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Abstract: Upper urinary tract obstructions (UTOs) are blockages that inhibit the flow of urine through
its normal course, leading to impaired kidney function. Imaging plays a significant role in the initial
diagnosis of UTO, with anatomic imaging (primarily ultrasound (US) and non-contrast computed
tomography (CT)) serving as screening tools for the detection of the dilation of the urinary collecting
systems (i.e., hydronephrosis). Whether hydronephrosis represents UTO or a non-obstructive process
is determined by functional imaging (typically nuclear medicine renal scintigraphy). If these exams
reveal evidence of UTO but no discernable source, multiphase contrast enhanced CT urography
and/or dynamic contrast enhanced MR urography (DCE-MRU) may be performed to delineate
a cause. These are often performed in conjunction with direct ureteroscopic evaluation. While
contrast-enhanced CT currently predominates, it can induce renal injury due to contrast induced
nephropathy (CIN), subject patients to ionizing radiation and is limited in quantifying renal function
(traditionally assessed by renal scintigraphy) and establishing the extent to which hydronephrosis is
due to functional obstruction. Traditional MRI is similarly limited in its ability to quantify function.
DCE-MRU presents concerns regarding nephrogenic systemic fibrosis (NSF), although decreased
with newer gadolinium-based contrast agents, and regarding cumulative gadolinium deposition in
the basal ganglia. DCE-MR CEST urography is a promising alternative, employing new MRI contrast
agents and imaging schemes and allowing for concurrent assessment of renal anatomy and functional
parameters. In this review we highlight clinical challenges in the diagnosis and management of UTO,
identify key advances in imaging agents and techniques for DCE-MR CEST urography and provide
perspective on how this technique may evolve in clinical importance.
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1. Introduction

Upper urinary tract obstructions (UTOs) are blockages in the flow of urine that
result in dilation of the renal collecting system (hydronephrosis), (Figure 1A,B), impaired
glomerular/tubular function, renal injury, and, ultimately, irreversible loss of renal function.
The most common cause of acute UTO in adults is nephrolithiasis, with patients presenting
with unilateral flank pain secondary to an obstructing stone. Additional causes of upper
UTOs vary according to age and sex, urothelial malignancy, benign strictures and congenital
ureteropelvic junction (UPJ) obstruction. While an elevation in creatine and decrease in
eGFR may be observed, fulminant renal failure is rare in the setting of unilateral UTO and

Tomography 2021, 7, 80–94. https://doi.org/10.3390/tomography7010008 https://www.mdpi.com/journal/tomography

https://www.mdpi.com/journal/tomography
https://www.mdpi.com
https://orcid.org/0000-0001-7967-4080
https://orcid.org/0000-0002-4508-6747
https://doi.org/10.3390/tomography7010008
https://doi.org/10.3390/tomography7010008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/tomography7010008
https://www.mdpi.com/journal/tomography
https://www.mdpi.com/2379-1381/7/1/8?type=check_update&version=1


Tomography 2021, 7 81

the absence of pre-existing chronic kidney disease (CKD). These entities often have an
insidious presentation and may go undetected, leading to irreversible kidney damage. Thus,
the early identification of functional renal impairment is vital in prompting intervention
and the preservation of renal function.
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Figure 1. Coronal contrast enhanced CT (A) and retrograde pyelogram (B) depicting a hydronephrotic right kidney. Cor-
onal CT after nephroureteral stent (C) placement demonstrating resolution of hydronephrosis. Note the presence of an 
IVC filter (arrow). 

The treatment of upper UTOs depends on the cause of the obstruction and degree of 
renal impairment. For example, in the setting of nephrolithiasis, conservative manage-
ment is often the choice for small stones, as these spontaneously pass and rarely cause 
permanent functional impairment. Conversely, lithotripsy and stenting are the standard 
treatment for larger obstructing calculi. In other settings where hydronephrosis is present 
without significant functional impairment, treatment centers around addressing the un-
derlying etiology for UTO. UTO related to malignancy is typically managed surgically, 
irrespective of the degree of functional impairment. However, in some cases, the quanti-
fication may still play a role, particularly in determining the utility of intervening to pre-
serve a hydronephrotic kidney. When functional impairment/acute kidney injury (AKI) is 
secondary to partial or complete ureteral obstruction, percutaneous nephrostomy (Figure 
1C) and retrograde ureteric stenting are well-established choices for minimizing renal 
parenchymal injury and preserving renal function. While these treatments are generally 
safe and well-tolerated, they are not without risk and there is inherent morbidity related 
to the presence of urinary stents, which can become a nidus of infection. Furthermore, the 
presence of hydronephrosis, and even the documentation of a functional UTO, does not 
suggest whether damage from that UTO is reversible. Interventions are, therefore, under-
taken to alleviate obstructions without knowing if the intervention will actually improve 
kidney function. Finally, monitoring UTO after surgical intervention is a diagnostic co-

Figure 1. Coronal contrast enhanced CT (A) and retrograde pyelogram (B) depicting a hydronephrotic right kidney. Coronal
CT after nephroureteral stent (C) placement demonstrating resolution of hydronephrosis. Note the presence of an IVC
filter (arrow).

The treatment of upper UTOs depends on the cause of the obstruction and degree of
renal impairment. For example, in the setting of nephrolithiasis, conservative management
is often the choice for small stones, as these spontaneously pass and rarely cause permanent
functional impairment. Conversely, lithotripsy and stenting are the standard treatment for
larger obstructing calculi. In other settings where hydronephrosis is present without signif-
icant functional impairment, treatment centers around addressing the underlying etiology
for UTO. UTO related to malignancy is typically managed surgically, irrespective of the
degree of functional impairment. However, in some cases, the quantification may still play
a role, particularly in determining the utility of intervening to preserve a hydronephrotic
kidney. When functional impairment/acute kidney injury (AKI) is secondary to partial
or complete ureteral obstruction, percutaneous nephrostomy (Figure 1C) and retrograde
ureteric stenting are well-established choices for minimizing renal parenchymal injury and
preserving renal function. While these treatments are generally safe and well-tolerated, they
are not without risk and there is inherent morbidity related to the presence of urinary stents,
which can become a nidus of infection. Furthermore, the presence of hydronephrosis, and
even the documentation of a functional UTO, does not suggest whether damage from that
UTO is reversible. Interventions are, therefore, undertaken to alleviate obstructions without
knowing if the intervention will actually improve kidney function. Finally, monitoring
UTO after surgical intervention is a diagnostic conundrum. Interventions, such as ureteric
surgeries or even ureteric stents, are often associated with persistent hydronephrosis. In
the case of stents, such persistent hydronephrosis may or may not suggest incomplete
treatment and persistent obstruction. For UPJ obstruction, evidence of obstruction often
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persists on imaging even after a treatment is deemed successful by other subjective and
objective means. Such patients are at high risk for functional impairment given the prior
trauma to their renal unit, but detection is confounded by the abnormal appearance of
their kidneys. Ultimately, patients with residual hydronephrosis after surgical intervention
often undergo multiple repeated testing with varied modalities in an effort to catch further
renal deterioration early in its course. Due to limitations to current imaging modalities,
these efforts have unclear clinical efficacy [1,2].

Standard blood and urine-based laboratory tests, while vital to the assessment of
renal function, are somewhat limited in defining the reversibility of functional impairment
related to upper UTO. Estimations of the glomerular filtration rate (eGFR) derived from
serum creatinine measurements, as well as demographic and anthropomorphic informa-
tion, can determine how well the kidneys remove waste and excess fluid from the blood,
and are a highly cost-effective assessment of kidney function. Generally, an eGFR < 60
suggests renal impairment. Lower eGFR estimates may indicate worsening degrees of
renal failure, with eGFR < 15 indicating fulminant renal failure, requiring either dialysis
or transplantation. While these eGFR estimates are helpful in screening patients for renal
impairment, they indicate little about the chronicity of renal injury and the reversibility
of renal impairment in the setting of UTO. If prior eGFR measurements are available,
values can be trended, and if a precipitous drop in eGFR accompanies the development of
UTO/hydronephrosis, one can deduce a causal relationship. Generally, if the impairment is
relatively new, it can be surmised that the renal impairment is largely reversible. However,
in practice prior imaging and laboratory tests are often unavailable, and confounding fac-
tors ranging from medical illness, race [3], to hydration status may skew eGFR results [4].
Thus, in most instances the decision to intervene on UTO is often contingent on clinical
judgment rather than objective criteria.

2. Imaging Modalities

GFR and renal perfusion can be used for diagnosis of kidney diseases and monitoring
of treatment interventions. Measuring the clearance of exogenous markers in patient’s
blood is considered to be the gold standard for GFR measurement. A number of imag-
ing options are available for patients with suspected UTOs, including ultrasound, X-ray
(including intravenous urography (IVU)), computed tomography (CT), nuclear medicine
renography, and magnetic resonance imaging (MRI) (Figure 2). We review the current
clinically available options first.

Tomography 2021, 7, FOR PEER REVIEW 3 
 

 

nundrum. Interventions, such as ureteric surgeries or even ureteric stents, are often asso-
ciated with persistent hydronephrosis. In the case of stents, such persistent hydronephro-
sis may or may not suggest incomplete treatment and persistent obstruction. For UPJ ob-
struction, evidence of obstruction often persists on imaging even after a treatment is 
deemed successful by other subjective and objective means. Such patients are at high risk 
for functional impairment given the prior trauma to their renal unit, but detection is con-
founded by the abnormal appearance of their kidneys. Ultimately, patients with residual 
hydronephrosis after surgical intervention often undergo multiple repeated testing with 
varied modalities in an effort to catch further renal deterioration early in its course. Due 
to limitations to current imaging modalities, these efforts have unclear clinical efficacy 
[1,2]. 

Standard blood and urine-based laboratory tests, while vital to the assessment of re-
nal function, are somewhat limited in defining the reversibility of functional impairment 
related to upper UTO. Estimations of the glomerular filtration rate (eGFR) derived from 
serum creatinine measurements, as well as demographic and anthropomorphic infor-
mation, can determine how well the kidneys remove waste and excess fluid from the 
blood, and are a highly cost-effective assessment of kidney function. Generally, an eGFR 
< 60 suggests renal impairment. Lower eGFR estimates may indicate worsening degrees 
of renal failure, with eGFR < 15 indicating fulminant renal failure, requiring either dialysis 
or transplantation. While these eGFR estimates are helpful in screening patients for renal 
impairment, they indicate little about the chronicity of renal injury and the reversibility of 
renal impairment in the setting of UTO. If prior eGFR measurements are available, values 
can be trended, and if a precipitous drop in eGFR accompanies the development of 
UTO/hydronephrosis, one can deduce a causal relationship. Generally, if the impairment 
is relatively new, it can be surmised that the renal impairment is largely reversible. How-
ever, in practice prior imaging and laboratory tests are often unavailable, and confound-
ing factors ranging from medical illness, race [3], to hydration status may skew eGFR re-
sults [4]. Thus, in most instances the decision to intervene on UTO is often contingent on 
clinical judgment rather than objective criteria. 

2. Imaging Modalities 
GFR and renal perfusion can be used for diagnosis of kidney diseases and monitoring 

of treatment interventions. Measuring the clearance of exogenous markers in patient’s 
blood is considered to be the gold standard for GFR measurement. A number of imaging 
options are available for patients with suspected UTOs, including ultrasound, X-ray (in-
cluding intravenous urography (IVU)), computed tomography (CT), nuclear medicine re-
nography, and magnetic resonance imaging (MRI) (Figure 2). We review the current clin-
ically available options first. 

 
Figure 2. Different imaging modalities of kidney including right renal ultrasound (A), coronal non-contrast CT (B) and 
contrast enhanced MRI (C) demonstrating unilateral hydronephrosis. Note the presence of obstructing proximal uretal 
stones in the CT (arrow). 

  

Figure 2. Different imaging modalities of kidney including right renal ultrasound (A), coronal non-contrast CT (B) and
contrast enhanced MRI (C) demonstrating unilateral hydronephrosis. Note the presence of obstructing proximal uretal
stones in the CT (arrow).

2.1. Ultrasound-Based Urography

Renal ultrasound, which is fast, noninvasive, and easily accessible, is widely used
in the initial evaluation of the urinary system (Figure 2A). Renal ultrasound can be used
to assess the size, shape, and location of the kidneys, and look for the presence of hy-
dronephrosis, a sensitive-but-not-specific sign of UTO. As with other anatomic imaging
modalities, renal ultrasound can identify the presence of hydronephrosis but cannot gen-
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erally determine if that hydronephrosis is due to a UTO or a non-obstructive pathology.
Increases in renal cortical echogenicity, assessed relative to the liver if the right kidney is
in situ, are generally indicative of underlying medial renal disease. Furthermore, in most
instances, renal masses and stones are also evident. Nonetheless, definitively identifying
the etiology of a UTO based on ultrasound is often challenging because of several inherent
limitations [5,6]: (1) acquisition and interpretation of ultrasound images depends on the
operator; (2) renal ultrasound cannot visualize the full length of the ureter unless it is
significantly dilated; (3) the resolution and tissue penetration depth are not sufficient to
detect smaller pathological defects. Even with these drawbacks, ultrasound is still used as
a valuable first-line investigation to rule out obstructive nephropathy in patients presenting
with laboratory evidence of acute kidney injury (AKI) [7] and/or suggestive symptoms.
Additionally, contrast-enhanced ultrasound (CEUS) using microbubbles is an emerging
technique increasingly employed for imaging of the kidneys. At this stage, CEUS is primar-
ily used for the evaluation of renal masses, although it has also shown promise in assessing
renal perfusion.

2.2. X-ray Based Urography

Intravenous and retrograde urography have been mainstays for renal imaging prior to
the advent of cross-sectional imaging. In X-ray urography the urinary system is opacified by
iodinated contrast, which is administered intravenously and excreted or retrograde via foley
catheter [8]. While reliably detecting hydronephrosis (Figure 1B), X-ray urography provides
limited sensitivity in detecting many important urological pathologies, most notably small
urothelial lesions and renal masses. Furthermore, while IVU may demonstrate delayed
excretion, indicating functional impairment, improved diagnostic accuracy can be achieved
with newer imaging methods, including CT and MRI.

2.3. Computed Tomography

Computed Tomography (CT), which utilizes a helical array of X-rays to produce
volumetric tomographic images, has largely supplanted IVU in the assessment of UTOs
(Figure 2B). CT provides excellent spatial and contrast resolution and utilizes iodinated
agent contrast, effectively delineating the kidneys, collecting systems, ureters, and blad-
der [9–12]. Unenhanced CT, while lacking the contrast resolution of a multi-phasic contrast
enhanced exam, is nonetheless effective in identifying hydronephrosis, and is the stan-
dard bearer for detection of radiodense stones. The presence of hydronephrosis, without
a discernable cause, is often further assessed with multi-phasic CT. By obtaining non-
contrast, corticomedullary (approximately 30 s), nephrographic (60 s), and delayed phases
(5–8 min), one can identify otherwise occult causes of UTO, most notably renal/urothelial
tumors. Furthermore, the persistence of nephrographic appearance in the hydronephrotic
kidney and absent or reduced contrast excretion indicates accompanying functional im-
pairment, although again the degree of impairment cannot be reliably quantified. Further,
hydronephrosis on CT can indicate either UTO or non-obstructive pathology, and in many
cases the distinction cannot be determined based only on imaging findings. Radiation
exposure is an important limitation of CT, as well as contrast-induced nephropathy (CIN)
by iodine contrast media, which present risks for patients with impaired kidney function.
Despite these limitations, CT remains a mainstay of renal imaging.

2.4. Nuclear Scintigraphy

Nuclear scintigraphy is currently the gold standard for the assessment of differential
kidney function and for evaluating UTOs. The fundamental reason for the predominance of
nuclear medicine scintigraphy in evaluating UTOs is the ability to differentiate a patulous
renal collecting system from an obstructive uropathy [13]. This approach is based on time
resolved planar imaging of the kidneys after intravenous administration of a radiotracer
that is either filtered (99mTc-diethylene triamine pentacetic acid, 99mTc-DTPA) or secreted
by the tubules (99mTc-mercapto acetyl triglycine, 99mTc-MAG3). As such, nuclear medicine
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scintigraphy is fundamentally based on physiology and not anatomy. In cases in which a
patient has evidence of hydronephrosis from anatomic imaging, the patient should undergo
nuclear medicine scintigraphy in order to determine whether the hydronephrosis is due to
a UTO or a result of non-obstructive pathology. In fact, 99mTc-MAG3 is particularly useful
due to its mechanism of clearance being tubular secretion-based; as a result, it is usable
even with depressed eGFR due to renal dysfunction [13].

Scintigraphic evaluation can be enhanced by use of Lasix as a diuretic. In situations
in which the clearance of radiotracer from the renal collecting systems is slow or absent,
Lasix can be administered in order to increase the production of urine and overcome any
intrinsic patulousness in the system. If a hydronephrotic collecting system clears rapidly
after administration of Lasix, the system is dilated but not obstructed. If, on the other hand,
the system clears slowly or not at all (Figure 3), the findings are indicative of functional
obstruction. This use of physiology to discern the nature of hydronephrosis is unique
among currently available imaging techniques. However, this technique suffers from low
spatial resolution and does not provide detailed anatomic information; therefore, a cause
of UTO may not be appreciated. Renal scintigraphy is sensitive to patient details and does
involve ionizing radiation—therefore, it can have limitations in use in pediatrics [13].
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Figure 3. MAG-3 renogram and time activity curve of the patient with obstructing ureteral calculi depicted in Figure 2B.
Note the marked asymmetrically decreased right renal counts and decreased and prolonged clearance, confirming the
presence of obstructive uropathy and indicating significant functional impairment.

2.5. Magnetic Resonance (MR) Based Urography

MR urography is an alternative technique for the detection of urothelial lesions and
strictures. MRI utilizes magnetic fields and radiofrequency pulses without imparting
ionizing radiation and displays soft tissue contrast due to differences in water density and
relaxation. Two MR urography methods are currently employed: static-fluid MR urography
and excretory Dynamic Contrast Enhanced MR urography (DCE-MRU). Static-fluid MR
urography exploits the long transverse relaxation times (T2) of urine, with heavily-fluid
weighted sequences that suppress short T2 proton signals with long echo times, typically
acquired using single-shot fast spin-echo (SS-FSE) and half-Fourier single-shot spin echo
(HASTE) sequences to provide outstanding visualization of the urinary tract. This is of
particular concern in UTO, where an obstructed kidney may generate little urine. Further-
more, dynamic cinematic acquisitions can be obtained, allowing areas of ureteral peristalsis
to be distinguished from fixed stenoses. Excretory DCE-MRU urography currently re-
lies on excreted MRI imaging agents (mainly based on gadolinium) to generate signal
changes within the collecting system (fat suppressed T1 acquisition, typically obtained
using gradient-echo techniques). Both MRU approaches avoid use of ionizing radiation
and pose no risk of CIN, which are advantages over CT. They have none of the technical
limitations of US. Static fluid sequences do not require administering gadolinium contrast,
avoiding concerns related to NSF and cumulative gadolinium deposition. As shown in
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Figures 2C and 4, the resulting images possess better soft tissue contrast compared to
other modalities. In practice, static and DCE-MRU are often employed in tandem with
accompanying multiphasic imaging of the kidneys and/or bladder.
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Figure 4. Excretory phase CT (A) and MRI (B) demonstrating normal caliber renal collecting systems
without filling defect. Note the absence of signal in the left lower pole (arrow) corresponding to a
renal cyst.

3. The Emergence of New DCE-MRU Technologies

A number of new strategies have been identified for using DCE-MRU to measure
renal perfusion [14–21]. DCE-MRI is contingent on renal function, and similar to CT, it
can reveal renal functional impairment, although unlike CT it is possible to acquire many
time points to more accurately quantify functional impairment. Currently, gadolinium-
based contrast agents (GBCA) are the most widely used agents which rely on reducing
the T1 of neighboring water molecules to impart signal changes [22–25]. Rapid multi-slice
methods to extract contrast kinetics have been developed for the comprehensive assess-
ment of kidney function [19,23,24,26–28]. Administering GBCAs can provide functional
characterizations of obstructions [29–31] and for moderately dilated renal collecting sys-
tems, the MRI measurement of split renal function was proven to be equivalent to renal
scintigraphy whereas for severely dilated kidneys there was an underestimate of split renal
function [32]. Another retrospective study with a larger set of patients found limitations in
the precision of GBCA determinations of split renal function [33]. To offset these limitations
found using GBCAs, alternative imaging agents can be applied including: 19F imaging
agents [34], hyperpolarized 129Xe imaging agents [35], hyperpolarized 13C spectroscopic
imaging agents [36] and CEST contrast agents [37]. Fain and colleagues demonstrated the
power of hyperpolarized 13C pyruvate for the evaluation of partial ureteral obstruction in
mouse models, showing that differences in pyruvate metabolism for obstructed and unob-
structed kidneys can be seen using this imaging agent [36]. However, chemical exchange
saturation transfer (CEST) contrast agents represent a particularly promising technology
due to their capabilities of detect changes in metabolism, perfusion and pH [38] which
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we will discuss further below. With all these MR imaging agents displaying promise in
preclinical studies, DCE-MRI of the kidneys is a vibrant and active area of investigation.

3.1. DCE-MR CEST Urography

CEST has emerged as an MRI contrast mechanism that can be used to detect small
amounts of contrast agent through an amplified detection of low concentration protons (on
the order of low mM) through their exchange with water [38]. Based on the early work of
Cerdan, Gillies, Sherry, Bhujwalla and colleagues, pH imaging is an emerging field [39–46].
This includes the outstanding work of Andreev, Reshetnyak, Lewis, Gao and colleagues
developing both fluorescent and PET probes to detect low pH environments [47–51].
CEST MRI is now one of the premier imaging methods for the measurement of pH due
to proton chemical exchange being sensitive to acid-base equilibrium, the development
of ratiometric methods for distinguishing changes in agent concentration from changes
in pH, and the amplified detection of these agents compared to spectroscopy [52–67].
Traditional CT and MR urography, while effective at characterizing upper tract function,
cannot reliably quantify renal function, often requiring subsequent renal scintigraphy
exams. Conversely, CEST MRI can characterize urinary tract obstruction and function
simultaneously, generating pH maps in addition to traditional time activity curves seen
on renal scintigraphy. The novel ability of CEST imaging to measure pH is of particular
import, as renal functional impairments are often associated with a urinary acidification
defect caused by diminished net H+ secretion and/or HCO3

− reabsorption. While this
can be assessed systemically through measurement of urine pH, using MR to image
tubular pH can best assess whether a patient is experiencing functional decline in their
obstructed renal unit, quantify the amount of renal functional impairment, and even
assess whether this functional impairment is reversible (thus potentially benefiting from
intervention) or irreversible. Additionally, in the case of urolithiasis, pH is relevant due to
its relationship with stone formation, with urine acidification or alkalization employed as
treatments depending on the stones’ constitution. Hence, CEST imaging is of interest in
the evaluations of upper UTOs not only due to efficiency, but the ability to provide novel
functional information to inform clinical therapy.

The triiodobenzenes iopamidol (ISOVUE®, Figure 5A) and iopromide were the first
agents with particular promise identified for CEST imaging of the kidneys [66,68]. These
are safe, nonionic molecules that have been in clinical use for over 30 years as X-ray contrast
agents and administered at very high doses (up to 400 mg/mL). They both also have two
exchangeable amide proton resonances (for iopamidol 4.2 ppm and at 5.5 ppm downfield
from the water signal, Figure 5B) that produce pH-dependent CEST contrast. Ratiometric
methods for pH assessment have been developed based on comparison of the signals at the
frequencies of these two amide proton resonances to measure pH within the range of 5.5 to
7.4. Longo and colleagues evaluated if iopamidol-based CEST MR could be used to detect
the recovery of kidney function in an ischemia reperfusion acute kidney injury (AKI) rodent
model using two metrics: renal perfusion and renal pH [69]. A return to normal perfusion
and pH values was observed by Day 7 for moderate lengths of ischemia induction, whereas
a persistent drop in the perfusion of contrast agent and increase in renal pH was observed
for longer induction times (Figure 5C,D). Our group evaluated if iopamidol-based CEST
MR could be used to detect progression in chronic kidney disease (CKD) in a the methyl
malonic acidemia (MMA) model [70]. This was investigated using four groups of mice:
healthy controls on a regular diet (RG Mu+/−) and high protein diet (HP Mu+/−), mild
kidney disease mice kept on a regular diet (RG Mu−/−), and severe kidney disease mice on
a high protein diet (HP Mu−/−). Both RD and HP Mu+/− controls displayed homogeneous
pH values of 6.5 and excellent kidney perfusion of agent (~100%) while, in contrast, RD
Mu−/− mice displayed a lower average pH (~6.1) and perfusion (~79%) and an order of
magnitude larger range of pH values in the kidneys (±0.2). Furthermore, HP Mu−/− mice
displayed a slightly lower pH (~6.0), substantially lower perfusion (~15%) and significantly
larger range of pH values (±0.45). We have further tested iopamidol-based CEST MR on a
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complete unilateral urinary obstruction (UUO) mouse model. As shown in Figure 6, there
are, again, changes in both iopamidol perfusion, average pH and range in pH values could
be visualized. Other important work has been performed to improve the imaging protocols
and establish these agents on different models of kidney disease and for tumor imaging
as well [37,56,71,72]. The results have demonstrated that iopamidol-based CEST MRI pH
mapping is promising for monitoring of renal function, allowing for an early detection of
the occurrence of renal pathology and distinguishing moderate from severe AKI.
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Other agents have also shown promise for kidney imaging. For example, Sherry and 
colleagues performed in vivo pH imaging of mouse kidneys using a frequency-dependent 
lanthanide-based CEST agent [73]. Other agents tested include urea and phosphocreatine 
[74,75]. Our group has synthesized imidazole CEST imaging agents including Imidazole-
4,5-dicarboxamide-di Glutamate (I45DC-diGlu) [76], and, as is shown in Figure 7, seems 

Figure 5. Iopamidol as pH imaging agent tested in mice. (A) Structure of iopamidol with exchange-
able protons highlighted, which produce CEST contrast at 4.2 and 5.5 ppm; (B) CEST Z-spectra of
iopamidol in blood serum for pH = 5.3, 6.1, 6.5, 6.9, and 7.3. Panels (C,D) adopted from Pavuluri
et al. in [70]; Representative anatomical (T2w) and superimposed color-coded pH maps obtained
15 min after Iopamidol injection at indicated time points in control group (C) and in AKI group (D).
Panels (C,D) adopted from Longo et al. in [69].

Other agents have also shown promise for kidney imaging. For example, Sherry
and colleagues performed in vivo pH imaging of mouse kidneys using a frequency-
dependent lanthanide-based CEST agent [73]. Other agents tested include urea and
phosphocreatine [74,75]. Our group has synthesized imidazole CEST imaging agents
including Imidazole-4,5-dicarboxamide-di Glutamate (I45DC-diGlu) [76], and, as is shown
in Figure 7, seems particularly promising for evaluating UTOs. This agent is well suited
for ratiometric pH imaging on 3 Tesla scanners with two labile protons with large chemical
shifts that produce strong pH sensitive contrast (Figure 7A,B). Figure 7C,D display higher
kidney contrast and a larger difference in split renal contrast than seen using iopamidol. A
number of well-tolerated medications have been developed based around imidazoles [77],
including for treatment of cancer [78], ulcers [79,80], hypertension [81] and as antihis-
taminic drugs [82] which is encouraging for translating imidazole MRI contrast agents. We
expect that one of the CEST agents mentioned above, or perhaps one not yet discovered,
will prove outstanding for functional DCE-MR CEST urography of UTOs.
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Figure 6. Imaging UUO in mice using iopamidol CEST MRI; (A) Representative T2w and CEST
MRI contrast maps at 4.2 ppm on a UUO mouse with right kidney obstructed on day 0 and 2 post
surgery with iopamidol dose = 1 g I/kg, B1 =4 µT, 2 offset protocol, as in reference [70], to minimize
pH mapping time and allow averaging for the production of high contrast to noise ratio (CNR)
motion artifact compensated CEST maps; Dynamic CEST images were acquired at offsets 4.2, 5.5 ppm
repeatedly for 80 min using a CW RF saturation of duration 2.1 s (7 rectangular block pulses each of
300 ms with 10 µs interpulse delay). TE/TR = 3.55/11,000 ms; Rapid Acquisition with Relaxation
Enhancement with short echo time (RAREst) acquisition module and centric encoding were used. In
total, 10 sets of M0 offsets at 40 ppm were acquired for normalization. Time interval between two
dynamic CEST images was 44 s. Moving time average of 10 dynamic CEST images was performed to
compensate the motion induced artifacts in CEST contrast with the B1 employed rendering the maps
sufficiently insensitive to the B0 homogeneity across the kidneys shown in the B0 maps as described
in reference [70]. The images depict differences in marker perfusion for left and right kidneys due
to hydronephrosis and resulting functional impairment; (B) pH maps using images acquired 5 min
after iopamidol administration. pH was calculated using the ratio of CEST contrast at 4.2, 5.5 ppm
and the calibration curve obtained using the iopamidol phantom at pH values between 5.3 and 7.3;
(C) Parenchymal contrast histograms which display reduced contrast for obstructed kidney cortex
and a larger variation in contrast for the obstructed kidney calyx; (D) pH histograms which display
an increase in ∆pH over time after UUO first in obstructed kidney and later in unobstructed kidney
which is similar to what was observed in MMA induced CKD in mice.
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Figure 7. Imaging unilateral urinary obstruction in mice using Imidazole CEST MRI agent;
(A) Imidazole-4,5-dicarboxamide-di Glutamate (I45DC-diGlu) structure; (B) Experimental MTRasym

spectra for I45DC-diGlu as a function of pH tsat = 3 s,ω1 = 6.0 µT, 37 ◦C; (C) in vivo kidney images;
Experimental conditions: tsat = 3 s, ω1 = 6.0 µT. Dynamic CEST images were acquired using the
same 2 offset CEST protocol described in Figure 6 for Iopamidol. Two CEST images at offsets 4.3
and 7.5 ppm were acquired repeatedly for a total time of 76 min and 10 set of M0 images at offset
40 ppm were collected. Time interval between two dynamic CEST images was 44 s; (D) Average
parenchymal contrast for obstructed and non-obstructed kidney.

3.2. CEST MRI at 3T Using Iopamidol

At this stage, all of the major clinical scanner vendors have sequences for performing
CEST imaging, allowing for the translation of pH imaging to patients [83–87]. Based on
the success of our studies in mice, we prepared an iopamidol phantom at several pH
values in serum and moved to establishing a CEST imaging protocol on our 3T Philips
Achieva scanner (Philips Healthcare Solutions, Amsterdam, NL, USA) to test how well we
could create pH maps. Example data are shown in Figure 8. As is shown, pH mapping
could be performed over the range of 5.9 to 7.3 on our scanner; however, below this
pH the performance was not ideal. Based on this, we injected iopamidol into our first
healthy subject (Isovue 300, 90 mL injection volume) and observed ~4% contrast across both
kidneys which was strong enough to enable generation of our first pH maps on a human
subject (Figure 8D). Improvements in imaging protocol and post processing are currently
being implemented and are expected to yield higher contrast to noise ratio pH maps. These
results indicated that DCE-MR CEST urography is very promising for translation into
patients with UTOs.
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Figure 8. Example of ratiometric measurement of pH using 25 mM iopamidol in blood serum at 3 T using B1 = 2 µT,
(A) CEST z-spectra at pH = 5.7, 6.1, 6.5, 6.9 and 7.3 acquired for 63 offsets between −4 and 6 ppm; (B) pH maps of phantom;
(C) T2 image of the abdomen in first healthy subject; (D) pH map of the kidneys after injection of iopamidol. CEST data
were acquired for 18.9 min using tsat = 2 s,ω1 = 1.5 µT and TR = 6 s, at repeated offsets = 20,000, 6.1, 5.6, 5.1, 4.6 and 4.1 ppm,
respectively. CEST contrast at 4.6 and 5.6 ppm was used for pH calculation. This set of offsets was necessary to partially
compensate for the B0 homogeneity shown in the B0 maps across the kidneys on this scanner.

4. Conclusions

Early diagnosis and treatment of UTOs can salvage kidney function. CE-MRI methods
have shown great potential for the evaluation of kidney function, especially CEST MRI,
which can evaluate renal perfusion, quantify contrast enhancement, and effect pH mapping,
which can provide more detailed information for the kidneys. In the case of upper UTOs
the hope is that these new technologies might enable earlier detection of whether there
is functional renal impairment and if interventions will preserve renal function. CEST
MRI also shows the potential to evaluate kidney function. If CEST MRI contrast agents
could provide more information that relates to renal functional impairment, DCE-MR CEST
urography might become more mainstream for the assessment of upper UTOs [24] and be
used in the clinic for assisting in decision making regarding treatment for patients with
kidney diseases.
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