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Abstract: Arterial calcification is an independent predictor of cardiovascular disease (CVD) events
whereas thoracic aorta calcium (TAC) detection might anticipate extracoronary outcomes. In this
work, we trained six convolutional neural networks (CNNs) to detect aortic calcifications and to au-
tomate the TAC score assessment in intermediate CVD risk patients. Cardiac computed tomography
images from 1415 patients were analyzed together with their aortic geometry previously assessed.
Orthogonal patches centered in each aortic candidate lesion were reconstructed and a dataset with
19,790 images (61% positives) was built. Three single-input 2D CNNs were trained using axial,
coronal and sagittal patches together with two multi-input 2.5D CNNs combining the orthogonal
patches and identifying their best regional combination (BRC) in terms of lesion location. Aortic
calcifications were concentrated in the descending (66%) and aortic arch (26%) portions. The BRC
of axial patches to detect ascending or aortic arch lesions and sagittal images for the descending
portion had the best performance: 0.954 F1-Score, 98.4% sensitivity, 87% of the subjects correctly
classified in their TAC category and an average false positive TAC score per patient of 30. A CNN
that combined axial and sagittal patches depending on the candidate aortic location ensured an
accurate TAC score prediction.

Keywords: convolutional neural network; artery calcium; thoracic aorta calcification

1. Introduction

Arterial calcification is an independent predictor of cardiovascular disease (CVD)
events, morbidity and mortality [1]. Calcium deposits can be observed in several vascular
beds [2], but coronary artery calcium (CAC) is probably the most studied biomarker of
calcium burden. It is generally quantified using the Agatston score [3] which is calculated
detecting calcified lesions in non-enhanced computed tomography (CT) axial images,
accumulating their size and weighting them by density [4]. Thoracic aorta calcium (TAC),
generally detected in the ascending and descending portions of the aorta during coronary
examinations, was also associated with CVD events and death [5]. However, only the
proximal portion of the ascending aorta and the distal descending aorta segment have
been analyzed because they were visible cardiac CT CAC studies. Although the detection
of lesions in the aortic arch and the proximal descending aorta were somehow neglected,
previous reports have shown that these regions are prone to calcifications [6]. Moreover, the
relationship between presence and extent of aortic calcium and the occurrence of stroke [7]
or other cardiovascular events or with all-cause mortality has been well demonstrated [6].
Some studies have also shown that the presence and extent of aortic arch calcifications
was associated with non-cardiac events [8,9]. Consequently, the development of automatic
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tools for the assessment of thoracic lesions deserves further attention to simplify the
measurement procedure in clinical routine or in studies including large cohort of subjects.

The detection of CAC using the Agatston score method was widely employed in
prospective studies [10]. It usually starts with a semi-automated software that detects
contiguous voxels with a fixed minimum threshold of 130 Hounsfield units (HU) [4]. Then,
an expert manually validates candidate voxels and associate each lesion to the correspond-
ing vessel (i.e., right or left coronary artery). Although candidate voxel detection is a
computationally simple procedure, manual validation is often time-consuming, software-
dependent and prone to errors and subjective interpretation [11,12]. This method can also
be employed to detect calcium along the thoracic aorta, although the lesions are scattered
over a larger area. Identifying these lesions on the aortic wall, avoiding those that are
in bifurcations or near the vertebrae, while associating them to the ascending, arch and
descending aorta segments might be even more challenging. Our group has developed an
automated method to isolate the thoracic aorta, estimate its 3D geometry and detect the
calcified lesions of intermediate-risk patients using cardiac CT images [6]. Intermediate-
risk patients are defined as individuals with predicted 10-years Framingham risk of CVD
events between 5–20% that might benefit from further subclinical testing such as vascular
calcium assessment to facilitate decisions about preventive interventions [13]. At the end
of the automated method, an expert must manually validate each calcified lesion in a
time-consuming procedure. This method was recently used to evaluate a large cohort of
intermediate-risk patients [8] and can be improved using automatic classification algo-
rithms based on supervised-learning techniques such as Machine Learning and particularly
Convolutional Neural Networks (CNNs).

Some authors attempted a fully automated detection of coronary artery calcifications
applying CNNs [14,15]. Isgum et al. possibly made the first attempts to automatically
quantify calcium in the thoracic aorta using a supervised-learning scheme [16]. In a
low-dose non-ECG-triggered modality, other groups used CNNs to locate the heart and
to classify coronary calcifications [17,18], even without a prior lesion segmentation [19].
CNNs were also used to measure extracoronary calcium [20], particularly TAC and valvular
calcium [18]. Recent studies have analyzed the performance of CNNs to detect, classify
and measure coronary and extracoronary calcium across a wide range of CT acquisition
types [21]. CNNs were also used to detect and quantify calcium in abdominal [22] and
pelvic vasculature [23]. As far as we know, no other authors have developed a supervised-
learning scheme to detect and quantify TAC in the entire thoracic aorta using ECG triggered
non-enhanced cardiac CT images from a large cohort of patients.

The objective of this work was to design and evaluated different CNNs architectures to
detect and quantify thoracic aorta calcifications. The performance of the proposed solutions
was validated on a test dataset independent of the training set for quantification of the
thoracic aortic calcium score and classification of patients into risk categories. Different
combinations of axial, sagittal and coronal images in single- and multi-input networks
(2D and 2.5D) were tested. The system was trained and validated on a large cohort of
intermediate-risk patients to finally discuss the selection of the most suitable architecture
for automatic TAC score estimation and patient risk stratification.

2. Materials and Methods
2.1. Study Subjects and Image Acquisition

This was a retrospective study that included subjects that were recruited in the Car-
diovascular Preventive Medicine unit of the Hôpital Européen Georges Pompidou (Paris,
France) over 3 years from 2009 to 2012, as recently reported [8]. Briefly, all consecutive
primary prevention patients at intermediate risk of cardiovascular disease that underwent
an extended non-enhanced multislice computed tomography (MSCT) scan for vascular
calcium assessment in view of cardiovascular risk stratification program were included.
Non-enhanced 64-MSCT images were acquired (prospectively ECG-gated) including the
heart and the thoracic aorta (TA) from the top of the aortic arch to the level of the di-
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aphragm [8]. Acquisitions were performed at 120 kVp, with tube current adapted to the
patient weight (Light-speedVCT; GE Healthcare). All images were reconstructed with
a thickness of 2.5 mm and analyzed using custom software designed in our laboratory
to detect, label and calculate the size and position of calcifications in the thoracic aorta
(TA) [6]. In the current study, we revised the aortic calcium labeling and aortic geomet-
ric measurements from an initial group of 1426 subjects to build a supervised-learning
system for TAC estimation. Eleven patients were excluded because geometric or calcifica-
tion files were missing. The reported effective radiation dose of our acquisition protocol
was 1.23 ± 0.14 mSv [9]. All measurements were made by the same expert, blinded to
clinical parameters.

2.2. Detection of Aortic Calcifications

Aortic calcifications were analyzed in a final cohort of 1415 subjects. An automated
algorithm implemented into a custom software of our laboratory has already detected
the thoracic aorta centerline and estimated the aortic diameters at ≈150 centerline points
from the sinotubular junction to the descending aorta at the level of the coronary sinus
for all subjects. The aortic root and the aortic valves were excluded from this automated
detection method. Then, the algorithm identified the position, size and attenuation of
every thoracic aorta candidate of calcification. Finally, a manual validation of all the
candidates was required from the expert to obtain the corresponding Agatston score [3].
This score was calculated using a categorical weighted value from 1 to 4 depending on
the maximum attenuation value registered in each lesion (1: 130–199 HU, 2: 200–299 HU,
3: 300–399 HU and 4: ≥400 HU) multiplied by its area. For each subject, as illustrated
in Figure 1, the Agatston TAC score was calculated as the sum of all the lesions’ scores after
being also estimated within ascending, arch and descending segment of the thoracic aorta.
All thoracic aorta calcification has been manually validated and labeled by an expert using
the same platform.

For the present study, we processed again the 1415 scans to add all possible candidate
lesions around the aorta and not only those which were marked as positive using our
previous automated method. A Python routine (PyCharm [24]) was written to perform this
task through the following steps: (i) axial images were binarized with a 130 HU threshold,
(ii) an 8-connected region growing algorithm was applied and candidates with an area
<1 mm2 were excluded, (iii) the distance between each candidate centroid and the aortic
centerline was calculated and those with a distance >1.3 times the aortic radius were also
excluded. This distance restriction (gray region in Figure 1) was aimed at preserving the
balance of the dataset. These candidates, together with the true aortic labeled calcifications
from our previous work, were used to train the CNN.

2.3. Datasets and Image processing

Imaging preprocessing and dataset creation were performed using PyCharm. For
every patient, lesion candidates were automatically divided into positive aortic calcifica-
tions (previously labeled by an expert) and negative aortic calcifications. Negative cases
could include coronary, valve or supra-aortic calcifications that were not tagged as aortic
lesions and other spots in the trachea or in the vertebrae inside the gray region as shown
in Figure 1. Globally, we found 19,790 candidates around the thoracic aorta: 12,041 (61%)
were positives and 7749 (39%) negatives.

For each axial slice, three orthogonal patches (coronal, sagittal and axial views) were
created around the centroid of each lesion candidate. All images were reconstructed using
a bilinear interpolation to achieve a homogeneous and isotropic 0.5 mm spatial resolution.
Each candidate image consisted of 128 × 128 pixels (6.4 cm squared side). This size was
chosen based on the literature to visualize the entire aortic cross-sectional area and part of
the surrounding tissues [18,25]. For statistical purposes, a separate file was also stored for
each candidate lesion containing the patient’s ID, the coordinates of the lesion center, the
corresponding aortic portion and the Agatston score.



Tomography 2021, 7 639

Figure 1. The thoracic aorta was segmented and separated into its ascending, arch and descending
portions. Axial, sagittal and coronal images (128 × 128 px) centered at each candidate lesion were
reconstructed. Examples of positive and negative calcifications in the regions of the aortic arch
and the descending aorta are shown. BCA: brachiocephalic artery, CS: coronary sinus, LSA: left
subclavian artery, SJ: sinotubular junction.

CT scans were randomly divided into two datasets: main set (90% = 70% for training
+20% for validation) and test set (10%). A variation of the validation set approach described
in [26] was implemented. Accordingly, we randomly shuffled and divided the patients
included in the main set to obtain 10 different combinations of training and validation sets.
This cross-validation method aimed at informing the variability and confidence intervals
of the output metrics in the test set. The test dataset with 10% of the patients remained
intact and independent of the training set.

2.4. CNN Design

Using Keras based on Tensorflow, six different architectures were evaluated: three in
a 2D group and three in a 2.5D multi-input group.

The first 2D group was composed of independent networks numbered 1 to 3, for
the axial, sagittal and coronal orthogonal images, respectively. The three networks con-
sisted of 2 convolutional and max-pooling blocks and one fully connected (FC) layer with
128 neurons as shown in Figure 2B–D.

The second group of networks was composed by three multi-input architectures
numbered 4 to 6. Networks #4 and #5 were 2.5D multi-input and used the three orthogonal
input images simultaneously. They shared the same convolutional and pooling layers from
the first 2D group but differed in the FC ones (Figure 2E,F).
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Figure 2. (A) Feature extraction block components. (B–F) CNN 1: Axial network. CNN 2: Sagittal
network. CNN 3: Coronal network. CNN 4: Voting network. CNN 5: Interconnected network.
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• Network #4 was based on [17] and was named “voting-network” because the process-
ing of the three images remained independent until the last layer, where a neuron
obtained as input a single value from each one, and hence voted among them.

• Network #5 was named "interconnected-network" and was inspired by CNN2 in [18].
It combined the information of the three processed images by a concatenation and a
FC layer.

• Network #6 was named the Best Regional Combination (BRC) network and was
conceived to improve the independent prediction of the single-input CNNs from the
first group with a lesion location feature. Accordingly, using the 10 validation sets,
the F1-Score of the 3 trained networks number 1-to-3 was compared with respect to
the position of the candidate lesions in terms of the aortic region (ascending, arch and
descending aorta). Then, the BRC network classified the lesions choosing either the
CNN number #1, #2 or #3 depending on the candidate location (Figure 3).

Figure 3. CNN 6: Best Regional Combination architecture.

Training consisted of 90 epochs with a mini-batch size of 32. Elastic Net Regulariza-
tion [27] was included in every layer, using a value of 0.02 in L1 and 0.001 in L2. In FC
layers a Dropout of 20% was performed [28]. The activation function used in all layers was
ReLU, except in the output neuron where the sigmoid was used, and the cost function was
binary cross-entropy. The threshold for the output neuron probability was set at 0.5. Loss,
accuracy and F1-Score of the validation set were taken into account during the training
process and for model selection.

2.5. Statistics and Evaluation Metrics

The main evaluation metric employed to compare the performance of the different
architectures was the F1-Score value weighted by TAC in a lesion-by-lesion scheme. This
metric took into account the size and the density of the calcifications within the resampling
repetitions. First, the F1-Score values of the three 2D CNNs numbered 1 to 3 (axial,
sagittal and coronal) were compared within each aortic segment (ascending, arch and
descending). Second, F1-Score values of these three architectures and the three 2.5D
CNNs numbered 4 to 6 were compared for the whole thoracic aorta. F1-Score boxplots
(median and interquartile range) were built for each CNN and were compared using the
Kruskal–Wallis non-parametric test followed by a Wilcoxon post hoc test.

Additional information was reported for the resampling repetition corresponding
to the median F1-Score value for each of the 6 CNNs, including true and false positives
by calcification number, area and TAC score, together with TAC sensitivity. Regarding
the patient-by-patient analysis for a clinical evaluation, subjects were separated into four
risk groups according to their TAC scores: (i) low risk (TAC ≤ 10), (ii) intermediate risk
(10 < TAC ≤ 100), (iii) high risk (100 < TAC ≤ 400) and (iv) very high risk (TAC > 400).
The agreement between the actual risk category (manually validated) and each CNN
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prediction was assessed with the number of patients that were reclassified using Cohen’s
linearly kappa [29] and the intraclass correlation coefficient [30]. The association of the
reference and BRC predicted TAC values were represented using both a linear regression
and a mountain plot [31]. The mountain plot represented the difference between the
predicted TAC score by the BRC and the actual value in the abscissa and the patient
percentile in the Y axis. A p-value below 5% was considered significant. Figures were
built with R Studio 1.4 (Boston, MA, USA) and JMP 14 (SAS Institute, Cary, NC, USA) was
employed for statistical comparisons.

3. Results

Training consisted of approximately 45 h for the 5 networks and the 10 datasets.
Relevant clinical information about the 1415 patients included in this study (75% men,
57 ± 9 y.o.) is summarized in Table 1. The cohort accounted 54% of smokers, 47% of
hypertensive and 82% of hypercholesterolemic subjects. The average Framingham risk
score at 10 years was 9.5%. In terms of aortic calcium, 42% of the subjects remained in
the CVD risk group 1 (TAC < 10), whereas ≈20% were homogeneously distributed in the
other three groups. In 10% of the patients reserved for the test set (N = 141), no significant
differences were observed in risk factors with respect to the training group (N = 1274).

Table 1. Clinical information for the 1415 patients. More than 58% of the patients presented a TAC
score greater than 10.

Clinical Information Mean, N (SD), %

Age, y.o. 57 (9)
Male gender 1066 75
Hypertension 661 47
Hypercholesterolemia 1161 82
Current or past smoking 760 54
Framingham Risk Score at 10 years, % 9.5 5.6
CVD Risk I (TAC <= 10) 592 42
CVD Risk II (10 < TAC <= 100) 258 18
CVD Risk III (100 < TAC <= 400) 257 18
CVD Risk IV (TAC > 400) 308 22

Table 2 shows the number and total area of candidate lesions found in the thoracic
aorta of the patients, together with the positive lesions (calcifications) tagged by the expert.
Most of both negative candidates and calcifications were found in the descending aorta,
followed by the aortic arch and the ascending portion. Total areas followed a similar
distribution. Globally, 61% of the candidates corresponded to positive calcifications, being
the aortic arch the most balanced portion.

Table 2. Number and total area of candidate lesions and positive calcifications for the three segments
of the thoracic aorta.

Aortic Candidates Positives Positives/
Portion Number, # Area, cm2 Number, # Area, cm2 Candidates

ascending 1508 (8%) 333.8 (13%) 931 (8%) 133.3 (9%) 62%
arch 6489 (33%) 782.3 (29%) 3168 (26%) 488.6 (23%) 49%

descending 11793 (59%) 1553.1 (58%) 7942 (66%) 1025.5 (68%) 67%

Total 19790 2669.2 12041 1647.4 61%

Figure 4 represents the performance of each of the three single-input 2D architectures
per aortic segment in terms of the F1-Score weighted by TAC using boxplots to show the
variability of the resampling repetitions. In the ascending aorta, Axial and Sagittal CNNs
outperformed the Coronal network (p < 0.001). Since the interquartile range of the Axial
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network was one third of the Sagittal one (0.05 vs. 0.14, respectively), CNN number 1
was the best choice for the ascending aorta. The F1-Score values of the Axial CNN were
the highest within the aortic arch (p < 0.001). In the descending aorta, the Sagittal CNN
showed the best results in terms of F1-Score (p < 0.001).

Figure 4. Boxplots of F1-Score weighted by TAC for each of the three single-input architectures on
each of the three aortic segments. The Axial architecture was the best in the ascending and arch
portions, whereas the Sagittal architecture had a better performance for the descending aorta.

The comparison of the single- and multi-input architectures for the whole thoracic
aorta is shown in Figure 5. Based on the single-input CNN performance, the best regional
combination architecture (BRC) combined the Axial CNN for detection of lesions in the
ascending or arch segments and the Sagittal CNN for the descending aorta. The BRC CNN
had the highest F1-Score with respect to the other networks (p < 0.001). In the multiple
individual comparison, the Sagittal CNN outperformed the Axial (p < 0.01), Coronal
(p < 0.01) and Interconnected (p < 0.05) networks. The other combinations did not show
statistical differences.

On Table 3 other metrics besides the F1-Score were included to compare the different
architectures. In general, the BRC network outperformed the rest, although the Axial
network was slightly better regarding the false positives. BRC detected 1151 true pos-
itives over 1200 positive candidates and a cumulative TAC of 54,516 over 55,425. The
false positives corresponded to an average increment of 7.8% TAC score per patient. Its
sensitivity was 98.4% and the F1-Score value 0.954. Mean TAC risk kappa values were 0.88
and excellent ICC values of 0.998 were found.

Table 4 shows in detail the performance of the BRC network for the 141 patients in
the test set. In the reclassification process, 87% (N = 123) of the patients remained in the
correct category. It is important to look closely at what happened to the 13% (N = 18) of
misclassified patients. Among them, 17 patients were classified above their reference group:
ten from group I to II, three from group II to III and only one from group III to IV. Three
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subjects were misclassified from group I to III because the CNN detected the ligamentum
arteriosum as a calcified lesion (TAC reference values were 0 and the CNN predicted
145, 251 and 312). As shown in Figure 6, a good correlation between the reference and
estimated TAC was observed. The mountain plot indicates that the TAC prediction tended
to overestimate the reference scores values, although for more than 90% of the subjects this
TAC score difference was below 50. Among the five patients where this TAC difference
was above 200 (red points), two were due to the ligamentum arteriosum misclassification
and the other three had a reference TAC > 400 (TAC scores of 469, 876 and 2293).

Figure 5. Boxplots of F1-Score weighted by TAC for each architecture. The BRC showed the best
performance since its median value was the highest and its variance the lowest. BRC: Best Regional
Combination network. I-C: Interconnected network.

Table 3. For each architecture we chose the network that represented the median F1-Score value. In the test set of n = 141
patients, 90 subjects (64%) had TAC > 0. We found 1200 lesions (an average of 8.5 lesions per patient) and a cumulative
TAC of 55,425 (an average of 393 per patient). Percentages of true and false positives for lesion detection and TAC were
calculated with respect to 1200 and 393, respectively. The highest values in each row were highlighted in bold type. AS:
Agatston Score.

Axial Sagittal Coronal Voting Interconnected BRC

True positives, n (%) 1095 1124 1136 1128 1129 1151
(91.3%) (93.7%) (94.7%) (94.0%) (94.1%) (95.9%)

False positives, n (%) 148 143 182 140 158 174
(12.3%) (11.9%) (15.2%) (11.7%) (13.2%) (14.5%)

True positive Area 96.8 99.4 100.4 100 100.3 101.0
per patient, mm2 (%) (93.9%) (96.4%) (97.5%) (97.1%) (97.3%) (98.0%)
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Table 3. Cont.

Axial Sagittal Coronal Voting Interconnected BRC

False positive Area 7.94 9.4 13.4 9.8 10.0 9.1
per patient, mm2 (%) (7.7%) (9.1%) (13.0%) (9.5%) (9.7%) (8.8%)
True positive TAC 371 381 385 384 385 387
per patient, AS (%) (94.4%) (97.0%) (98.0%) (97.8%) (97.9%) (98.4%)
False positive TAC 26 32 48 34 34 30
per patient, AS (%) (6.7%) (8.0%) (12.1%) (8.7%) (8.7%) (7.8%)

TAC Sensitivity 0.944 0.970 0.979 0.978 0.979 0.984
TAC F1-Score 0.938 0.946 0.933 0.947 0.947 0.954

TAC Risk Kappa, 0.879 0.863 0.846 0.868 0.850 0.878
value (95% CI) (0.822–0.935) (0.802–0.924) (0.766–0.915) (0.808–0.928) (0.786–0.915) (0.821–0.936)
TAC Score ICC, 0.991 0.996 0.983 0.995 0.995 0.998
value (95% CI) (0.987–0.993) (0.994–0.997) (0.976–0.988) (0.993–0.997) (0.992–0.996) (0.997–0.999)

Figure 6. Left: Regression plot of reference vs predicted TAC score values for patients (y = 1.0x + 17, r2 = 0.996, n = 141).
Right: Mountain plot (also called folded empirical cumulative distribution plot) showing differences between predicted
and reference TAC score values by patient percentile. Red points indicate patients with TAC score differences >200. TAC
predictions were calculated from the BRC network that took into account the position of the lesions within the thoracic
aorta segments. BRC: Best Regional Combination network

Table 4. Reclassification confusion matrix for the median BRC CNN. Among the 141 patients, the
classifier assigned the 87% to the correct category. An overestimation by one CVD risk category
occurred in 11% of the patients and only 2% had their risk overestimated by two CVD risk categories.
Conversely, a single patient has been underestimated by only by 1 category.

CNN Prediction

I II III IV Total

Reference

I 42 10 3 0 55
II 1 34 3 0 38
III 0 0 21 1 22
IV 0 0 0 26 26

Total 43 44 27 27 141
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4. Discussion

In this work, different architectures using 2D and 2.5D convolutional neural networks
were proposed to detect and quantify thoracic aorta calcifications, evaluating their ability
to estimate the Agatston TAC score in a large cohort of intermediate-risk patients. The
network that obtained the best performance combined axial images to detect calcifications
in the ascending aorta and aortic arch and sagittal images for lesions in the descending
aorta. This network, called Best Regional Combination (BRC) had a median F1-Score
of 0.954 and a sensitivity of 98.4% on the image per image evaluation. Additionally, it
correctly classified 87% of the patients in the test group (123 out of 141) in one of the
four reference TAC categories, with an average false positive TAC score per patient of
30. Calcifications along the entire thoracic aorta were predominantly concentrated in the
descending portion followed by the aortic arch segment. Instead of using 2.5D multi-input
images, the particular characteristics of shape, size, density, location and extension of aortic
calcifications in each aortic segment required 2D single-input axial or sagittal networks
combined in the proposed BRC architecture.

For the classification system, a dataset of ≈20,000 images was created using three
orthogonal patches centered on each aortic lesion candidate. Of the six proposed networks,
those numbered 1-to-3 were trained with the individual axial, sagittal and coronal images
(single-input) whereas in networks 4-to-6 these images were combined using different
strategies (multi-input) with the hypothesis that this additional information would improve
the detection performance. Network #2 (Sagittal) was the one that yielded the best results in
terms of TAC F1-Score among the single-input ones, with less variability and values always
greater than 0.94 in the 10 resampling training process (green boxplot in Figure 5). However,
this result was heterogeneous when the other segments of the aorta were evaluated, noting
that the ascending aorta was the most challenging segment (Figure 4). In this particular
aortic portion, the axial network outperformed the other two, although the variability of
the repeated test was high, probably due to the scarce number of lesions (8% of the total).
The axial network also outperformed the other two single-input CNNs in the aortic arch,
whereas the Sagittal network achieved the best F1-Scores in the descending segment. In this
latter region, larger calcifications probably comprised several axial planes and therefore
the detection was more accurate using a single sagittal image. This finding might agree
with another study that reported a reduction of false positives using a combination of axial
and sagittal images to detect abdominal aorta calcifications [22].

The multi-input networks #4 and #5 that used the three orthogonal patches simul-
taneously, did not achieve a better performance than the sagittal single-input network
#2 (Figure 5). This was somewhat unexpected, since the strategies of combining 2.5D im-
ages either by the voting or the interconnected networks, were supposed to improve the
lesion detection. Although in one of the 10 training repetitions, the Voting network num-
ber 5 actually achieved a higher F1-Score than the rest, it was outperformed by the BRC
network in terms of median F1-Score value and lower variability. The BRC network was
the one that showed the best F1-Score values because it combined the most efficient single-
input CNNs after the regional evaluation (Figure 4): the Axial network was used to detect
calcifications in the ascending aorta and the aortic arch, while descending aorta lesions
were identified using the Sagittal network. Moreover, the BRC network surpassed the rest
in terms of sensitivity and true positive TAC values per patient, ranking second behind the
axial network in terms of false positives TAC value (Table 4). A similar performance was
observed in terms of patient risk classification based on four groups of TAC scores, where
the BRC network TAC intraclass correlation score was the highest and its kappa value was
almost equal to the Axial network. These results indicate that the problem of detecting
aortic calcifications requires specific networks that take into account the heterogeneity in
the presence and extent of lesions in the different aortic segments.

Other groups have obtained results comparable to those presented here in terms of
TAC detection but in patients undergoing lung cancer screening [16,18] or radiotherapy
planning [32]. Our study employed cardiac CT images, the modality considered gold-
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standard for the detection of calcium using the Agatston method. Our large cohort of
intermediate CVD risk patients has also the advantage of including the entire thoracic
aorta, with the entire aortic arch included, which is generally beyond limits in conventional
CAC studies. This original dataset allowed us to extract valuable information concerning
the peculiarities of aortic calcifications that are clearly different from coronary lesions in
terms of quantity, distribution, size and shape.

Our strategy to overcome the initial imbalance in our dataset (99.8% of negatives
vs 0.2% of positives) was to restrict the candidate detection around the thoracic aorta.
Other authors have also applied similar approaches, segmenting the thoracic aorta [33],
schemes based on multi-atlas and registration [14,16] or heuristic methods to isolate the
heart [15,19]. Other reports proposed a sequential scheme [18,32] where a first CNN is
trained with balanced mini-batches to pre-classify valid candidates and a second CNN
performs a more refined classification. We are well aware that the next step will be
to validate the aortic segmentation by such neural networks, so that eventually all the
segmentation and geometric analysis associated with the identification of the different
segments and the quantification of aortic calcifications can be done at the same time [34].

Some limitations of our study should be mentioned. First, our retrospective study
was conducted in a single center with the same CT equipment. This allowed us to scan the
entire thoracic aorta including the aortic arch and to ensure a homogeneous cardiac CT
acquisition protocol but we are aware that the incorporation of images from a second center
should be carried through. Our cohort consisted of intermediate-risk patients with a high
prevalence of TAC (65%) and cannot be extrapolated to a general population. However,
this number of calcifications helped us to correctly train the CNNs, particularly in the
ascending aorta where lesions are scarce. Finally, only thoracic aorta calcifications above
the sinotubular junction were detected in this first study, although coronary, valvular and
supra-aortic lesions are visible in our dataset. In particular, valvular calcification is of great
importance for intermediate-risk patients, but we decided to start with TAC lesions labeled
in previous works of our group. Additional measurements are currently in progress to
explore the remaining regions and advance into an extended automatic recognition of
cardiovascular calcifications.

To summarize, this work proposed several 2D and 2.5D CNN architectures to detect
and quantify TAC in a large cohort of intermediate-risk patients using cardiac CT images.
The network that showed the best performance combined axial images to detect calcifica-
tions in the ascending aorta and aortic arch and sagittal images in the descending aorta.
The imaging dataset was built by taking advantage of a previous work of our group where
lesions were manually labeled, and the geometry of the thoracic aorta had been assessed in
a large cohort of patients. The next step will be to combine aortic calcium quantification
and geometry determination in a single combined network.
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