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Abstract: Hounsfield units (HU) are a measure of radiodensity, related to the density of a tissue
and the composition of kidney stones. Hounsfield density is what is related to the composition of
kidney stones. In the standard acquisition method, these measures are arbitrary and dependent
on the operator. This study describes the implementation of a technique based on the HU and
Hounsfield density to predict the stone compositions of patients with nephrolithiasis. By conventional
percutaneous nephrolithotomy, thirty kidney stone samples corresponding to the cortex, middle, and
nucleus were obtained. The HU were obtained by CT scanning with a systematic grid. Hounsfield
density was calculated as the HU value divided by the stone’s greatest diameter (HU/mm). With that
method and after analyzing the samples by IR-spectroscopy, anhydrous uric acid and ammonium
magnesium phosphate were identified as the compounds of kidney stones. Additionally, anhydrous
uric acid, magnesium ammonium phosphate, and calcium oxalate monohydrate were identified
via Hounsfield density calculation. The study identified HU ranges for stone compounds using a
systematic technique that avoids bias in its analysis. In addition, this work could contribute to the
timely diagnosis and development of personalized therapies for patients with this pathology.
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1. Introduction

Nephrolithiasis is a multifactorial disease characterized by the accumulation of crystals
that generate stones in the kidney [1]. The population of the Yucatan peninsula has the
highest prevalence of renal lithiasis in all Mexico (5.8 cases/10,000 inhabitants), and it is
higher in adult men (≥50 years old) compared with the rest of the population [2,3]. Timely
identification of stone composition has become a task for many researchers and clinicians,
so that they might develop optimal approaches, administer appropriate therapies, and
improve the life quality of patients. Recent studies of the Yucatan region suggest that the
stone composition is 71.3% oxalates and phosphates, but a general characterization has
still not been done; hence, this information would benefit clinical practice [4].

Computerized tomography (CT) is the gold standard in the diagnosis of kidney stones;
its sensitivity and specificity are high (~94% and ~97%, respectively), and small structures
around 1 mm can be identified [5]. Additionally, a CT scan identifies the number, shapes,
locations, and attenuation coefficients of the stones [6,7].

Hounsfield units (HU) are related to the density of the tissue or stone. HU are the result
of the linear X-ray attenuation scale, and an HU value is related to distilled water at normal
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pressure and temperature [8,9]. In addition, the relationship between the radiodensity of
the stone expressed in HU and the stone size can be considered a predictor of the kidney
stone composition. This measure is called Hounsfield density [10]. Several studies have
related the HU with the composition of kidney stones [8,11,12]. However, there is little
evidence about the relationship between the Hounsfield density and the composition of
kidney stones [10].

This study describes the implementation of a technique based on HU and Hounsfield
density to determine the compositions of kidney stones from patients with nephrolithiasis.

2. Materials and Methods

Thirty samples from ten patients with nephrolithiasis were included in an observa-
tional, transversal, and prospective study. The samples were from three parts of each
kidney stone (cortex, middle, and nucleus).

2.1. Selection of the Study Participants

The selection was performed by simple random sampling to calculate proportions
according to surgical procedures for nephrolithiasis in the host hospital (90% confidence
level, 10% margin of error).

Patients were selected according to the following inclusion criteria: patients over
18 years old, with nephrolithiasis in the renal pelvis confirmed by CT scan, and sched-
uled for stone extraction by conventional percutaneous nephrolithotomy. The surgical
procedures were performed with a fluoroscope through the renal pelvis. The nephroscope
enables the fragmentation and subsequent extraction of the renal stones in small parts
(samples). The samples were collected in three parts and labeled as cortex (the external part
of the stone), middle (the part between external and nucleus), or nucleus. It is important to
note that the surgeries were performed by the same urologist to avoid introducing bias in
the results. The urologist was assisted by a radiologist who was responsible for identifying
the accurate locations of the samples, controlling the direction of access of the nephroscope
through the renal parenchyma, and relating the samples obtained in surgery with the
tomographic images. Samples were cleaned with distillate water to remove the blood, and
were dried for 48 h at room temperature (Figure 1).
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Figure 1. Samples of the renal stones obtained from patients with nephrolithiasis through conven-
tional percutaneous nephrolithotomy. (A) Cortex. (B) Middle. (C) Nucleus. Scale bar: 3 mm.

2.2. Chemical Determination of the Renal Stone

Infrared spectroscopy (IR-spectroscopy) was performed using a Spectrum One with
condensed reflected light (PerkinElmer, Akron, OH, USA). The sample was analyzed in the
mid-infrared spectrum (4000–400 cm−1) to identify its chemical compounds.

2.3. Identification of the Samples by Tomography

A CT scan with a 64-detector row (General Electric Revolution, EVO) was used to
determine the HU in each sample. The CT settings were 5 mm of collimation parameters,
voltage of 120 kV, current of 180 mA, and cuts of 1.25 mm for all specimens. The images
were visualized with the RadiAnt DICOM viewer 4.6.9 software, using a soft tissue window
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for the abdomen with a window width 400 and window level 50. The attenuation values
were determined using a grid with 3 rows and 4 columns; each quadrant had a region of
interest (ROI) 3 mm in diameter. The specific ROI was identified using the superimposed
grid according to the images observed in the surgical procedure (Figure 2). The ROI
number was variable for each patient and depended on the sample size obtained during
the nephrolithotomy. However, in all cases, the superimposed grid was larger than the
sample (Figure 2B), ensuring that the entire sample was included within the grid. The
number of ROIs evaluated varied among the stones’ parts (cortex, middle, and nucleus)
due to the anatomical positions of the stones. In this context, we observed two or three
ROIs in each axial plane for the cortex, and the numbers of ROIs increased with the sample
size (Figure 2C). Therefore, the stone composition was determined by the HU of the specific
ROI and not the volume effect. To obtain all images, the superimposed grid was moved
axially every 1.2 mm and then each ROI was identified. The process of moving the grid in
each plane was similar for each part of the sample (cortex, middle, and nucleus) under the
same conditions. The Hounsfield density was calculated using the mean HU divided by
the greatest diameter of the sample. The greatest diameter was measured in the axial and
coronal planes with the maximum intensity projection (MIP) view. This procedure was
similar for each sample.
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Figure 2. Representative diagram of the systematic method to obtain the HU in the samples. (A). Renal stone after
percutaneous nephrolithotomy. (B). Sample (a small part of the stone) with the superimposed grid and moved in the axial
plane (every 1.2 mm). (C). Tomographic images, with superimposed grids, of a cortex, middle and nucleus, respectively.

2.4. Statistical Analyses

One-way ANOVA was implemented using Jamovi v1.1 software. Effect sizes (η2) and
Fisher’s statistic (F) were used when all components were compared. The Student’s t-test
(t) with Tukey correction for p-values and effect size (Cohen’s d) were used when two
compounds were compared; p < 0.05 was considered statistically significant.

3. Results

The samples were analyzed by IR-spectroscopy, and the results indicated that none of
the stones observed were ”pure” in their composition; they were all calculi with two or three
components. The IR-spectroscopy identified the stones as calcium oxalate monohydrate,
calcium oxalate dihydrate, apatite carbonate, magnesium ammonium phosphate, and
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anhydrous uric acid. However, in all cases, one of them had a higher concentration (≥60%),
and it was considered the “main” component of the sample.

Table 1 shows the relation of the predominant compound obtained by IR-spectroscopy
and the HU obtained by the CT scan through each grid′s ROIs (Figure 3A). Anhydrous
uric acid had a statistically significant difference compared with the rest of the compounds
(F4,25 = 4.83, η2 = 0.43, p = 0.005). In addition, the magnesium ammonium phosphate
compound showed a trend toward significance when compared with other compounds
(F4,25 = 3.59, η2 = 0.35, p = 0.061). Similar behavior was observed when the cortex, middle,
and nucleus were analyzed (Figure 3B).

Table 1. Comparison among compounds for HU and Hounsfield density.

HU Hounsfield Density

Compound Compared with t; d;
p-Value Compound Compared with t; d;

p-Value

Anhydrous uric
acid

Magnesium
ammonium
phosphate

1.25; 0.52; 0.050
Anhydrous uric

acid

Magnesium
ammonium
phosphate

1.30; 0.21; 0.050

Calcium oxalate
monohydrate 3.74; 1.42; 0.008 Calcium oxalate

monohydrate 3.10; 0.47; 0.034

Calcium oxalate
dihydrate 3.15; 1.18; 0.031 Calcium oxalate

dihydrate 3.50; 0.52; 0.014

Apatite carbonate 3.70; 1.38; 0.009 Apatite carbonate 2.97; 0.44; 0.046

Magnesium
ammonium
phosphate

Calcium oxalate
monohydrate 1.26; 0.85; 0.058 Magnesium

ammonium
phosphate

Calcium oxalate
monohydrate 1.55; 0.23; 0.050

Calcium oxalate
dihydrate 1.64; 0.61; 0.051 Calcium oxalate

dihydrate 1.92; 0.29; 0.031

Apatite carbonate 2.16; 0.81; 0.045 Apatite carbonate 1.37; 0.21; 0.064

Calcium oxalate
monohydrate

Calcium oxalate
dihydrate 0.86; 0.28; 0.906 Calcium oxalate

monohydrate

Calcium oxalate
dihydrate 0.44; 0.49; 0.058

Apatite carbonate 0.22; 0.07; 0.999 Apatite carbonate 0.31; 0.38; 0.045

Calcium oxalate
dihydrate Apatite carbonate 1.65; 0.61; 0.487 Calcium oxalate

dihydrate Apatite carbonate 0.71; 0.10; 0.931

t: Student’s t-test; d: Cohen’s d for effect size. Anhydrous uric acid (n = 3); magnesium ammonium phosphate (n = 3); calcium oxalate
monohydrate (n = 6); calcium oxalate dihydrate (n = 9); apatite carbonate (n = 9).

The spectral analysis of the compounds (Figure 4A) also showed that anhydrous uric
acid and magnesium ammonium phosphate were present, and their overlapping tails
show the mixed composition of the stone. Likewise, it was observed that calcium oxalate
monohydrate, calcium oxalate dihydrate, and apatite carbonate had overlapping spectra.

Hounsfield density was another result exhibiting similar behavior to HU. Hounsfield
density results showed a difference in anhydrous uric acid when compared with other
compounds (F4,25 = 3.76, η2 = 0.37, p = 0.016) (Table 1, Figure 3C,D). In addition, anhydrous
uric acid, magnesium ammonium phosphate, and calcium oxalate monohydrate were
identified in the Hounsfield spectra (Figure 4B).
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4. Discussion

Knowing the specific composition of renal stones has become a task for many re-
searchers and clinicians. HU is used for diagnosis and the possible prediction of a stone’s
composition [8,11]. However, many authors report different ranges for each compound. For
calcium oxalate monohydrate, authors have reported HU intervals of 496–1865, 1707–1925,
and 507–1639—Marchiñena et al., Zarse et al., and Gupta et al., respectively. For calcium
oxalate dihydrate, 1853–2536, 1416–1938, and 324–1015—Marchiñena et al., Zarse et al.,
and Gupta et al., respectively. For magnesium ammonium phosphate, 790–2143, 862–944,
and 549–869—Marchiñena et al., Zarse et al., and Gupta et al., respectively. For anhydrous
uric acid, 67–769, 566–632, and 347–512—Marchiñena et al., Zarse et al., and Gupta et al.,
respectively [11,13,14]. Differences in HU may depend on the study population used by
each author, the imaging procedures, and the analysis method used.

The common method to acquire HU from a sample is to select one axis plane, where
the most significant proportion of the stone is observed and draw a circular ROI (selecting
the maximum and perpendicular diameters). The HU obtained corresponds to the average
of the selected area [15]. These results are useful when the sample contains only one
compound; otherwise, the determination of the composition could be wrong due to the
presence of more than one compound within the same stone. Another disadvantage is that
the method is operator-dependent. Identifying the HU in each quadrant of the drawn grid
can be a good alternative, since the ROI obtained corresponds to a small area of the sample.
In addition to being a systematized procedure, it eliminates the operator bias (becoming
operator-independent).

No “pure” renal stone was found, meaning that we did not find stones with a single
composition; this may have been due to the study population. However, we identified that
calcium oxalate dihydrate was the predominant compound. This result agreed with that
reported by Villanueva-Jorge et al. for an endemic population [4].

Additionally, the anhydrous uric acid and magnesium ammonium phosphate were
identified in the HU ranges 367–556 and 540–693, respectively, in accordance with previous
publications [11,13,14].

The HU ranges for calcium oxalate monohydrate (783–1010), calcium oxalate dihydrate
(873–1218), and apatite carbonate (835–1034) were similar. Calcium oxalate monohydrate
and dihydrate are essentially the same; the only difference between them is one molecule
of water. Calcium oxalates and apatite carbonate showed similar HU ranges, possibly
due to their chemical structure. The X-ray attenuation in CT is due to the interaction of
a certain number of photons with the atoms in the medium. However, the method may
not be accurate due to the interactions with the stone’s rough surface. [16]. Wilson et al.
observed that the absorption bands corresponding to the C–O vibrations in calcium oxalate
stones were around 961 cm−1 [17]. Furthermore, Maurice-Estepa et al. reported that the
P–O vibrations of the apatite phosphate showed up at around 900–1100 cm−1 [18]. These
results may suggest that the overlap of these three compounds is due to inability of CT to
differentiate the vibrations of the atoms during the analysis of the compounds.

Hounsfield density showed less overlap between compounds. As described before,
peaks of anhydrous uric acid, magnesium ammonium phosphate, and calcium oxalate
monohydrate were identified, and these results were similar to those reported by Motley
et al. [10]. The importance of this measurement lies in the fact that it can predict the acute
composition of a stone through the density observed by CT scan (HU) and the calculus
size from the width of the ROI (HU/mm). Furthermore, the results can be accurate even
when the sample may be of heterogeneous composition.

Currently, the identification and treatment of kidney stones must have a multidisci-
plinary approach. In this context, it is necessary to know the tomographic characteristics
of the stones (location, size, number, and Hounsfield units) that can help the urologist to
make decisions. When the radiologist adequately identifies the compositions of the stones
through HU and the Hounsfield density, it can contribute to the specific treatment of a
patient with nephrolithiasis, either by surgical procedures or by pharmacological treatment,
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improving the quality of life of the patient and perhaps avoiding possible surgeries. As
mentioned before, in this work, the purpose was that the radiologist could use our method
for timely detection of these compounds, which will allow to the radiologist to make an
opportune diagnosis only using the HU obtained and the calculation of the Hounsfield
density.

In this study, the observer was only one radiologist who analyzed the HU for each
identified ROI to avoid bias by inter-observer variability. Nonetheless, one limitation of
this work was that the intra-observer variability was not considered. Other radiologists’
measurements could cause grid overlapping, and consequently, get HU measurements,
resulting in different compounds. However, we confirmed the determination of the com-
pounds through the reproducibility of the HU ranges. Thus, further studies that consider
inter and intra-observer variability are needed. Another limitation of the study is the
difficulty of measuring the ROIs of small objects. This effect could have been not only
due to the heterogeneous composition of such stones; rather, it also could have been due
to a reduction in the HU located around the border of the stone sample, leading to an
underestimation of the HU introduced by the surrounding pixels.

5. Conclusions

The study identified the HU ranges for anhydrous uric acid and magnesium am-
monium phosphate through a systematic technique that avoids bias when analyzing the
kidney stone compounds. Hounsfield density could help us to predict the compositions
of renal stones. It can objectively identify anhydrous uric acid, magnesium ammonium
phosphate, and calcium oxalate monohydrate. In addition, the technique contributes to
timely diagnoses, which should be helpful for developing targeted therapies and providing
guidance on the difficulty of endourological surgical procedures.
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