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Abstract: The purpose of this retrospective study was to investigate the association between ipsilateral
recurrence of ductal carcinoma in situ (DCIS) and radiomics features from DCIS and contralateral
normal breast on contrast enhanced breast MR imaging. A total of 163 patients with DCIS who
underwent preoperative MR imaging between January 2010 and December 2014 were included
(training cohort; n = 117, validation cohort; n = 46). Radiomics features were extracted from whole
tumor volume of DCIS on early dynamic T1-subtraction images and from the contralateral normal
breast on precontrast T1 and early dynamic T1-subtraction images. After feature selection, a Rad-
score was established by LASSO Cox regression model. Performance of Rad-score was evaluated by
the receiver operating characteristic (ROC) curve and Kaplan Meier curve with log rank test. The
Rad-score was significantly associated with ipsilateral recurrence free survival (RFS). The low-risk
group with a low Rad-score showed higher ipsilateral RFS than the high-risk group with a high
Rad-score in both training and validation cohorts (p < 0.01). The Rad-score based on radiomics
features from DCIS and contralateral normal breast on breast MR imaging showed the potential for
prediction of ipsilateral RFS of DCIS.

Keywords: breast cancer; quantitative imaging; magnetic resonance imaging

1. Introduction

The incidence of ductal carcinoma in situ (DCIS) has increased significantly with the
broad adoption of mammography screening, from 1–2% to nearly 20% of newly developed
breast cancer in about 30 years [1,2]. DCIS is a non-invasive disease with a high probability
of long-term, disease-free survival but also it has a highly heterogeneous disease course [3].
In the absence of appropriate radiation or endocrine therapy after breast conserving surgery
(BCS), ipsilateral recurrence is observed in about 10–30% of patients [4,5]. There have been
results that such adjuvant therapy reduces the risk of local recurrence by 30–50% [6–9].
Recently, several studies have been conducted to classify the risk of DCIS to determine
treatment strategy and prognosis. The goal of these studies was to reduce overtreatment
in the low-risk group [10] and to reduce the risk in the high-risk group, where the risk of
invasive recurrence is up to 50% [7].

Radiomics analysis is a statistical method to analyze the surface characteristics and to
identify and recognize an object. This characterization is based on the spatial distribution,
signal intensity, and gray level co-occurrence of the images [11,12]. It has been applied to
breast imaging to differentiate between benign and malignant lesions [13] to predict patho-
logic or prognostic factors [14,15], and to identify the response association for neoadjuvant
chemotherapy [16,17]. There are recent radiomics studies focused on DCIS. Two studies
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attempted to predict upstaging of DCIS using preoperative mammography [18,19]. One
study was about risk stratification of DCIS using preoperative contrast-enhanced MR [20].

The purpose of our study was to evaluate radiomics features from DCIS and con-
tralateral normal breast composition on preoperative breast MRI as a prognostic factor for
predicting ipsilateral recurrence of DCIS.

2. Materials and Methods
2.1. Study Population

A total of 196 consecutive women who underwent preoperative breast MR imaging
were diagnosed with DCIS between January 2010 and December 2014 in our institution.
We excluded patients with post-excisional MR (n = 11), micro-invasive component in
final pathology (n = 8), contralateral recurrence (n = 5) and MR data error (n = 2). In
addition, we excluded patients with no definite enhancement on MR exam (n = 5) and
bilateral malignancy (n = 2). Finally, 163 consecutive women (median age, 52.5 years; range,
31–77 years) were included in this study (Figure 1).
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Figure 1. Flow chart for study population and exclusion criteria.

2.2. Radiomics Feature Extraction

Figure 2 shows overall process of radiomics analysis of DCIS and contralateral normal
breast. For the DCIS lesion, we used post-processing software (Olea Sphere, Version 3.0,
Olea Medical, La Ciotat, France) for semiautomatic segmentation and feature extraction.
The entire tumor volume was segmented on axial T1-weighted early dynamic contrast
subtraction images derived from the PACS system. The index tumor and tumor boundary
were delineated by three radiologists (K.S.H, P.G.E. and L.E.B, with 20 years, 4 years
of experience in breast MR imaging and a senior radiology resident, respectively) by
consensus. The segmented volume was used as a mask for the extraction for 108 features
of seven categories (Supplementary Table S1).

For contralateral breast composition we used a previously developed machine learning
based fully automatic segmentation and classification model based on a 3D convoluted
neural network (CNN) [21]. First, this model used precontrast axial T1-weighted images
to make segmentation masks of the whole breast and fibroglandular tissue (FGT). The
potential background parenchymal enhancement (BPE) voxels were estimated from an
early T1 subtraction image using a segmented FGT mask. During the process, we extracted
a total of 62 radiomics features from each whole breast mask and fibroglandular tissue
mask in contralateral normal breast (Supplementary Table S2). The automatic classification
model for FGT grade and BPE level based on BI-RADS 5th edition lexicon was implemented
using the ensemble tree model from the predefined radiomics features [22].
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2.3. Clinico-Pathological Analysis

Medical records and pathologic reports from surgical excision and core needle biopsy
were reviewed: surgical type, DCIS size, nuclear grade, comedo-type necrosis, hormone
receptor and resection margin status, radiation and endocrine therapy, and last outpatient
follow-up. In this study, last outpatient follow-up was defined as the duration from surgery
to the last outpatient visit or ipsilateral recurrence. DCIS lesions were classified according
to Van Nuys Pathologic Grade (VNPG) and COMET (Comparison of Operative versus
Monitoring and Endocrine Therapy) classification. The VNPG is based on nuclear grade
and necrosis; grade 1 as non-high nuclear grade without comedo-type necrosis, grade 2 as
non-high nuclear grade with comedo-type necrosis, and grade 3 as high nuclear grade with
or without comedo-type necrosis [23]. In this study, we considered low risk as VNPG grade
1 and non-low risk as VNPG grade 2 or grade 3. The COMET classification was also applied.
The low-risk group was defined as non-high nuclear grade of DCIS lesions, estrogen
receptor (ER) positive with or without progesterone receptor (PR) positive, and human
epidermal growth factor receptor 2 (HER2) scores 0, 1+, or 2+ by immunohistochemistry.
The non-low risk group was defined as high-nuclear grade of DCIS, ER negative, and HER2
score 3+ by immunohistochemistry [24].

2.4. MR Imaging Acquisition

All breast MR examinations were performed in the prone position using a dedicated
eight-channel breast surface coil from two different vendors (3-T Verio; Siemens Healthcare,
Erlangen, Germany; 1.5-T Signa; GE Medical Systems, Milwaukee, WI, USA). Images were
obtained using the following sequences: (1) axial turbo spin-echo T2-weighted imaging
(T2WI); (2) axial diffusion-weighted imaging (DWI) with two sequences and automatically
calculated apparent diffusion coefficient (ADC) maps; (3) pre-contrast and post-contrast,
fat-suppressed axial T1-weighted imaging(T1W1) obtained before and five different times
after the rapid bolus injection of gadolinium DTPA (Gd-DTPA, 0.1 mmol/kg Gadovist;
Bayer Schering Pharma, Berlin, Germany). For 3-T Verio, axial T1-weighted flash three-
dimensional volumetric interpolated brain examination (VIBE) sequences were obtained
with a TR/TE of 4.4/1.7, a flip angle of 10◦, a slice thickness of 1.2 mm, and an acquisition
time of 1 min. The images were obtained before and at a 10, 70, 130, 190, 250 and 310 s after
an injection of contrast agent. For 1.5-T Signa, axial spin-echo T1WI was with a TR/TE of
6.2/3.1, a flip angle of 10◦, a slice thickness of 2.6 mm, and an acquisition time of 1 min 31 s.
The images were obtained before and at a 91, 192, 273, 364 and 455 s after an injection of
contrast agent.
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2.5. Statistical Analysis

The continuous variables were presented as mean ± standard deviation or median and
quartile. The categorical variables were presented as frequencies and percentage. Mann-
Whitney U or the Wilcoxon rank sum test was used to compare the baseline characteristics
for continuous variables, and the Chi-square test or Fisher’s exact test for categorical variables.

Univariate Cox Proportional hazard regression and then LASSO Cox regression was
used to narrow down significant radiomics features associated with ipsilateral recurrence
of DCIS. The “Rad-score” and “Rad-score combined with clinical feature” were calculated
based on selected radiomics features (Supplementary Files S3 and S4). Each model was
evaluated and compared using the area under the receiver operating characteristic (ROC)
curve. Then, we divided the high-risk group and low-risk groups using cutoff values
according to the Youden index. The Kaplan-Meier curve with Log rank test were used
to comparison of recurrence free survival between training set and validation set, and
between the high-risk group and low-risk group. Statistical analysis was performed
using a commercial software (SPSS, Version 19.0; Chicago, IL, USA) and R version 2.15.3
(R Foundation, Vienna, Austria). Statistical significance was defined as p < 0.05.

3. Results
3.1. Baseline Patients Characteristics

Table 1 shows baseline characteristics between patients with ipsilateral recurrence
and patients with no recurrence. Ipsilateral recurrence occurred in 10 patients (6%, 10
of 163) at a median of 51.5 months (range 12–113 months). COMET classification and
increased BPE level in preoperative MR were associated with ipsilateral recurrence of DCIS
(p < 0.05). Age showed marginal significance (p = 0.05). Among the patients with ipsilateral
recurrence, half of patients (five of ten) developed invasive recurrent cancer, and the other
half developed DCIS. Eighty percent of the recurrent cancers (eight of ten) occurred in
patients who had high-grade DCIS. Ninety percent of the patients (nine of ten) underwent
BCS. No patients developed distant metastasis or breast cancer-related death.

Table 1. Baseline characteristics in the recurrence and non-recurrence.

Patients with No
Recurrence (n = 153)

Patients with Ipsilateral
Recurrence (n = 10) p-Value

Age 52.9 ± 9.8 46.5 ± 7.5 0.05
Last outpatient follow-up (months) 82.2 ± 26.5 51.7 ± 36.1 0.009
Surgery type 0.109

Total mastectomy 100 9
BCS 53 1

Radiation therapy 0.343
No 100 8
Yes 53 2

Endocrine therapy 0.607
No 111 8
Yes 42 2

DCIS size 2.51 ± 1.89 2.35 ± 1.99 0.814
DCIS nuclear grade 0.075

Non-high 75 2
High 78 8

Comedo necrosis 0.128
Negative 50 1
Positive 101 9

ER 0.078
Negative 115 7
Positive 38 3
PR 0.765
Positive 100 7
Negative 53 3
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Table 1. Cont.

Patients with No
Recurrence (n = 153)

Patients with Ipsilateral
Recurrence (n = 10) p-Value

HER2 0.479
Negative 108 6
Positive 45 4

Ki-67 (%) 0.669
<14% 94 5
≥14% 56 4

IHC type 0.562
Luminal 114 7
HER2-enriched 26 3
Basal-like 12 0

VNPG
Low risk 38 1 0.287
Non-low risk 115 9

Comet classification 0.031
Low risk 68 1
Non-low risk 84 9
Resection margin (2 mm) 0.078

Negative 136 7
Positive 17 3

Fibroglandular tissue (FGT) 0.743
Almost entirely fat, Scattered 54 3

Heterogenoues, Extreme 99 7
Background parenchymal enhancement (BPE) 0.028

Minimal, Mild 122 5
Mild, Marked 31 5

Results are presented as number (percentage) for categorical variables and mean (SD) for continuous variables.
p values were calculated using Chi-square test or Fisher’s exact test for categorical variables and Wilcoxon rank
sum test for continuous variables.

3.2. Feature Selection and Rad-Score Calculation

A total of 163 patients were included with 117 patients in the training cohort and
46 patients in the validation cohort, using stratified random sampling. There were no
significant differences in recurrence and clinical features between the training set and
validation set. (Table 2). A total of 20 radiomics features were significant in Univariate Cox
proportional regression in training cohort. We narrowed down to five features using LASSO
Cox regression. The Rad-score was established via linear combination of the selected five
features multiplied by their respective LASSO Cox coefficients (Supplementary File S3).

Table 2. Patient characteristics in the training and validation cohorts.

Training Cohort
(n = 117)

Validation Cohort
(n = 46) p-Value

Age 53.5 ± 10.2 50.1 ± 8.13 0.12
Surgery type 0.41

Total mastectomy 42 12
BCS 75 34

Radiation therapy 0.41
No 44 11
Yes 73 35

Endocrine therapy 0.10
No 28 12
Yes 78 41

Ipsilateral recurrence 1 *
No recurrence 110 43
Recurrence 7 3
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Table 2. Cont.

Training Cohort
(n = 117)

Validation Cohort
(n = 46) p-Value

DCIS size (cm) 2.52 ± 1.88 2.43 ± 1.94 0.62
DCIS nuclear grade 0.34
Non-high 58 19
High 59 27
Comedo necrosis 0.17

Negative 41 11
Positive 76 35
ER 0.80

Negative 29 12
Positive 88 34
PR 0.86

Negative 34 20
Positive 72 33
HER2 0.23

Negative 85 29
Positive 32 17
Ki-67 (%) 14.8 ± 14.7 10.9 ± 8.21 0.41
IHC_type 0.69

Luminal 88 34
HER2-enriched 19 10
Basal-like 10 2
VNPG 0.22

Low risk 31 8
Non-low risk 86 38

COMET classification 0.33
Low risk 53 17
Non-low risk 64 29
Resection margin (2 mm) 0.85

Negative 103 40
Positive 14 6

Fibroglandular tissue (FGT) 0.79
Almost entirely fat, Scattered 43 14
Heterogeneous, Extreme 74 32

Background parenchymal enhancement (BPE) 0.70
Minimal, Mild 93 34
Moderate, Marked 24 12

Results are presented as number (percentage) for categorical variables and mean (SD) for continuous variables.
p values were calculated using Pearson’s Chi-square test or Fisher’s exact test * for categorical variables and
Wilcoxon rank sum test for continuous variables.

Rad score = 0.2974 × Total Energy(DCIS) + 0.2988 × Entropy(breast mask)
+0.5835 × 75th percentile(breast mask)
+0.3105 × interquartile range(FGT mask)
+0.0665 × volume threshold(FGT mask)

Two models that applied clinical features to Rad-score were also calculated through a
similar process to the above (Supplementary File S4).

3.3. Rad-Score Assessment

The Rad-score was effective in predicting ipsilateral recurrence in the training cohort
(AUC 0.887, 95% CI 0.7765–0.9975) and validation cohort (AUC 0.868, 95% CI 0.7495–0.9869).
In the Rad-score + age model, AUC of 0.8857 (95% CI 0.7744–0.997) in the training cohort
and 0.868 (95% CI 0.7495–0.9869) in the validation cohort. In the comparison of ROC
curves, these three models showed no significant difference in both the training cohort and
validation cohort (p > 0.05). In the Rad-score + COMET classification model, AUC was
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0.8818 (95% CI 0.7596–1) in the training cohort and 0.891 (95% CI 0.7808–1) in the validation
cohort (Figure 3). In a comparison of ROC curves, these three models showed no significant
difference in both the training cohort and validation cohort (p > 0.05).
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Figure 4 shows the distribution of Rad-scores in the recurrence and non-recurrence
groups. In the training cohort, the Rad-score was significantly higher in the group with
ipsilateral recurrence (median, 1.4487; interquartile range, 1.4677) than the group without
recurrence (median, −0.2966; interquartile range, 1.2399). In the validation cohort, the
Rad-score was significantly higher in the group with ipsilateral recurrence (median, 1.3064;
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interquartile range, 0.577) than the group without recurrence (median, −0.2583; interquar-
tile range, 1.1625). Cut-off values from ROC curve were 0.126 and 0.618, respectively.
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We further divided patients into low-risk and high-risk groups based on obtained
cut off values and performed Kaplan-Meier analysis to validate the prognostic value of
Rad-score (Figure 5). The Rad-score was significantly associated with ipsilateral recurrence
free survival (RFS). The low-risk group with a low Rad-score showed higher ipsilateral
RFS than the high-risk group with a high Rad-score in both training and validation cohorts
(p < 0.01).

Tomography 2022, 8, FOR PEER REVIEW 9 
 

 

  
(a) (b) 

Figure 4. Distribution of the Rad-score according to ipsilateral recurrence in training (a) and 
validation (b) cohorts red line = cut off value, 0 = no recurrence, 1 = recurrence group. 

We further divided patients into low-risk and high-risk groups based on obtained 
cut off values and performed Kaplan-Meier analysis to validate the prognostic value of 
Rad-score (Figure 5). The Rad-score was significantly associated with ipsilateral 
recurrence free survival (RFS). The low-risk group with a low Rad-score showed higher 
ipsilateral RFS than the high-risk group with a high Rad-score in both training and 
validation cohorts (p < 0.01). 

 
(a) 

 
(b) 

Figure 5. Kaplan-Meier analysis according to the risk groups in training (a) and validation (b) 
cohorts. 

Figure 5. Kaplan-Meier analysis according to the risk groups in training (a) and validation (b) cohorts.



Tomography 2022, 8 604

4. Discussion

This study assessed radiomics features of DCIS and contralateral normal breast compo-
sition on preoperative breast MRI as prognostic factors for predicting ipsilateral recurrence
of DCIS. Several studies have been conducted on radiomics analysis for evaluation of inva-
sive cancer and recurrence [25,26]. To the best of our knowledge, this is the first attempt
to predict ipsilateral recurrence of DCIS using radiomics features from both DCIS lesion
and contralateral normal breast. The Rad-score in our study was capable of stratifying
patients into low and high risk of recurrence and was significantly higher in patients with
ipsilateral recurrence. The Rad-score represented no significant difference in performance
when compared to the model combining Rad-score with clinical feature.

The full mechanism behind the relationship between radiomics features and recurrence
has not been elucidated. A previous study found that radiomics features were closely
related to tumor biology and microscopic structures [27]. Among the selected features, Total
Energy from DCIS lesion was included in the Rad-score. Total Energy is the value of Energy
feature scaled by the volume of the voxel in cubic mm. Most features of Rad-score were
selected from the intensity and volume-based features from T1-weighted subtraction images
of contralateral breast. The 75th percentile of voxel intensities of segmented breast mask
in contralateral breast showed the highest coefficient value. Prior studies analyzed DCIS
recurrence using dynamic contrast-enhanced (DCE) MR imaging. Kim et al. [28] showed
that parenchymal signal enhancement ratio (SER) and tumor size were associated with
ipsilateral recurrence after breast conserving surgery in DCIS patients. Luo et al. [29] proved
that mean BPE, functional tumor volume, and peak SER were associated with recurrence in
a case-control study. BPE, which is the enhancement of normal fibroglandular tissue on
contrast enhanced dynamic breast MR, is related to the vascular microenvironment and
glandular concentration in histopathologic study [30]. Increased BPE is also associated with
increased metabolic activity, which could potentially provide more favorable environment
for tumor growth [31]. Although there are differences in study design, several studies
have demonstrated that BPE is associated with developing risk of breast cancer, including
DCIS [32–35].

Our derived model could be interpreted to suggest the underlying breast environment
may have contributed more to the ipsilateral recurrence than the tumor biology of DCIS
itself. However, the value of radiomics features obtained from contralateral breast is still
unclear, and further studies with a larger number of cases are required.

There are limitations in this study. First, it was a retrospective study from a single insti-
tution. Second, the number of participants was small, especially the number of ipsilateral
recurrence events. An inherent limitation was the noninvasive nature of DCIS. Third, we
only analyzed the early dynamic phase of the DCE T1-weighted images, since DCE T1 is the
most important phase in breast cancer evaluation. Third, the radiomics features for DCIS
were obtained via manual segmentation. Although MR is the most sensitive modality for
identifying DCIS, DCIS is commonly manifested as a non-mass enhancement with various
enhancement patterns [31]. Therefore, manual segmentation of DCIS was inevitable. For
this reason, the boundary was somewhat subjective in the process of drawing the ROI
to encompass the whole tumor volume. We tried to reduce errors through consensus
between radiologists.

5. Conclusions

In conclusion, the Rad-score based on MR imaging feature demonstrated the potential for
predicting ipsilateral recurrence in DCIS patients. The radiomics features extracted from both
the DCIS lesion and the contralateral normal breast were significant in recurrence prediction.
These findings may be helpful for risk stratification and for personalized treatment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/tomography8020049/s1. Table S1: Entire volume based extracted
radiomics features from DCIS lesion. Table S2: Extracted radiomics features from breast mask and

https://www.mdpi.com/article/10.3390/tomography8020049/s1
https://www.mdpi.com/article/10.3390/tomography8020049/s1
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fibroglandular tissue mask of contralateral normal breast. File S3: Feature selection and Rad-score
calculation. File S4: Rad-score combined with clinical feature.
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