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Abstract: Achieving high feature reproducibility while preserving biological information is one of the
main challenges for the generalizability of current radiomics studies. Non-clinical imaging variables,
such as reconstruction kernels, have shown to significantly impact radiomics features. In this
study, we retrain an open-source convolutional neural network (CNN) to harmonize computerized
tomography (CT) images with various reconstruction kernels to improve feature reproducibility and
radiomic model performance using epidermal growth factor receptor (EGFR) mutation prediction
in lung cancer as a paradigm. In the training phase, the CNN was retrained and tested on 32 lung
cancer patients’ CT images between two different groups of reconstruction kernels (smooth and
sharp). In the validation phase, the retrained CNN was validated on an external cohort of 223 lung
cancer patients’ CT images acquired using different CT scanners and kernels. The results showed
that the retrained CNN could be successfully applied to external datasets with different CT scanner
parameters, and harmonization of reconstruction kernels from sharp to smooth could significantly
improve the performance of radiomics model in predicting EGFR mutation status in lung cancer. In
conclusion, the CNN based method showed great potential in improving feature reproducibility and
generalizability by harmonizing medical images with heterogeneous reconstruction kernels.

Keywords: radiomics; reproducibility; convolutional neural network; computed tomography; kernel
conversion; quantitative imaging

1. Introduction

Radiomics has emerged as a potential aid to non-invasively characterize tumors
using images [1–4]. Radiomics extracts quantitative features from medical images that can
describe lesion characteristics in detail, thus completing and supporting the radiologist
visual assessment. These quantitative features are then used to build models that can
provide valuable clinical information to direct patient treatment. Multiple studies have
shown that radiomics can aid in predicting cancer prognosis [5–8], a tumor’s gene mutation
status [9–11], and tumor recurrence [1,12–14]. However, current radiomics studies are
limited in their ability to use large, multi-center data because heterogeneous computerized
tomography (CT) acquisition parameters can be confounding factors [15].

The literature shows that CT scanners, scanning techniques, reconstruction parame-
ters, and other non-clinical variables can alter the computed feature values in radiomics
studies and thus influence the conclusions of these studies. A recent article comprehen-
sively reviewed sources of variations and potential strategies to reduce such variations in
radiomics [16]. In order to compare and conduct multi-center studies and to improve the
generalizability of radiomic results, various techniques have been proposed: controlling
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image acquisition parameters, processing images (e.g., resampling images, filtering the im-
ages) post image acquisition and prior to feature extraction, converting images to a desired
imaging setting, standardizing the definitions of features, and harmonizing feature values
statistically using the ComBat method [17–27]. Although there are many methods being
investigated to improve radiomics research, it is difficult to assess which one is better. There
are no published direct comparisons, and Mali et al. [28] and Ibrahim et al. [29] recently
published review articles in which they both discuss the need for further investigations on
harmonization methods to analyze radiomics data using the available retrospective and
unpaired imaging data from multiple centers.

In order to facilitate multi-center studies and utilize existing imaging data that can
include a variety of CT scanners and scanning protocols, we sought to find a method to
harmonize CT images of different scanning protocols for improving radiomics studies.
Reconstruction kernel setting is one of the key confounding variables we can strive to
control in radiomics to help us make correct and reproducible conclusions from our exper-
iments [19,21,22]. Recently, Choe et al. [30] showed that a convolutional neural network
(CNN) can convert CT image reconstruction kernels to reduce the effect of two different
reconstruction kernels and improve the reproducibility of radiomic features in pulmonary
nodules. The CNN uses deep learning to learn the differences between CT images of
different resolutions, and then applies it on CT images to convert images of different
kernels. They have made this CNN model publicly available for other researchers to apply
to their research. However, this work was limited in that all the images came from one CT
scanner with only two kernels (B30f and B50f), and their CNN model was not validated in
a real-world clinical application.

In this study, we further fine-tuned this open-source CNN to convert reconstruction
kernels of thin slice CT images. We then used the prediction of epidermal growth factor
receptor (EGFR) status in lung cancer as an example, because lung cancer diagnosis
and treatment are important topics of research, since various tumor characteristics have
diagnostic and prognostic factors. For example, the treatment plan for lung adenocarcinoma
has become tailored based on the tumor’s gene mutation status [10,31]. To determine tumor
genotypes, molecular tests from tissue biopsies are considered to be the gold standard;
however, biopsies are invasive and limited to a small sample of the tumor [32]. As a result,
it is difficult to fully characterize the tumor’s spatial heterogeneity [33].

We show that CNN can create a more harmonized dataset from a randomized set of
mixed reconstruction kernels, verified with an improvement in feature reproducibility and
in EGFR prediction performance. Furthermore, we aim to select the best reconstruction
kernel to set as the standard to maximize the reproducibility of the features and the EGFR
prediction performance derived from the newly harmonized dataset. To our knowledge,
this is the first study to utilize both the artificial intelligence (AI) kernel conversion method
to harmonize image settings and the converted images to predict clinical information
directly after the AI-aided harmonization.

2. Materials and Methods
2.1. Study Design

The workflow for this study is shown in Figure 1. We first gathered CT images and
created the development cohort and the validation cohort. The information on the patients
and CT acquisition are described in the next subsection. The open-source CNN was trained
using the development cohort to convert CT image reconstruction kernels from smooth to
sharp and vice versa. The developed CNN kernel converter’s performance was assessed
by testing the improvement in feature reproducibility after kernel conversion. The CNN
kernel converter was then applied on the validation cohort, and its impact on improving
radiomic feature reproducibility and predicting EGFR mutation status was analyzed.
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Figure 1. Study diagram. The diagram summarizes the two phases of our study.

2.2. Patient and CT Acquisition Info

The current study utilized deidentified CT images of non-small cell lung cancer
(NSCLC) patients that were obtained and utilized for previously published studies [21,23].
The development cohort (16 men; mean age: 62.1 years; January–September 2007) was
composed of 16,768 thin slice (1.25 mm) CT images of 32 NSCLC patients with 2 recon-
struction kernel settings (Smooth: Standard; Sharp: Lung). It was part of the image data
used in a previous publication [21]. The image series with the sharp kernel is available
online and is known as The RIDER Lung CT [34]. The previous study was approved by the
institutional review board, and it was Health Insurance Portability and Accountability Act
(HIPPA) compliant.

The validation cohort (127 men; mean age: 56.1 years; May 2014–December 2016)
was composed of NSCLC patients of known EGFR statuses (114 EGFR/109 WT) with thin
slice (1 mm) CT scans with different reconstruction kernel settings (smooth and sharp)
and was retrospectively collected from the Second Xiangya Hospital of Central South
University, China. A part of the cohort has been published before in Li’s study [23]. The
institutional review board approved this retrospective study and waived the requirement
for informed consent. The inclusion criteria were the following: (1) having completed
molecular testing between May 2014 and December 2016, and (2) having underwent chest
CT scans. The exclusion criteria were the following: (1) lack of complete histological and
clinical information for the patient, (2) lack of thin slice CT scans, and (3) lack of both the
smooth and sharp kernels. The process for patient selection is shown in Figure 2. Each
patient had a molecular testing for EGFR status on the primary lung adenocarcinoma
specimens from surgical resection or biopsy. The EGFR mutation status of the tumor was
determined by utilizing an amplification refractory mutation system real-time technology
using a human EGFR gene mutations fluorescence polymerase chain reaction diagnostic
kit (Amoy Diagnostic Co., Ltd., Xiamen, China).
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Figure 2. Flow chart of validation cohort patient selection process.

The CT imaging protocols used for the development cohort is found in Supplementary
Materials Table S1 [21]. For the validation cohort, the CT scan acquisition parameters are
shown in Supplementary Materials Table S2. General Electric (GE) (GE, Boston, MA, USA)
CT scanners were used in the development cohort, and Siemens CT scanners (Siemens,
Munich, Germany) were used in the validation cohort. Each CT scan was reconstructed
into thin (1 mm for GE; 1.25 mm for Siemens) slice thickness with two reconstruction
kernels (Smooth: B30f/B31s/B31f; Sharp: B60/B70s/B70f/B80). Each patient had two
image sets labeled as “ori_smo” for the original images of smooth kernel and “ori_shp” for
the original images of sharp kernel.

2.3. Lung Lesion Segmentation

Each patient had 1 lesion segmented in this study, for a total of 32 lesions for the devel-
opment cohort and a total of 223 lesions for the validation cohort. Lesion segmentation for
both cohorts was performed using a semi-automated watershed and active contours-based
algorithm that is integrated into an image processing platform [35,36]. The segmentation
for the development cohort was performed by three radiologists with 11, 10 and 25 years
of experience interpreting oncologic CT images. The details of the segmentation and
validation with inter-rate agreement can be found in the previously published paper [21].
For the validation cohort, the segmentation was performed by a radiologist with 20 years
of experience (YL) on all images. To increase consistency, tumor segmentation was first
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performed on ori_shp images and then duplicated onto the ori_smo images. The radiol-
ogist was permitted to edit the duplicated contours if there were changes or shift of the
segmentation on the images.

2.4. Radiomic Feature Extraction

For the development cohort, 89 fundamental features were extracted and analyzed
to compare against the results from a prior experiment [19], which showed that there are
differences in the concordance correlation coefficient (CCC) values caused by differences
in reconstruction kernels. The 89 selected features were divided into 23 non-redundant
feature groups, as previously done in order to replicate their results and to compare
how the newly trained CNN kernel converter would affect the reproducibility of the
feature groups. The features quantified tumor size, shape, boundary shape, tumor sharp-
ness (e.g., sigmoid slope), histogram-derived density distribution, and texture patterns
(e.g., gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM),
gray-level size zone matrix (GLSZM), neighboring gray tone difference matrix (NGTDM),
Laplacian of Gaussian, 3D Laws, and wavelet). The detailed description for the selection
of the 89 features can be found in the Supplementary Materials Table S3 of the original
manuscript [21]. For the validation cohort and its kernel converted counterparts, a total of
1158 features (composed of 89 previously mentioned features and their extensions) were
calculated from the tumor region of interest (ROI). The in-house feature extractor and
its 1158 features have been utilized and published in multiple articles [6,15,23,37–39]. Of
note, our in-house feature extractor was developed prior to the IBSI (Image Biomarker
Standardization Initiative) standard; we have compared our feature extractor with the
IBSI [38] and showed that there were no significant differences in predicting EGFR mu-
tation status in lung cancer when using either of the two feature extractors. Thus, we
ultimately decided to use our in-house feature extractor because it is easy for us to perform
analysis based on feature grouping due to the fact that we are more knowledgeable about
our feature implementation.

2.5. CNN Kernel Converter Development and Validation

An open-source CNN [30] was re-trained using the development cohort to develop
CNN models to convert the CT reconstruction kernels from smooth to sharp and vice-
versa. Out of the 32 patients, 14 patients’ CT images were used to train two CNN models.
There were 4628 images in the training set and 1560 images in the testing set to train the
models. The learning rate was 1 × 10−4, the total number of epochs was 55 with each
batch size at 2314, the optimization type was ADAM, and the loss function was sum
of squares. The selection of our model’s training parameters was fine-tuned from the
original paper [30] to better fit our model’s training and learning. The selection process
was trial-and-error to minimize loss and converge the prediction error values between the
training data and the testing data to prevent underfitting or overfitting, as is protocol with
fine-tuning techniques. Furthermore, we set aside an additional 1012 images for quality
check using root mean square error calculation between the output image generated
by the CNN kernel converter and the ground truth (data not shown). Each training
session took over 10 h. The newly trained networks for smooth to sharp conversion and
vice-versa are uploaded and publicly available for use at the following GitHub page:
https://github.com/jin-yoon34/CNN_kernel_conversion, and it can be applied using the
method originally described by Choe et al. [30].

The implementation of CNN kernel converter is easy and quick. The CNN converter
takes less than 0.5 s to generate 1 converted CT DICOM image. For each patient’s thin slice
chest CT, it only takes a couple of minutes to convert the entire CT scan to another kernel
using the CNN kernel converter. The total amount of time to generate new images varies
due to each patient’s CT containing a varying number of images.

The features were extracted using our in-house feature extractor. The success of
kernel conversion and feature reproducibility was confirmed by calculating the CCC [40]

https://github.com/jin-yoon34/CNN_kernel_conversion
https://github.com/jin-yoon34/CNN_kernel_conversion
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between the converted settings and the target settings for each feature. The CCCs ranged
from −1 to 1, and a CCC value of 1 meant that there was a perfect correlation between the
two calculated features.

The computer used in this study was an Intel Xeon Processor E5-2620 v4 2.1 GHz CPU
with 128 GB DDR4 memory and an NVIDIA GeForce GTX TITAN Xp 12 GB GPU. The
algorithms were implemented with Python 2.7 [41].

2.6. Randomization and Formation of Mixed Groups

To simulate a retrospective collection of images with varying reconstruction kernels,
we created a mixed group, where we randomly assigned each of the 223 patients to either
smooth or sharp kernels in order to create a mixed group to mimic multi-center data
with heterogeneous reconstruction kernel settings. The resulting mixed group with the
original images, “ori_mix”, was composed of 111 patients’ images with smooth kernels
and 112 patients’ images with sharp kernels. Then, “conv_mix_smo” group was created
by keeping all the patients with smooth kernels the same while converting all the patients
with sharp kernels to smooth (conv_smo) using the CNN kernel converter, resulting in
every patient in the group either having maintained its original smooth kernel or converted
from sharp to smooth (conv_smo) kernel. Similarly, “conv_mix_shp” group was created
by keeping all the patients with sharp kernels the same while converting all patients with
smooth kernels to sharp (conv_shp) kernels.

2.7. Univariate Analysis

The effect of CNN kernel conversion on the mixture group was analyzed through
univariate analyses. Univariate analysis was performed for each feature to predict the
EGFR mutation status of the lung cancer. This analysis was performed in each kernel
setting group including the three hypothetical mixture groups. The performance of each
feature was measured using receiver operating characteristic (ROC) curve and area under
the curve (AUC) of the ROC curve.

2.8. Statistical Analyses

Data are represented as mean ± standard deviation where appropriate. Statistical
analyses were performed by using Python 3.8 [41]. To determine whether the kernel
conversion affected the average CCC’s, we performed two-tailed Wilcoxon signed rank test
before and after kernel conversion. The null hypothesis was that there was no difference
between the medians of the CCC’s. p values less than 0.05 were considered significant. To
determine whether the kernel conversion affected the results of univariate analysis, we
performed two tailed Wilcoxon signed rank test before and after kernel conversion. To
test whether there were differences between the wildtype (WT) groups and EGFR positive
(EGFR) groups of varying kernel settings, we performed analysis of variance (ANOVA) to
test for significance among the means of the groups being analyzed and multiple student’s
t-tests for direct comparisons between two groups.

3. Results
3.1. Patient Demographics

A total of 255 NSCLC patients (development cohort: n = 32; validation cohort: n = 223)
were included in the study, with each patient having CT images of both smooth and sharp
kernels. The distributions of the validation cohort can be seen on Table 1. The validation
cohort shows that there is no significantly different distribution between the WT and the
EGFR groups in age, tumor stage or N-stage. There were significantly more males in the
WT group than females, significantly more smokers in the WT group, more non-smokers
in the EGFR group, and significantly more poorly-differentiated tumors in the WT group.
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Table 1. Validation cohort patient characteristics.

Wildtype
(n = 109)

EGFR
(n = 114) p Value

Age (avg ± SD) 55.6 ± 10.6 56.6 ± 10.1 0.444
Sex <0.001

Male 80 47
Female 29 67

Smoking status <0.001
Smoking 54 30

No smoking 55 84
Stage 0.455

I 1 4
II 5 4
III 21 15
IV 62 65

Unknown 20 26
N-Stage 0.541

N1 51 54
N2 32 27

Unknown 26 33
Differentiation <0.001

Low 72 38
Well 32 66

Unknown 5 10

3.2. CNN Kernel Converter Development Using Development Cohort

An example of the CNN kernel conversion on CT images is shown in Supplementary
Materials Figure S1. When given an input image of a specific kernel type (sharp in this
example) to the CNN kernel converter network, it will be able to produce an output of the
desired kernel (smooth in this example). Original smooth and sharp will be represented as
ori_smo and ori_shp, respectively. A smooth image converted to sharp will be represented
as conv_shp. The output (conv_smo) was compared against the ground truth (ori_smo) to
measure the differences between the images. As seen in Supplementary Materials Figure S2,
we observed a 99% decrease in root mean square error (RMSE) between the input image
and ground truth image after the input image was converted to output image using the
CNN kernel converter. The developed CNN network was applied on all 32 patients from
the development cohort in a similar manner.

3.3. Effect of CNN Kernel Conversion on Radiomic Feature Reproducibility
3.3.1. Development Cohort Radiomic Feature Reproducibility

We successfully converted all smooth and sharp kernel images using the CNN ker-
nel converter to create two additional groups, conv_smooth and conv_sharp, and we
successfully extracted 89 features (see Supplementary Materials Table S3) from all four
image groups. As shown in Figure 3, the selected 89 features were divided into 23 fea-
tures groups, and the results of three different comparisons are shown in a heatmap with
red color showing the highest CCC at 1, and green color showing a low CCC value of
0. The average CCC increased after the kernel conversion for most of the feature groups
in both conversions. Feature groups 1, 7, 9, 10, and 17, which are all shape features, did
not have any changes in the average CCC after the kernel conversion in both groups.
Only in comparison (ori_shp vs. conv_shp), feature groups 2 and 11 had small decreases
in the average CCC by 0.003 and 0.008, respectively. Feature groups 18 and 19 had the
highest increases in the average CCCs: for comparison (ori_smo vs. conv_smo), an in-
crease of 0.632; for comparison (ori_shp vs. conv_shp), an increase of 0.581. Feature
groups 18 and 19 were composed of the following texture features: Intensity_Skewness_2D,
Intensity_Skewness_3D, GLCM_Entropy, GLCM_Diff_Entropy, Run_SPE, Run_PP, Edge-
Freq_Mean, and LoG_Entropy_p1. The average and the median of the feature values all
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increased after the conversion. The Wilcoxon matched-pairs signed ranks test for (ori_smo
vs. ori_shp) group against (ori_smo vs. conv_smo) group and (ori_smo vs. ori_shp) group
against (ori_shp vs. conv_shp) group both showed p < 0.001, as seen in Table 2.
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Figure 3. Heatmap of concordance correlation coefficient (CCC) of 87 radiomic features from de-
velopment cohort divided into 23 groups as previously done for comparison [19]. Red represents a
CCC value of 1, which means perfectly reproducible, while green represents a CCC value of 0, which
means not reproducible. There is an increase in CCC after the kernel conversion in multiple feature
groups. The names of the features within each group are indicated in Supplementary Materials Table
3. The numerical values can be found in Supplementary Materials Table S4.

Table 2. Development cohort’s average and median reproducibility values calculated in CCC. The
Wilcoxon matched-pairs signed ranks test results are shown for (ori_smo vs. ori_shp) group against
(ori_smo vs. conv_smo) group and (ori_smo vs. ori_shp) group against (ori_shp vs. conv_shp) group.

Ori_smo vs. Ori_shp Ori_smo vs.
Conv_smo

Ori_shp vs.
Conv_shp

CCC (Avg ± SD) 0.523 ± 0.314 0.763 ± 0.181 * 0.794 ± 0.178 *
CCC (Median) 0.482 0.801 0.820

Wilcoxon W 0 3
p value 0.0002 0.0003

* Signifies p < 0.001.

3.3.2. Validation Cohort Radiomic Feature Reproducibility

All validation cohort images were successfully converted. The feature reproducibility
calculations showed that there was a significant increase in the total number of features
with CCC > 0.85 from 20% in the ori_smo vs ori_shp to 40% in ori_smo vs conv_smo, as
seen in Figure 4. Table 3 shows that the average of all the CCC values also increased after
kernel conversion to smooth with the original comparison at 0.50 ± 0.33 (average ± SD) to
0.80 ± 0.15 (p < 0.001). Median CCC is higher in ori_smo vs conv_smo than ori_smo vs
ori_shp or ori_shp vs conv_shp.
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Table 3. Validation cohort’s average and median reproducibility values calculated in CCC. The
Wilcoxon matched-pairs signed ranks test results are shown for (ori_smo vs. ori_shp) group against
(ori_smo vs. conv_smo) group and (ori_smo vs. ori_shp) group against (ori_shp vs. conv_shp) group.

Ori_smo vs. Ori_shp Ori_smo vs.
Conv_smo

Ori_shp vs.
Conv_shp

CCC (Avg ± SD) 0.499 ± 0.326 0.799 ± 0.149 * 0.515 ± 0.331
CCC (median) 0.504 0.835 0.589

p value <0.001 0.17

* Signifies p < 0.001.

3.4. Effect of CNN Kernel Conversion on EGFR Mutation Status Prediction

The distribution boxplot of the AUC values for each mixed setting is shown in Figure 5.
The median for ori_mix was 0.595 ± 0.006 (median ± median absolute deviation) and
the medians for conv_mix_smo and conv_mix_shp were 0.614 ± 0.028 and 0.595 ± 0.028,
respectively. There was a significant increase in the median and distribution after the
conversion to smooth (Z = 15.1, p < 0.001). There was no significant difference between
the ori_mix AUC distribution and the conv_mix_shp AUC distribution (Z = 0.01, p = 0.49).
Notably, the top three features with the highest AUC values that were selected for further
analyses were texture-based features. There were two Laplacian of Gaussian features and
one GLCM feature that showed improvement in CCC and EGFR status prediction after
CNN kernel conversion, as shown in Table 4. In Figure 6, each subplot displays the boxplot
for one of the top three selected texture features. In the non-mixed groups, the median
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AUC values of the converted images are shown to be similar to those of the originals for
both the wildtypes and the EGFR positive types with the EGFR mutants having the higher
median AUCs. In the mixture groups, kernel conversion maintained the separation of
median AUCs and the similar pattern of EGFR positive mutants having the higher median
AUC compared to the wildtypes.
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Table 4. The top three radiomic features with the highest AUC values compared among different mixed group settings.

Reproducibility (CCC) Prediction Performance (AUC)

Feature Name ori_smo
vs. ori_shp

ori_smo
vs. conv_smo

ori_shp
vs. conv_shp ori_mix conv_mix_ smo conv_mix_shp

Laplacian of
Gaussian Sigma 2.5 0.888 0.922 0.961 0.672 0.679 0.676

Laplacian of
Gaussian Sigma 1.5 0.445 0.941 0.891 0.641 0.681 0.669

GLCM 0.798 0.814 0.871 0.667 0.655 0.678
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4. Discussion

A method that can enable researchers to use a large collection of multi-setting CT
images will be beneficial for improving the statistical power and clinical application of
radiomic studies. Currently, many radiomic studies are limited due to having relatively
small sample sizes and their lack of external dataset for validation, in part because these
studies require a dataset of relatively homogeneous CT acquisition parameters [42–45],
which may not have been available.

In this study, we successfully retrained a CNN model developed by Choe at el. [30] on
one dataset and tested it on an external dataset acquired using a different CT scanner to
convert the reconstruction kernels of CT images from smooth to sharp and vice versa. We
then showed that kernel harmonization via a CNN converter can increase the reproducibil-
ity of radiomics features. There was an increase from 20 to 40 percent in the total number
of features out of 1158 with CCC > 0.85 (which is considered to be highly reproducible)
and an increase of 0.3 in the average CCC after the kernel conversion to smooth (p < 0.001).
Furthermore, we observed an increase in the clinical predictive performance for predicting
the EGFR mutation status of lung cancer lesions after the kernel conversion to smooth
(median AUC = 0.614, Z = 15.1, p < 0.001).

With an increasing number of studies showing diagnostic and prognostic promise of
radiomics in an era of personalized medicine [43,45,46], it is imperative that we improve
the quality, reproducibility and robustness of radiomics research. Some critics have raised
the concern that radiomic features are not robust and are susceptible to small differences
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in CT acquisition parameters [18,21,47]. The results of this study are consistent with
previous studies on how CT reconstruction kernels affect radiomic feature values and
reproducibility [48]. In the comparison between the two original kernel settings (ori_smo
vs ori_shp), only 20% of 1158 features had CCC > 0.85. This susceptibility is a hindrance in
radiomics studies and shows that datasets for radiomics studies cannot have heterogeneous
kernel settings.

To address the non-biological impact of kernel setting on the radiomics results,
Choe et al. [30] developed a CNN to convert the reconstruction kernels of retrospectively
collected CT images acquired from Siemens and showed promising results in improving
feature reproducibility. However, their group only trained their model using kernels B10f,
B30f, B50f and B70f, and they did not have trained models for direct conversion between
B30f and B70f, which are two of the most commonly used kernels in chest CT. In addi-
tion, the pretrained model’s kernel conversion performance was poor when used on the
same-day repeat CT data acquired from GE. Thus, we retrained this open-source network
for kernel conversion using the same-day repeat CT data (development cohort) [34] and
successfully validated the CNN on an external dataset (validation cohort) that was acquired
from Siemens.

Using the newly trained CNN kernel converter, we confirmed a similar improvement
in the feature reproducibility using our in-house feature extractor. There was a significant
improvement on average in the development cohort’s original CCC from 0.523 ± 0.314 to
0.763 ± 0.181 and 0.794 ± 0.178 for smooth and sharp conversions, respectively. Further-
more, it is worth noting that the newly trained CNN kernel converter was successful in
converting the CT image data in the validation cohort, which had significantly different
acquisition parameters from the development cohort used to train the network. Although
we have split the image kernel groups to two simple groups (smooth and sharp), these
groups actually contain a variety of algorithms. For instance, smooth group contains
Standard/B30f/B31s/B31f, while sharp contains Lung/B60f/B70s/B70f/B80f. Our CNN
that was trained on CT images from GE with 1.25 mm slice thickness and standard/lung
kernels was successful in converting external CT images from Siemens with 1 mm slice
thickness and a wide range of kernels (B30/B31f/B60f/B70f/B80f). This shows that our
trained CNN does not require the input images to have exactly the same settings as the
development cohort, and the CNN may be applied to CT images from other vendors with
similar thin slices around 1 mm and similar kernel settings as smooth and sharp.

In our first phase of the experiment with the development cohort, we observed that
certain feature groups increased in CCC more so than others after the kernel conversion.
As seen in Figure 3, the CCC heatmap shows significant improvements in groups 18 and 19,
which are composed of Intensity_Skewness_2D, Intensity_Skewness_3D, GLCM_Entropy,
and GLCM_Diff_Entropy. These features currently show promise in the literature for EGFR
prediction models as second order texture features that are highly predictive of EGFR
mutation status: GLRLM, wavelet, LOG-sigma GLDM, LOG-sigma GLCM, skewness,
short-run-low-grey-level-emphasis [49–52]. Many of these studies cite in their limitations
that their homogeneous sample sizes are not large enough for machine learning or deep
learning models. To increase the sample size for training and testing these prediction
models, our trained CNN may be of use in harmonizing kernel settings to allow a larger
dataset collection.

We applied the developed CNN to an external clinical CT data of lung cancer patients
with known EGFR status. The CNN kernel harmonization improved the reproducibility of
many features, as seen in Figure 4, with over 40% of 1158 features having high reproducibil-
ity at CCC > 0.85 after CNN kernel conversion to smooth kernel, which was a significant
increase from 20% in the original set (p < 0.001). Harmonizing the image settings to sharp
kernel did not improve in reproducibility, as the reproducibility calculation showed a
similar percentage of features with CCC > 0.85 as the original smooth vs original sharp
comparison at approximately 20% of the features (p > 0.05). The median CCC was also
higher after the conversion to smooth kernel, but not for the conversion to sharp. Our
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results are in agreement with previous reports that show the smooth kernel having higher
number of radiomics features with high reproducibility [19,20,23,30]. A possible reason for
this might be that sharp reconstruction kernel, while it may provide higher resolution, also
comes at the price of having images with significantly more noise.

Our results from the second phase show that conversion to smooth kernel may benefit
clinical studies to predict EGFR mutation status. As previously mentioned, converting
the kernel to smooth improved the reproducibility of the features. The univariate analysis
results depicted in Figure 5 also show that there is a significant improvement in the median
AUC in the conv_mix_smo group, with the median AUC increasing from 0.595 for the
original mixture group to 0.614 (Z = 15.1, p < 0.001) in the converted smooth (sharp→
smooth) mixture group. When we took a closer look at the top 3 features with the highest
AUC values, as shown in Table 4 and Figure 6, we observe a significant improvement
in CCC and a small improvement in AUC. The top three features were all texture-based
features: two Laplacian of Gaussian (LOG) and one GLCM. LOG feature is an entropy-
based quantification of image homogeneity with varying Gaussian filters. The top two
Gaussian filters were filters with sigma of 1.5 and 2.5. GLCM is a histogram of co-occurring
greyscale values at a given offset over an image to calculate how often pairs of pixels with
specific values in a specific spatial relationship occur in an image. This finding is consistent
with the first phase of the experiment and the literature. As previously mentioned, LOG
and GLCM have been found to have clinical significance [49–52], especially in predicting
EGFR. In our study, we have also found that these three texture features performed the
best in predicting the EGFR status of the validation cohort, as measured by the AUC.

Some studies have proposed to approach the harmonization method in a statistical
way, as has been accomplished in genomics using ComBat [26,27,53]. The advantages of
the ComBat method are clear in that the method is easy, it can be performed on the given
datasets without having to manipulate large image files, and it successfully harmonizes
data statistically while accounting for various non-biological factors. However, one of the
major disadvantages to ComBat is that it is difficult to set a standard to which to compare
new data against, and any incoming new data cannot be adjusted on its own, requiring a
set of data to harmonize the new data with. In the case of a CNN, any CT image may be
given as an input, and there will be an output of converted images that can have its tumor
features extracted and compared against a pre-set standard.

There are several limitations in our study. One limitation is that this study did not
analyze individual lesion characteristics, so it is unclear if these individual characteristics
have been harmonized. However, our goal of mutation status prediction was improved.
Finally, our prediction model for the EGFR mutation status was a simple statistical analysis
using the raw feature values for the univariate analysis. Univariate analyses are not
comprehensive, and they are often utilized as the initial benchmark test to assess the
feature’s potential in a more complex model. For instance, studies have shown that
radiomic models using individual features perform worse than a multivariate model that
uses machine learning or deep learning [23,42,49,52,54]. Further analyses with machine
learning or deep learning models are needed to better assess how CNN kernel converter
can improve feature reproducibility and clinical predictive performance.

5. Conclusions

Our study shows that the CNN kernel converter successfully improves the feature
reproducibility and thus the performance of EGFR mutation status prediction after kernel
harmonization in CT images. We also show that the better kernel for harmonization is the
smooth kernel. The CNN kernel converter has promise for harmonizing CT images for
improving multi-center or multi-setting radiomic studies of lung cancer.



Tomography 2021, 7 890

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/tomography7040074/s1, various supplemental figures and tables that are referenced in
the main manuscript can be found in this separate Supplementary Materials file. They contain
intermediate results or additional details of the cohorts or radiomics features. Figure S1: CNN kernel
conversion example, Figure S2: Difference maps, Table S1: CT image scanner parameters for the
development cohort, Table S2: CT image scanner parameters for the validation cohort, Table S3: A
summary table for features groups analyzed in the development cohort, Table S4: CCC heatmap for
the development cohort with CCC values.

Author Contributions: Conceptualization, J.H.Y., S.H.S., L.L. and B.Z.; methodology, J.H.Y., S.H.S.,
L.L. and B.Z.; software, J.H.Y. and S.H.S.; validation, J.H.Y.; formal analysis, J.H.Y., L.L., S.H.S. and
B.Z.; investigation, J.H.Y., S.H.S., L.L. and B.Z.; resources, H.Y., L.L., Y.L., L.H.S. and B.Z.; data
curation, M.X., Y.L., L.H.S. and B.Z.; writing—original draft preparation, J.H.Y.; writing—review and
editing, J.H.Y., Y.L., L.L., L.H.S. and B.Z.; visualization, J.H.Y. and L.L.; supervision, L.L., L.H.S. and
B.Z.; project administration, L.H.S. and B.Z.; funding acquisition, L.H.S. and B.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the National Institute of Health U01 CA225431.

Institutional Review Board Statement: The study was approved by the Ethics Committee of The
Second Xiangya Hospital, Central South University (S105; 3 December 2016).

Informed Consent Statement: Informed consent was waved for this study due to usage of only
de-identified CT images.

Data Availability Statement: Previously reported repeat CT image data were used to support this
study and are available at [DOI: 10.7937/K9/TCIA.2015.U1X8A5NR]. Previously reported lung
cancer patients of known EGFR statuses were used to support this study and request for data, after
publication of this article, will be considered from the corresponding authors Lin Lu and Yajun Li at
ll2860@cumc.columbia.edu and liyajun9966@csu.edu.cn. These prior studies (and datasets) are cited
at relevant places within the text as references [25,27,33].

Acknowledgments: The authors acknowledge Jingchen Ma for his help on initializing the convolu-
tional neural network.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Aerts, H.J.W.L.; Velazquez, E.R.; Leijenaar, R.T.H.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-

Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat.
Commun. 2014, 5, 4006. [CrossRef] [PubMed]

2. Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577.
[CrossRef] [PubMed]

3. Lambin, P.; Leijenaar, R.T.; Deist, T.M.; Peerlings, J.; De Jong, E.E.; Van Timmeren, J.; Sanduleanu, S.; Larue, R.T.; Even, A.J.;
Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14,
749–762. [CrossRef]

4. Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.; Granton, P.; Zegers, C.M.; Gillies, R.; Boellard, R.;
Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer
2012, 48, 441–446. [CrossRef]

5. Coroller, T.P.; Agrawal, V.; Narayan, V.; Hou, Y.; Grossmann, P.; Lee, S.W.; Mak, R.H.; Aerts, H.J. Radiomic phenotype features
predict pathological response in non-small cell lung cancer. Radiother. Oncol. 2016, 119, 480–486. [CrossRef]

6. Lu, L.; Wang, D.; Wang, L.; Guo, P.; Li, Z.; Xiang, J.; Yang, H.; Li, H.; Yin, S.; Schwartz, L.H.; et al. A quantitative imaging
biomarker for predicting disease-free-survival-associated histologic subgroups in lung adenocarcinoma. Eur. Radiol. 2020, 30,
3614–3623. [CrossRef]

7. Nardone, V.; Tini, P.; Pastina, P.; Botta, C.; Reginelli, A.; Carbone, S.F.; Giannicola, R.; Calabrese, G.; Tebala, C.; Guida, C.; et al.
Radiomics predicts survival of patients with advanced non-small cell lung cancer undergoing PD-1 blockade using Nivolumab.
Oncol. Lett. 2020, 19, 1559–1566. [CrossRef]

8. Tunali, I.; Gray, J.E.; Qi, J.; Abdalah, M.; Jeong, D.K.; Guvenis, A.; Gillies, R.J.; Schabath, M.B. Novel clinical and radiomic
predictors of rapid disease progression phenotypes among lung cancer patients treated with immunotherapy: An early report.
Lung Cancer 2019, 129, 75–79. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/tomography7040074/s1
https://www.mdpi.com/article/10.3390/tomography7040074/s1
http://doi.org/10.1038/ncomms5006
http://www.ncbi.nlm.nih.gov/pubmed/24892406
http://doi.org/10.1148/radiol.2015151169
http://www.ncbi.nlm.nih.gov/pubmed/26579733
http://doi.org/10.1038/nrclinonc.2017.141
http://doi.org/10.1016/j.ejca.2011.11.036
http://doi.org/10.1016/j.radonc.2016.04.004
http://doi.org/10.1007/s00330-020-06663-6
http://doi.org/10.3892/ol.2019.11220
http://doi.org/10.1016/j.lungcan.2019.01.010
http://www.ncbi.nlm.nih.gov/pubmed/30797495


Tomography 2021, 7 891

9. Aerts, H.J.; Grossmann, P.; Tan, Y.; Oxnard, G.G.; Rizvi, N.; Schwartz, L.H.; Zhao, B. Defining a Radiomic Response Phenotype: A
Pilot Study using targeted therapy in NSCLC. Sci. Rep. 2016, 6, 33860. [CrossRef]

10. Dercle, L.; Fronheiser, M.; Lu, L.; Du, S.; Hayes, W.; Leung, D.K.; Roy, A.; Wilkerson, J.; Guo, P.; Fojo, A.T.; et al. Identification of
Non-Small Cell Lung Cancer Sensitive to Systemic Cancer Therapies Using Radiomics. Clin. Cancer Res. 2020, 26, 2151–2162.
[CrossRef] [PubMed]

11. Rios Velazquez, E.; Parmar, C.; Liu, Y.; Coroller, T.P.; Cruz, G.; Stringfield, O.; Ye, Z.; Makrigiorgos, M.; Fennessy, F.; Mak, R.H.;
et al. Somatic Mutations Drive Distinct Imaging Phenotypes in Lung Cancer. Cancer Res. 2017, 77, 3922–3930. [CrossRef]

12. Dissaux, G.; Visvikis, D.; Da-ano, R.; Pradier, O.; Chajon, E.; Barillot, I.; Duvergé, L.; Masson, I.; Abgral, R.; Santiago Ribeiro, M.-J.;
et al. Pretreatment 18F-FDG PET/CT Radiomics Predict Local Recurrence in Patients Treated with Stereotactic Body Radiotherapy
for Early-Stage Non–Small Cell Lung Cancer: A Multicentric Study. J. Nucl. Med. 2020, 61, 814. [CrossRef]

13. Khorrami, M.; Bera, K.; Leo, P.; Vaidya, P.; Patil, P.; Thawani, R.; Velu, P.; Rajiah, P.; Alilou, M.; Choi, H.; et al. Stable and
discriminating radiomic predictor of recurrence in early stage non-small cell lung cancer: Multi-site study. Lung Cancer 2020, 142,
90–97. [CrossRef] [PubMed]

14. Gevaert, O.; Xu, J.; Hoang, C.D.; Leung, A.N.; Xu, Y.; Quon, A.; Rubin, D.L.; Napel, S.; Plevritis, S.K. Non-small cell lung cancer:
Identifying prognostic imaging biomarkers by leveraging public gene expression microarray data–methods and preliminary
results. Radiology 2012, 264, 387–396. [CrossRef] [PubMed]

15. Lu, L.; Ahmed, F.S.; Akin, O.; Luk, L.; Guo, X.; Yang, H.; Yoon, J.H.; Hakimi, A.A.; Schwartz, L.H.; Zhao, B. Uncontrolled
confounders may lead to false or overvalued radiomics signature: A proof of concept using survival analysis in a multicenter
cohort of kidney cancer. Front. Oncol. 2021, 11, 638185. [CrossRef] [PubMed]

16. Zhao, B. Understanding Sources of Variation to Improve the Reproducibility of Radiomics. Front. Oncol. 2021, 11, 826. [CrossRef]
17. Balagurunathan, Y.; Kumar, V.; Gu, Y.; Kim, J.; Wang, H.; Liu, Y.; Goldgof, D.B.; Hall, L.O.; Korn, R.; Zhao, B.; et al. Test-retest

reproducibility analysis of lung CT image features. J. Digit. Imaging 2014, 27, 805–823. [CrossRef] [PubMed]
18. Berenguer, R.; Pastor-Juan, M.D.R.; Canales-Vázquez, J.; Castro-García, M.; Villas, M.V.; Mansilla Legorburo, F.; Sabater, S.

Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters. Radiology 2018, 288,
407–415. [CrossRef] [PubMed]

19. Lu, L.; Ehmke, R.C.; Schwartz, L.H.; Zhao, B. Assessing agreement between radiomic features computed for multiple CT imaging
settings. PLoS ONE 2016, 11, e0166550. [CrossRef]

20. Lu, L.; Liang, Y.; Schwartz, L.H.; Zhao, B. Reliability of Radiomic Features Across Multiple Abdominal CT Image Acquisition
Settings: A Pilot Study Using ACR CT Phantom. Tomography 2019, 5, 226–231. [CrossRef]

21. Zhao, B.; Tan, Y.; Tsai, W.-Y.; Qi, J.; Xie, C.; Lu, L.; Schwartz, L.H. Reproducibility of radiomics for deciphering tumor phenotype
with imaging. Sci. Rep. 2016, 6, 23428. [CrossRef] [PubMed]

22. Zhao, B.; Tan, Y.; Tsai, W.Y.; Schwartz, L.H.; Lu, L. Exploring variability in CT characterization of tumors: A preliminary phantom
study. Transl. Oncol. 2014, 7, 88–93. [CrossRef]

23. Li, Y.; Lu, L.; Xiao, M.; Dercle, L.; Huang, Y.; Zhang, Z.; Schwartz, L.H.; Li, D.; Zhao, B. CT slice thickness and convolution kernel
affect performance of a radiomic model for predicting EGFR status in non-small cell lung cancer: A preliminary study. Sci. Rep.
2018, 8, 17913. [CrossRef]

24. Shafiq-Ul-Hassan, M.; Zhang, G.G.; Latifi, K.; Ullah, G.; Hunt, D.C.; Balagurunathan, Y.; Abdalah, M.A.; Schabath, M.B.; Goldgof,
D.G.; Mackin, D.; et al. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med. Phys. 2017,
44, 1050–1062. [CrossRef]

25. Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.;
Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput
Image-based Phenotyping. Radiology 2020, 295, 328–338. [CrossRef] [PubMed]

26. Orlhac, F.; Boughdad, S.; Philippe, C.; Stalla-Bourdillon, H.; Nioche, C.; Champion, L.; Soussan, M.; Frouin, F.; Frouin, V.; Buvat,
I. A Postreconstruction Harmonization Method for Multicenter Radiomic Studies in PET. J. Nucl. Med. 2018, 59, 1321–1328.
[CrossRef]

27. Orlhac, F.; Frouin, F.; Nioche, C.; Ayache, N.; Buvat, I. Validation of A Method to Compensate Multicenter Effects Affecting CT
Radiomics. Radiology 2019, 291, 53–59. [CrossRef]

28. Mali, S.A.; Ibrahim, A.; Woodruff, H.C.; Andrearczyk, V.; Müller, H.; Primakov, S.; Salahuddin, Z.; Chatterjee, A.; Lambin, P.
Making Radiomics More Reproducible across Scanner and Imaging Protocol Variations: A Review of Harmonization Methods. J.
Pers. Med. 2021, 11, 842. [CrossRef]

29. Ibrahim, A.; Primakov, S.; Beuque, M.; Woodruff, H.C.; Halilaj, I.; Wu, G.; Refaee, T.; Granzier, R.; Widaatalla, Y.; Hustinx, R.; et al.
Radiomics for precision medicine: Current challenges, future prospects, and the proposal of a new framework. Methods 2021, 188,
20–29. [CrossRef]

30. Choe, J.; Lee, S.M.; Do, K.-H.; Lee, G.; Lee, J.-G.; Lee, S.M.; Seo, J.B. Deep Learning–based Image Conversion of CT Reconstruction
Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses. Radiology 2019, 292, 365–373. [CrossRef]

31. Yang, Z.; Li, H.; Wang, Z.; Yang, Y.; Niu, J.; Liu, Y.; Sun, Z.; Yin, C. Microarray expression profile of long non-coding RNAs in
human lung adenocarcinoma. Thorac. Cancer 2018, 9, 1312–1322. [CrossRef] [PubMed]

http://doi.org/10.1038/srep33860
http://doi.org/10.1158/1078-0432.CCR-19-2942
http://www.ncbi.nlm.nih.gov/pubmed/32198149
http://doi.org/10.1158/0008-5472.CAN-17-0122
http://doi.org/10.2967/jnumed.119.228106
http://doi.org/10.1016/j.lungcan.2020.02.018
http://www.ncbi.nlm.nih.gov/pubmed/32120229
http://doi.org/10.1148/radiol.12111607
http://www.ncbi.nlm.nih.gov/pubmed/22723499
http://doi.org/10.3389/fonc.2021.638185
http://www.ncbi.nlm.nih.gov/pubmed/34123789
http://doi.org/10.3389/fonc.2021.633176
http://doi.org/10.1007/s10278-014-9716-x
http://www.ncbi.nlm.nih.gov/pubmed/24990346
http://doi.org/10.1148/radiol.2018172361
http://www.ncbi.nlm.nih.gov/pubmed/29688159
http://doi.org/10.1371/journal.pone.0166550
http://doi.org/10.18383/j.tom.2019.00005
http://doi.org/10.1038/srep23428
http://www.ncbi.nlm.nih.gov/pubmed/27009765
http://doi.org/10.1593/tlo.13865
http://doi.org/10.1038/s41598-018-36421-0
http://doi.org/10.1002/mp.12123
http://doi.org/10.1148/radiol.2020191145
http://www.ncbi.nlm.nih.gov/pubmed/32154773
http://doi.org/10.2967/jnumed.117.199935
http://doi.org/10.1148/radiol.2019182023
http://doi.org/10.3390/jpm11090842
http://doi.org/10.1016/j.ymeth.2020.05.022
http://doi.org/10.1148/radiol.2019181960
http://doi.org/10.1111/1759-7714.12845
http://www.ncbi.nlm.nih.gov/pubmed/30151992


Tomography 2021, 7 892

32. PDQ® Adult Treatment Editorial Board. PDQ Non-Small Cell Lung Cancer Treatment. National Cancer Institute: Bethesda,
MD, USA. Available online: https://www.cancer.gov/types/lung/hp/non-small-cell-lung-treatment-pdq (accessed on
19 October 2021).

33. Gerlinger, M.; Rowan, A.J.; Horswell, S.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.;
Tarpey, P.; et al. Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing. N. Engl. J. Med. 2012,
366, 883–892. [CrossRef]

34. Zhao, B.; Schwartz, L.H.; Kris, M.G. Data from RIDER Lung CT. In The Cancer Imaging Archive; 2015; Available online: http:
//doi.org/10.7937/K9/TCIA.2015.U1X8A5NR (accessed on 2 December 2021).

35. Tan, Y.; Schwartz, L.H.; Zhao, B. Segmentation of lung lesions on CT scans using watershed, active contours, and Markov random
field. Med. Phys. 2013, 40, 043502. [CrossRef] [PubMed]

36. Yang, H.; Schwartz, L.H.; Zhao, B. A Response Assessment Platform for Development and Validation of Imaging Biomarkers in
Oncology. Tomography 2016, 2, 406–410. [CrossRef]

37. Lu, L.; Sun, S.H.; Afran, A.; Yang, H.; Lu, Z.F.; So, J.; Schwartz, L.H.; Zhao, B. Identifying Robust Radiomics Features for Lung
Cancer by Using In-Vivo and Phantom Lung Lesions. Tomography 2021, 7, 55–64. [CrossRef]

38. Lu, L.; Sun, S.H.; Yang, H.; Guo, P.; Schwartz, L.H.; Zhao, B. Radiomics Prediction of EGFR Status in Lung Cancer—Our
Experience in Using Multiple Feature Extractors and The Cancer Imaging Archive Data. Tomography 2020, 6, 223–230. [CrossRef]

39. Xu, Y.; Lu, L.; Sun, S.H.; Lian, W.; Yang, H.; Schwartz, L.H.; Yang, Z.H.; Zhao, B. Effect of CT image acquisition parameters
on diagnostic performance of radiomics in predicting malignancy of pulmonary nodules of different sizes. Eur. Radiol. 2021.
[CrossRef]

40. Lin, L.I.-K. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics 1989, 45, 255–268. [CrossRef] [PubMed]
41. Van Rossum, G.; Drake, F.L., Jr. Python Reference Manual; Centrum voor Wiskunde en Informatica: Amsterdam, The Nether-

lands, 1995.
42. Avanzo, M.; Wei, L.; Stancanello, J.; Vallières, M.; Rao, A.; Morin, O.; Mattonen, S.A.; El Naqa, I. Machine and deep learning

methods for radiomics. Med. Phys. 2020, 47, e185–e202. [CrossRef]
43. Lohmann, P.; Bousabarah, K.; Hoevels, M.; Treuer, H. Radiomics in radiation oncology—Basics, methods, and limitations.

Strahlenther. Onkol. 2020, 196, 848–855. [CrossRef]
44. Traverso, A.; Wee, L.; Dekker, A.; Gillies, R. Repeatability and Reproducibility of Radiomic Features: A Systematic Review. Int. J.

Radiat. Oncol. Biol. Phys. 2018, 102, 1143–1158. [CrossRef]
45. Yip, S.S.F.; Aerts, H.J.W.L. Applications and limitations of radiomics. Phys. Med. Biol. 2016, 61, R150–R166. [CrossRef]
46. Dercle, L.; Henry, T.; Carré, A.; Paragios, N.; Deutsch, E.; Robert, C. Reinventing Radiation Therapy with Machine Learning and

Imaging Bio-markers (Radiomics): State-of-the-art, challenges and perspectives. Methods 2020, 188, 44–60. [CrossRef]
47. Mackin, D.; Fave, X.; Zhang, L.; Fried, D.; Yang, J.; Taylor, B.; Rodriguez-Rivera, E.; Dodge, C.; Jones, A.K.; Court, L. Measuring

CT scanner variability of radiomics features. Investig. Radiol. 2015, 50, 757. [CrossRef] [PubMed]
48. Liu, Y.; Kim, J.; Balagurunathan, Y.; Li, Q.; Garcia, A.L.; Stringfield, O.; Ye, Z.; Gillies, R.J. Radiomic features are associated with

EGFR mutation status in lung adenocarcinomas. Clin. Lung Cancer 2016, 17, 441–448.E6. [CrossRef]
49. Chang, C.; Zhou, S.; Yu, H.; Zhao, W.; Ge, Y.; Duan, S.; Wang, R.; Qian, X.; Lei, B.; Wang, L.; et al. A clinically practical

radiomics-clinical combined model based on PET/CT data and nomogram predicts EGFR mutation in lung adenocarcinoma. Eur.
Radiol. 2021, 31, 6259–6268. [CrossRef]

50. Dang, Y.; Wang, R.; Qian, K.; Lu, J.; Zhang, H.; Zhang, Y. Clinical and radiological predictors of epidermal growth factor receptor
mutation in nonsmall cell lung cancer. J. Appl. Clin. Med. Phys. 2021, 22, 271–280. [CrossRef] [PubMed]

51. Zhang, B.; Qi, S.; Pan, X.; Li, C.; Yao, Y.; Qian, W.; Guan, Y. Deep CNN Model Using CT Radiomics Feature Mapping Recognizes
EGFR Gene Mutation Status of Lung Adenocarcinoma. Front. Oncol. 2021, 10, 598721. [CrossRef]

52. Zhang, G.; Cao, Y.; Zhang, J.; Ren, J.; Zhao, Z.; Zhang, X.; Li, S.; Deng, L.; Zhou, J. Predicting EGFR mutation status in lung
adenocarcinoma: Development and validation of a computed tomography-based radiomics signature. Am. J. Cancer Res. 2021, 11,
546–560. [PubMed]

53. Mahon, R.N.; Ghita, M.; Hugo, G.D.; Weiss, E. ComBat harmonization for radiomic features in independent phantom and lung
cancer patient computed tomography datasets. Phys. Med. Biol. 2020, 65, 015010. [CrossRef] [PubMed]

54. Shiri, I.; Maleki, H.; Hajianfar, G.; Abdollahi, H.; Ashrafinia, S.; Hatt, M.; Zaidi, H.; Oveisi, M.; Rahmim, A. Next-Generation
Radiogenomics Sequencing for Prediction of EGFR and KRAS Mutation Status in NSCLC Patients Using Multimodal Imaging
and Machine Learning Algorithms. Mol. Imaging Biol. 2020, 22, 1132–1148. [CrossRef] [PubMed]

https://www.cancer.gov/types/lung/hp/non-small-cell-lung-treatment-pdq
http://doi.org/10.1056/NEJMoa1113205
http://doi.org/10.7937/K9/TCIA.2015.U1X8A5NR
http://doi.org/10.7937/K9/TCIA.2015.U1X8A5NR
http://doi.org/10.1118/1.4793409
http://www.ncbi.nlm.nih.gov/pubmed/23556926
http://doi.org/10.18383/j.tom.2016.00223
http://doi.org/10.3390/tomography7010005
http://doi.org/10.18383/j.tom.2020.00017
http://doi.org/10.1007/s00330-021-08274-1
http://doi.org/10.2307/2532051
http://www.ncbi.nlm.nih.gov/pubmed/2720055
http://doi.org/10.1002/mp.13678
http://doi.org/10.1007/s00066-020-01663-3
http://doi.org/10.1016/j.ijrobp.2018.05.053
http://doi.org/10.1088/0031-9155/61/13/R150
http://doi.org/10.1016/j.ymeth.2020.07.003
http://doi.org/10.1097/RLI.0000000000000180
http://www.ncbi.nlm.nih.gov/pubmed/26115366
http://doi.org/10.1016/j.cllc.2016.02.001
http://doi.org/10.1007/s00330-020-07676-x
http://doi.org/10.1002/acm2.13107
http://www.ncbi.nlm.nih.gov/pubmed/33314737
http://doi.org/10.3389/fonc.2020.598721
http://www.ncbi.nlm.nih.gov/pubmed/33575086
http://doi.org/10.1088/1361-6560/ab6177
http://www.ncbi.nlm.nih.gov/pubmed/31835261
http://doi.org/10.1007/s11307-020-01487-8
http://www.ncbi.nlm.nih.gov/pubmed/32185618

	Introduction 
	Materials and Methods 
	Study Design 
	Patient and CT Acquisition Info 
	Lung Lesion Segmentation 
	Radiomic Feature Extraction 
	CNN Kernel Converter Development and Validation 
	Randomization and Formation of Mixed Groups 
	Univariate Analysis 
	Statistical Analyses 

	Results 
	Patient Demographics 
	CNN Kernel Converter Development Using Development Cohort 
	Effect of CNN Kernel Conversion on Radiomic Feature Reproducibility 
	Development Cohort Radiomic Feature Reproducibility 
	Validation Cohort Radiomic Feature Reproducibility 

	Effect of CNN Kernel Conversion on EGFR Mutation Status Prediction 

	Discussion 
	Conclusions 
	References

