E is the encoder operator, representing various image generation
or transformation tasks, e.g., an identity operator for image deblurring and denoising (with
and without convolutions, respectively), image-space uniform under-sampling for SR, local
masking operators for inpainting, and k-space under-samples for MRI reconstruction. ε is
the coherent noise by the measurement.

SR tasks on 3D MRI specifically can be viewed as an under-sampling encoder trained
to link HR slices x with LR slices y; while Equation (1) itself is ill-posed, it can be turned
into an optimization problem:

x̂ = arg min
(

1
2
||Ex− y||22

)
, (2)

and solved by supervised learning. Given a set of HR ground-truth examples x, the
corresponding LR images y can be obtained through the encoder operator E = (x ∗ κ) ↓s
that typically applies the anti-aliasing filtering κ with a subsequent down-sampling by
the sampling factor s on the ground truth slices. The training dataset is composed of the
ground-truths x and their associated under-sampled y, on which a generator network Gθ is
proposed and trained to approximate the function F , the inverse form of the encoder E ,
such that x = F (y).

The designed generator Gθ consists of a pre-upsampling layer by cubic interpolation
together with a residual network of 3D convolutional layers, or 3D U-net, on which the
data patches can be efficiently trained. For the residual learning, cubic interpolation can
better approximate the ground truth compared to lower-order interpolations, and the
number of convolutional layers is selected as 14, taking into account both performance and
computational effort. For the task involving a large training dataset, the so-called RRDB
(Residual in Residual Dense Block) introduced in ESRGAN [18] is adopted to better resolve
the residual spatial details, and to alleviate the burden of occupied memory through such a
post-upsampling scheme.

As an outline of the proposed framework SOUP-GAN, Algorithm 1 is provided with
pseudocode to summarize the training process including multiple processing steps, which
are depicted by Figure 1 and explained in the later subsections.

https://github.com/Mayo-Radiology-Informatics-Lab/SOUP-GAN


Tomography 2022, 8 908

Algorithm 1 Training the proposed framework SOUP-GAN.

Data: HR 3D MRI volume after data standardization.
Step (1) Data preprocessing:

Create LR volume by data-preprocessing following either the thick-to-thin or sparse-to-thin
criteria.

Step (2) Prepare training dataset:
Partition the LR data as input and HR data as ground truth into pairs of 32× 32× 32
patches.

Step (3) Scale-attention SR network:
Input LR patches to the attention-based multi-scale SR network with an appropriate mod-
ule entrance and exit by the calculated alignment weights α according to the associated
sampling factor s.

Step (4) 3D perceptual loss with GAN:
Based on the pre-trained MSE results, further tune the model by employing the 3D
perceptual loss with GAN.

s = 2 s = 3 s = 6

Conv Block Conv Block Conv Block

Conv Block

Conv Block

Conv Block Conv Block Conv Block

Axial GTs lϕ( ̂yai
, ygt

ai
)VGG 19

VGG 19

Coronal GTs

lϕ( ̂ycj
, ygt

cj
)

Perceptual Loss on a 3D patchGenerator Network

Prediction GT

Discriminator 
Network

True,
or false?

Sagittal GTs VGG 19 lϕ( ̂ysk
, ygt

sk
)

Given the growing demand for high-resolu-on (HR) medical images for both the clinical and research applica-ons, we proposed 

a deep-learning super-resolu-on (SR) framework called SOUP-GAN to produce thin slices from thick slices (i.e., higher resolu-on 

in the ‘Z’ plane).  

s1 = 2 s2 = 3 sn = 6

α1
α2 αn

α1 α2
αn

αi :  Alignment weights

:  Additive attention

Architecture of the framework SOUP-GAN: Super-Resolution MRI using Generative Adversarial Networks (GAN)

a b

c

Figure 1. (a) Architecture of our scale-attention SR network with GAN. (b) Three-dimensional
perceptual loss is calculated by inputting all the axial, sagittal, and coronal surfaces of the 3D data
into the pre-trained VGG and (c) comparing the differences between predictions and ground-truths
in the high-dimensional feature space. GT: ground truth.

2.2. Data Preprocessing

IRB reviewed this protocol and waived the requirement for patient consent. Data
acquired for this study are 3D MRI datasets. One hundred T1-weighted brain MRI scans
obtained at our hospital in 2018 and 2019 for multiple sclerosis (MS) were collected. Those
are HR thin slices (256× 256× 160) with 1 mm isotropic pixel spacing in both the in-plane
and the out-of-plane directions. The LR volumes were created by the data-preprocessing
methods explained later. These 100 scans were distributed into training, validation and test
datasets at a ratio of 8:1:1 at the patient level (i.e., all patches from a given patient were only
in one of the groups). Both the input and ground-truth datasets were then cropped and
partitioned into pairs of patches; while larger volumetric patches potentially capture better
semantic features [40], we selected a patch size of 32× 32× 32 to reduce computational
demands. All patch pairs were shuffled within each group to avoid possible data leakage
among training, validation, and test. Other 100 T2-FLAIR brain MRI scans were collected
for evaluating the generalization of our SR model to other contrast types of MRI data.
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The specific way to prepare LR images from HR images depends on the acquisition
protocols and the up-sampling factor s selected for the SR task. We define two different
criteria accounting for the situations broadly categorized in the acquisition process, because
without taking care of these variations, the extracted datasets will not provide accurate
mapping from LR slices back to HR slices, and therefore will fail to work well for various
resolution-enhanced tasks in practice. In detail, the preprocessing from HR ground-truth
data to the associated LR representation is categorized into two types: (1) thick-to-thin and
(2) sparse-to-thin.

The first type (thick-to-thin) assumes the same FOV of the acquired 3D data (i.e., same
Z coverage). The selection of the slice thickness determines how much tissue is to be
covered within each slice. Thicker slices can achieve more efficient acquisition without
slice gaps or spatial aliasing but they cause image blurring due to partial volume artifact.
Correspondingly, the thick-slice representation of the HR ground-truth data is obtained by
the finite impulse response (FIR), low-pass filtering with the filter coefficients as b = 1/s to
mimic the averaging and anti-aliasing characteristic with the high thickness, followed by a
subsequent down-sampling with the factor s.

The second type (sparse-to-thin) simulates scans that are expedited by discretizing FOV
in Z (i.e., same 2D X-Y resolution). This is useful for acquisition protocols focused on the
in-plane resolution without considering the perpendicular (Z) planes. Thin slices with
large separation are acquired efficiently. As a result, they are insufficient to cover the whole
FOV in Z direction, therefore inevitably introducing spatial aliasing in the perpendicular
planes [41]. One clinical example is for diagnosing interstitial lung disease in which HR
CT data (∼1 mm slice thickness) are acquired at 10 mm intervals. Corresponding to this
type of clinical acquisition as well as imaging interpolation in deep learning tasks, the LR
representation of the HR ground-truth data is obtained directly by the down-sampling
with the factor s.

For other cases between the first and second types of data preprocessing discussed
here, a Gaussian filter with a tuned value of the standard deviation can be adopted. The LR
representation obtained by either the thick-to-thin or the sparse-to-thin criteria is then used
to prepare the input dataset for the SR network.

2.3. Scale-Attention Model for SR Interpolation

Supervised medical deep-learning tasks (e.g., classification, detection, and segmenta-
tion) are based on the acquired images and associated labels. The accuracy of the model
inference is not only decided by the design of the networks, but more importantly it relies
on the data size and quality. Data augmentation is often performed when the training data
are insufficient, imbalanced, or incompatible in shape. Conventional interpolations (such
as linear, quadratic, and cubic) are widely used and can provide approximate intermedi-
ate slices. However, when the sampling factor s increases, the interpolated new images
become more blurred. From our observation on SR tasks, we design an attention-based
multi-scale model to provide image interpolation with superior resolution, upon arbitrarily
user-selected sampling factor s.

In our scale-attention architecture, the single-scale model described earlier provides
the starting point for learning the residual between LR and HR slices. Pre- and post-
attention modules are added, respectively, at the top and the bottom layers, to deal with
the differential information between scales. As a result, we construct one model based on
selected sampling factors si ∈ {2, 3, 4, 5, 6} that can provide predictions for general cases
with sampling factors ranging from 1.5 to 6.5 to cover most usual needs in practice (see
Figures 1 and 2b), while most of the model parameters are shared by the backbone across
the scales.
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For a user-selected sampling factor s, we incorporate it to the attention model by
calculating the alignment weights:

α =


[1, 0, . . . , 0], s < 2
[0, . . . , (1− t), t, . . . , 0], m ≤ s < m + 1
[0, . . . , 0, 1], s ≥ 6

(3)

in which the terms (1− t) and t correspond to the elements αm−1 and αm, respectively, for
any fractional s between the integer m and m + 1 with the fraction t = s−m. The attention-
layer output is then an α weighted sum of all the scale branches: ∑ αiyi. The proposed
scale-attention SR model provides an efficient tool to perform the image interpolation with
higher resolutions than conventional interpolation methods.

Original TCI Scale AEen$on Single SR GT
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Figure 2. (a) Comparison between single-scale model and scale-attention model on T1-weighted
brain MRI. The figure shows original slices, cubic interpolation and ground-truth slices as a reference.
Residual images at higher contrast are added to better visualize the difference of the generated
images to the ground-truths. (b) Quantitative comparisons of measures: (b-i) RMSE, (b-ii) PSNR,
and (b-iii) SSIM in terms of the sampling factor s between the single-scale model, the scale-attention
model, 3D perceptual GAN (SOUP), and cubic interpolation. Statistical significance is indicated on
the x-axes with * for p < 0.05 and ** for p < 0.001. TCI: tricubic interpolation; GT: ground truth.

2.4. 3D Perceptual Loss

In previous single-image SR tasks studied on natural images, it was observed that
training based on a pixel-wise loss, e.g., L1, MSE, or PSNR can achieve relatively high metric
scores, but often results in overly-smooth SR images with blurring, since the perceptual
quality of textures, edges, and high-frequency details are ignored by the pixel-wise losses.
Based on the idea of being closer to semantic similarity, Gatys et al. [19] propose perceptual
loss, which is defined by evaluating the Euclidean distances between the feature maps
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extracted from a pre-trained VGG network instead of low-level pixel-wise error. For
instance, perceptual loss based on the high-level representations at the l-th layer of the
VGG19 network [42] is formulated as:

Lper =
1

hwc ∑
i,j,k

(
φl

i,j,k(x)− φl
i,j,k(F(y))

)2
, (4)

where h, w, and c are the height, width, and channel number of the representation on the
layer l, respectively.

It is worth noting that SR MRI tasks deal with 3D medical images, while the VGG
network takes 2D images as input. To generalize the single image SR with perceptual
loss into 3D, we propose to adopt the original slices together with adjacent planes of the
ground truth volume x and the predicted volume F(y). That is, all the axial, sagittal, and
coronal images of the 3D data are imported into the pre-trained VGG and contribute to the
perceptual loss calculation (see Figure 1). In this way, the 3D MRI volume is perceptually
resolved in terms of projected slices along the three principal directions. We also note that
we used the deep intermediate layer VGG19-54 before activation rather than after activation.

In addition to the perceptual loss, we define a discriminator network Dθ , together
with the generator model Gθ , based on the generative adversarial networks structure. The
generator Gθ and discriminator Dθ are optimized in an alternating manner to solve the
adversarial min–max problem:

min
G

max
D

Ex∼pgt [log D(x)] +Ey∼ptrain [log(1− D(G(y)))], (5)

which aims to train a generative model Gθ trying to fool the discriminator Dθ , while
the discriminator is trained simultaneously to distinguish the generated SR images from
ground truth images. With this approach of adversarial training between Gθ and Dθ ,
the generated images are encouraged to reside in the featured manifold of real images,
potentially with perceptually superior quality that is visually indistinguishable from the
ground truth images. Other options in the literature for the GAN stage include analyzing
features and graph properties extracted from the image, e.g., Markov random fields (MRFs)
used for texture synthesis and inpainting [43,44].

3. Results
3.1. Training Details

The training process is divided into two stages. The generator model Gθ is first trained
by the MSE loss. The Adam optimization is used. The learning rate is initialized as 3× 10−4,
and decreased by a factor of 3 upon three cycles, if the validation loss is no longer updated
for the current cycle. Then, the model is further tuned by employing the perceptual loss
and GAN. The total loss for Gθ upon the refined tuning is:

LG = Lper + λLGAN + µLMSE, (6)

where the weights λ and µ are the coefficients to balance different loss terms and set
as 0.01 and 0.001 [18]. The pre-trained pixel-wise model is used to initialize the second
stage of training. Transfer learning helps the perceptual-tuned GAN model converge
more efficiently and obtain more visually pleasing results. The generator Gθ and the
discriminator Dθ are alternately updated until the model converges to produce visually
satisfactory images and no further improvement is visually apparent. We recognize that
this is an arbitrary criterion, but human perception is the desired application and using
perceptual metrics would also be weak since they are used to train the model.
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3.2. Single-Scale and Scale-Attention Model Comparison

The SR technique shows its potential as a better “interpolation”, given the active
demand for data augmentation in medical-imaging deep-learning tasks. The feasibility of
this idea requires an adaptive SR model which is designed to incorporate random sampling
factors. Figure 2a compares the single-scale SR model with our scale-attention SR model
at a sampling factor equal to 5. We can imagine that, to some extent, the scale-attention
model must sacrifice partial resolutions, as a trade-off for allowing arbitrary scale entries.
However, the images obtained by the scale-attention model are still of satisfactory quality
compared to the tricubic interpolation (TCI) and single-scale model.

Beyond the single-scale limit, our scale-attention model is demonstrated to work
for user-selected scale values, which is the key to turning the SR model into a useful
interpolation tool. Figure 3b reports the quantitative data performed on T1-weighted brain
MRI test dataset with the metrics at different scales, including the root of mean squared
error (RMSE), peak signal to noise ratio (PSNR), and the structural similarity (SSIM).
Figure 3a shows the generated images at different scales, obtained by SOUP (the scale-
attention model) and compared to the conventional interpolation results. As a summary
of the comparison, while the scale-attention SR model and the conventional interpolation
method converge to a similar quality at the scale s ≤ 2, the SR model starts to outperform
the interpolation and achieves better and better image qualities when the scale s increases.

Fig 5: 
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Figure 3. (a) Comparison between scale-attention model and cubic interpolation at different scales.
(b) T1-weighted brain MRI test dataset with quantitative comparisons of measures: (b-i) RMSE,
(b-ii) PSNR, and (b-iii) SSIM in terms of the sampling factor s. As a reference, DeepResolve proposed
by [32] as a single-scale residual-based 3D CNNs with MSE is similar to the single SR reported here
(in red). Statistical significance is indicated on the x-axes with * for p < 0.05 and ** for p < 0.001. TCI:
tricubic interpolation; GT: ground truth.
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3.3. Application to Other Contrast Types of MRI Images

In the literature, single-image SR models are trained and tested on datasets of natural
images, collected from different categories with various distributions. An open question
for medical images is whether it is possible to develop a generalized SR model that works
for various medical image data types (e.g., modalities or contrast types) with an arbitrary
sampling factor s selected by the user. To address this question, we apply our scale-attention
SR model to the test datasets of other medical imaging types, e.g., T2-FLAIR MRI and
CT, and other body parts. Figure 4 shows the comparison between the single-scale model
and the multi-scale model on FLAIR brain MRI, Figure 5b quantitatively evaluates the
performances of the models on the FLAIR MRI dataset with different metrics, and Figure 5a
compares SOUP with conventionally interpolated images at a different sampling factor s.
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Figure 4. Comparison between the scale-attention model and cubic interpolation on T2-FLAIR brain
MRI at different scales. TCI: tricubic interpolation; GT: ground truth.

3.4. Generalization to Other Medical Imaging Modalities, e.g., CT

We also apply our scale-attention SR model to CT data. Figures 6 and 7 show the
SR-interpolated (SOUP) and conventionally interpolated images on abdominal and pelvic
CTs. It is clear from both examples that the SR-interpolated results achieve significantly
higher quality than the conventionally interpolated ones in regard to the edges, textual
details, and blurring. Those comparisons demonstrate that our scale-attention SR model
(SOUP) is a widely generalizable tool for different sampling factors and various applied
imaging modalities, which paves the way for more advanced medical image interpolation
through deep-learning SR.
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Fig 7: 
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Figure 5. (a) Comparison between scale-attention model and cubic interpolation on T2-FLAIR brain
MRI at different scales. (b) Evaluation using T2-weighted brain MRI images with quantitative
comparisons of measures: (b-i) RMSE, (b-ii) PSNR, and (b-iii) SSIM in terms of the sampling factor s.
DeepResolve proposed in [32] is similar to the single SR (in red). Statistical significance is indicated
on the x-axes with * for p < 0.05 and ** for p < 0.001. TCI: tricubic interpolation; GT: ground truth.
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Figure 6. Example of SR interpolation on CT with a sampling factor equal to 4.8. Edges and textual
details are better resolved by SR. Blurring is reduced. TCI: tricubic interpolation.
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Figure 7. Another example of SR interpolation on CT data with a sampling factor equal to 5.72. TCI:
tricubic interpolation.
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4. Discussion

Data interpolation is important in medical imaging and deep-learning tasks. Data
preprocessing through mathematical interpolations is often used when the training data
are insufficient, imbalanced, or incompatible in shape. Though SR approaches can generate
images with better quality, interpolation is still used instead of SR for routine interpolation.
A significant limitation of prior SR methods, including the multi-scale SR first proposed
by [17], is that they are designed to work only for a fixed and pre-defined sampling ratio;
they therefore fail to adapt to arbitrarily user-selected ratios. Figures 3 and 5 show the
flexibility of our approach to deal with variable ratios. For realistic applications of SR
interpolation, we proposed two inference models based on two different types of data
preprocessing: the thick-to-thin model is used for interpolating 3D images without slice
gaps, and the sparse-to-thin model is for interpolating sparsely stacked 2D images.

As discussed in Section 2, pixel-wise loss usually achieves a relatively high metric score
but fails in resolving the textures, edges, and high-frequency details, resulting in blurring
of the images that are produced. The scheme that we propose generalizes the application of
perceptual loss previously defined on 2D pre-trained VGG to study single-image SR onto
3D medical images. Through this simple but effective idea of importing all the projected
slices along the three principal directions into the pre-trained VGG, we observed that the
3D MRI volume can be perceptually resolved (see the ablation study Figure 8). SOUP-GAN
was compared to another MRI SR approach called “DeepResolve”, both of which focus on
thick-slice to thin-slice reconstruction. The two test datasets included in Figure 8 are the T1-
weighted brain MRI (reformatted coronal images in the first row, and reformatted sagittal
images in the second), and knee MRI in the third row. The images appear better compared
to the original thick slices, the cubic-spline interpolated images, and the MSE results. They
are further improved by 3D perceptual loss with GAN, achieving the highest perceptual
quality. Besides the three principal directions (e.g., axial, sagittal, and coronal), we noted
that oblique planes are also able to be resolved through multi-planar reconstruction with
our 3D perceptual-loss strategy (unpublished data). We used a ’vanilla’ GAN instead of
more advanced GANs, e.g., Wasserstein [45] or Relativistic GAN [46], since the vanilla
GAN performs well for our training.

It was encouraging to see that our model, which was trained on MRI T1 brain data,
generalized to other contrast types of MRI and CT data, and other body parts. Rather
than training a different specialized model for each medical modality and body part, it
is more convenient to design one model that works for all medical images to achieve SR
interpolation. CT data expressed in Hounsfield units obtained from a linear transformation
of the measured attenuation coefficients have different distributions from MRI data. We note
here that data standardization by scaling them into a uniform range, e.g., (0, 10,000), was
necessary to make the SR model compatible for different imaging modalities. Although less
accurate than training a model directly on CT data, Figures 6 and 7 show good performance
using our T1-trained model for CT data inference. Since they are realistic applications of
SR interpolation performed on poor quality data (generating thin slices from thick slices),
no ground-truth data is available to calculate metrics of generated images.
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Figure 8. Ablation study: Test examples on brain and knee MRI showing perpendicular reconstruc-
tions from original thick slices, using TCI, MSE, and GAN using 3D perceptual loss (SOUP). We
note that [32] proposed a single-scale residual-based 3D convolutional neural network with MSE,
similar to the third column here. Our SOUP approach better resolves the perceptual details and
is more generally applicable to various sampling factors and different imaging modalities. TCI:
tricubic interpolation.

5. Conclusions

We combined a deep-learning SR method with a 3D perceptual-tuned GAN network,
and examined its application and generalization in terms of arbitrary sampling scales,
various medical imaging modalities, and different body parts, as a novel 3D image interpo-
lation technique. The SR thin slices obtained by the model outperform other conventional
resolution-enhancement methods and previous SR work on medical images based on both
qualitative and quantitative comparisons. Based on the promising simulation data, the
proposed work shows potential in both clinical tasks, such as reducing the acquisition time
and further resolving the MRI scans in retrospective studies, and research tasks, e.g., serv-
ing as a novel SR interpolation method for data augmentations with further applications in
lesion measurements, radiomics, and automatic segmentations.

6. Patents

A patent “Systems and methods for deep learning-based super-resolution medi-
cal imaging.” with application No. 63/230,607 (Mayo Clinic: 2020-500) was filed on
08/06/2021.
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