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The diagnosis of patients with suspected angiomyolipoma relies on the detection of abundant macro-
scopic intralesional fat, which is always of no use to differentiate fat-poor angiomyolipoma (fp-AML)
from renal cell carcinoma and diagnosis of fp-AML excessively depends on individual experience.
Texture analysis was proven to be a potentially useful biomarker for distinguishing between benign
and malignant tumors because of its capability of providing objective and quantitative assessment of
lesions by analyzing features that are not visible to the human eye. This review aimed to summarize the
literature on the use of texture analysis to diagnose patients with fat-poor angiomyolipoma vs those
with renal cell carcinoma and to evaluate its current application, limitations, and future challenges in
order to avoid unnecessary surgical resection.

INTRODUCTION
Renal angiomyolipoma (AML) containing smooth muscle cells,
dysmorphic blood vessels, and adipose tissues (1, 2), is the most
common benign solid renal tumor observed in clinical practice
(3), most of which can be easily diagnosed by means of conven-
tional computed tomography (CT) and magnetic resonance imag-
ing (MRI) that can detect abundant macroscopic intralesional fat
(4–6). Approximately 5% of renal AMLs have too little fat to be
detected with either CT or MRI, making it difficult to differentiate
fat-poor angiomyolipoma (fp-AML) from renal cell carcinoma
(RCC) (7–9), a subtype of AML termed fp-AML or AML without
visible fat. Fp-AMLs are the most frequent benign renal masses
subjected to unnecessary surgery (10, 11). A variety of methods
were proposed to differentiate fp-AML from RCC, such as angular
interface, high attenuation of lesions at unenhanced CT, and
strongly prolonged enhancement (12–14). However, these imag-
ing findings showed insufficient specificity, inconsistent repro-
ducibility, or inadequate prospective reliability (3, 15). The
differentiation between benign and malignant tumors is of
essential importance for the decision of proper treatment, but the
diagnosis of fp-AML is challenging, time-consuming, and de-
pendent much on the experience of individual radiologists.

As a branch of radiomics, quantitative texture analysis is
an emerging technology that extracts and evaluates features
from digital images, detects subtle changes and heterogene-
ity beyond human vision, and provides an objective method
by analyzing the intensity, distribution, and relationship of
pixel gray levels within a digital image (16). As an objective
assessment of lesions, texture analysis assesses tumor hetero-
geneity and may reflect information about tissue characteris-
tics (17, 18); this method was proven by a number of studies
to be a potentially useful biomarker for the diagnosis, thera-
peutic response, and prognosis of colorectal, lung, esopha-
geal, hepatic, and head and neck cancers (19–24). In recent
years, several studies focusing on differentiating fp-AML from
RCC have provided new approaches with high accuracy, sensitiv-
ity, and specificity by using CT texture analysis (CTTA) and
machine learning as noninvasive methods. However, clinical
urologists remain unfamiliar with the value of quantitative CTTA
and machine learning in differentiating fp-AML from RCC,
although CTTA is a promising biomarker. In this paper, the basic
concept of texture analysis, its workflow, and application in the
differentiation between fp-AML and RCC were provided, and we
will discuss its current challenges and future development. This
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new technique may be beneficial to avoiding unnecessary surgi-
cal resection.

TEXTURE ANALYSIS: BASIC CONCEPT AND
METHODOLOGY
In general, the basic workflow of CTTA includes image acquisi-
tion, segmentation, feature extraction, feature selection, statisti-
cal analysis, and classification (Figure 1).

CT Technique and Image Acquisition
Images of patient can be collected by the computerized search of
picture archiving and communication systems. Patient character-
istics are listed in Table 1, and study characteristics are listed in
Table 2. No limits are set on CT image acquisition protocols. The
standardization of protocols across medical imaging centers is
typically lacking, which, however, is not a problem in the con-
ventional identification of radiologic features used in clinical
practice (25). Digital Imaging and Communications in Medicine
format images were more popular for storage and analysis by
articles that we were interested in, and most of the software
available can handle this format of data. CT is the first-line imag-
ing examination for the characterization of renal masses because
of its good sensitivity and specificity (26, 27). As a result, CTTA
is more convenient for texture analysis of renal masses in clinical
practice. It is worth noting that images from different scanners
may increase variability in the values of features calculated from
CT images, and consideration should be given to striking a bal-
ance between the sufficient number of patients and data homo-
geneity (28).

Tumor Segmentation and Feature Extraction
Segmentation is of critical importance for images to be analyzed
because subsequent feature data are generated from the region
of interest (ROI) segmented from surrounding tissues (25).
Various kinds of open-source software were developed to com-
pute ROIs. Although this is a time-consuming work and a semi-
automated approach was proven to be a quick method that can
reduce the interobserver variability (29), most studies chose

manual segmentation delineated by experienced radiologists.
Notably, ROIs should be drawn at a distance of 2–3 mm from the
tumor margin to minimize the partial volume effects of para-
tumor renal parenchyma and perinephric fat (3, 30, 31). To be
specific, some studies delineated lesions on enhanced CT
images and applied and adjusted them in other phases to ac-
quire the accurate ROI of each phase or took enhanced CT
images as a reference (5, 32).

The core of radiomics is to extract feature data to quanti-
tatively describe the attributes of ROIs. A variety of software
packages, commercial and open-source, are available for
researchers to extract features from delineated images. MaZda
(3, 5), Pyradiomics (30, 32), in-house software MATLAB (33,
34), IBEX (35, 36), and TexRAD (37–39) were used to evaluate
quantitative texture parameters in ROIs. Statistical-, model-,
and transform-based methods were used for texture analysis;
among these, statistical-based ones are the most commonly
used to describe the relationship of gray-level values within
an image (40).

This kind of features extracted from images is subdivided
into 3 types, namely, first-, second-, and higher-order fea-
tures. Specifically, first-order features evaluate the gray-level
distribution from the pixel intensity histogram in an ROI,
including mean intensity, skewness entropy, uniformity,
threshold, kurtosis, and standard deviation (16). Second-order
features focus on the image pattern of the spatial relationship
or cooccurrence of pixel values in the ROI, including entropy,
contrast, energy, and homogeneity. Gray-level cooccurrence
matrix and gray-level run-length matrix are the 2 most com-
mon methods (40). Aiming to analyze the relationship between
pixels (�3), higher-order features are less analyzed and used
in studies.

Feature Selection, Statistical Analysis, Modeling, and
Classification
Features extracted from ROIs may be large in number, and they
will not contribute equally and are not even relevant to differenti-
ate fp-AML from RCC. Feature selection is of essential importance

Figure 1. Basic workflow of texture analysis.
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to select optimal features and avoid overtraining with a poor out-
come. Generally, the number of texture features calculated from
images is much larger than the sample size of patients. Hence, the
reduction of dimensionality may be important to reduce the risk
of type I errors and overfitting (41).

Different from traditional statistical methods, machine
learning classifiers are performed to process data. Machine learn-
ing can be defined to enable computers to make predictions
based on past experience. As a branch of artificial intelligence, it
has advanced rapidly in the past decade with the development of
computational resource. In some fields other than medicine, such
as natural language processing and traffic volume prognosis,
machine learning plays a central role. Various kinds of difficult
tasks such as diagnosis, prognosis, and response of therapy have
been solved using this new technology (42–47). This objective
technique has no subjective disadvantage and can process tre-
mendous medical data. Although it helps radiologists deal with
complex problems, it has caught few urologists’ attention. The
final goal of machine learning in these studies is to obtain an
effective diagnostic model including multiple relevant parame-
ters with high accuracy to differentiate fp-AML from RCCs.
Support vector machine (SVM) is the most common method in
these studies, along with logistic regression (LR), k-nearest
neighbors, and random forest. Despite the various methods, the
performance of machine learning was always evaluated by re-
ceiver operating characteristic curve and accuracy in clinical
tasks (48).

DISCUSSION
The results of univariate and multivariate analyses are listed in
Table 3.

Univariate Analysis
The univariate analysis was performed with traditional statistical
method, for both first- and second-order features. Despite the
variability in texture analysis, entropy showed promising results
in differentiating fp-AML from RCC (5, 31, 33, 49–51). Hodgdon
et al. conducted research on unenhanced CT images and claimed
that RCC can be characterized by a higher level of entropy than
fp-AML (P � .01) (5). Similar result was reported by You et al.,
who found a higher degree of entropy dissimilarity and a lower
degree of energy and homogeneity in clear cell RCC in the corti-
comedullary phase (33). Deng et al. observed that entropy >5.62
had a high specificity of 85.7% for predicting RCC but has a sen-
sitivity of 31.3% (51). Previous studies suggested that higher
lesion entropy was a strong predictor of RCC, and greater entropy
was consistently observed in RCC compared with fp-AML.
Entropy measured the complexity or disorder of images and rep-
resented the heterogeneity of tumors (31). In addition to entropy,
RCC was labeled with a higher degree of dissimilarity and a lower
level of lesion homogeneity.

Multivariate Analysis
Multivariate analysis was performed to accurately differentiate
RCC from fp-AML. Machine learning, the core of artificial

Table 1. Patient Characteristics E

Study Patients

Renal Masses Age (Year) Tumor Size (mm)

No. of
Masses

No. of
Fp-AML

Renal Cell Carcinoma

AML RCC AML RCCccRCC pRCC chRCC Others

Hodgdon
et al. (5)

100 100 16 51 13 20 0 53 6 12 59 6 13 18 6 13 24 6 9

Takahashi
et al. (49)

153 172 24 98 36 14a 53 6 14 60 6 12 15 6 7 21 6 8

Feng
et al. (31)

58 58 17 31 2 6 2 48.7 6 10.8 56.2 6 12.3 28 6 9 32 6 7

Cui et al.
(30)

168 171 41 82 22 26 0 48.56 6 12.90 55.27 6 11.56 (cc)
49.27 6 12.99 (p)
55.00 6 11.80 (ch)

<4 0 <4 0

You et al.
(33)

67 67 17 50 0 0 0 47.53 6 2.76 53.32 6 1.62 21.06 6 11.32 24.66 6 1.14

Deng et al.
(51)

377 385 31 249 49 56 0 NM 59 6 13 NM 45 6 35

Varghese
et al. (50)

147 147 18 85 23 21 0 NM NM NM NM

Yan
et al. (3)

48 50 18 18 14 0 0 44.5, range
26–61

53.9, range 36–79 (cc)
57.6, range34-77 (p)

28.47 ,range 8–51 33.22; range, 15–49 (cc)
33.09, range14–51 (p)

Yang G.
et al. (53)

58 58 32 0 0 24 0 50.38þ8.66 52.88þ10.86 NM NM

Yang R.
et al. (32)

163 163 45 95 10 13 0 48.6 6 13.7 52.9 6 13.1 25, range 21–33 29, range 24–33

Abbreviations: AML, angiomyolipoma; RCC, renal cell carcinoma; cc, clear cell carcinoma; p, papillary renal carcinoma; Ch, chromophobe renal carci-
noma; NM, not mentioned.
aIncludes chromophobe renal carcinoma and other RCCs.
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intelligence, is widely applied to achieve better outcomes and
more accurate diagnostic ability, whose goal is to obtain a classi-
fier or a model with high accuracy. LR is a popular classifier in
these mathematical models because of its simplicity and popular-
ity with researchers (52). Hodgdon et al. established an LR model
by combining the top 3 texture features per session, resulting in
an AUC of 0.896 0.04, which was significantly >0.5. The sensi-
tivity and specificity of identifying RCC ranged from 87% to
93% and from 63% to 75%, respectively (5). Yang et al. applied
least absolute shrinkage and selection operator LR to develop a
2D texture model (AUC, 0.811; 95% CI, 0.695–0.927) and a 3D
texture model (AUC, 0.915; 95% CI, 0.838–0.993), which showed
good discrimination and calibration in distinguishing fp-AML
from clear cell RCC (53). Takahashi et al. built a LR model with
entropy, demographic data, shape features, and subjective heter-
ogeneity factors and differentiated small fp-AML from RCC with
a sensitivity and specificity of 50% and 98%, respectively (49). In
addition to LR, SVM was widely used in the studies included in
this paper. Feng et al. developed an SVM classifier with 11 fea-
tures selected by the SVM-RFE (SVM with the recursive feature
elimination) method and achieved the highest accuracy, sensitivity,
specificity, and AUC of 93.9%, 87.8%, 100%, and 0.955, respec-
tively, in differentiating fp-AML from RCC (31). Lee et al. showed
that the model comprising relief feature selection and SVM classifier
achieved an accuracy, sensitivity, specificity, and AUC of 72.1% 6
4.2%, 71.0% 6 5.1%, 73.2% 6 6.1%, and 0.717 6 0.045, respec-
tively (54). In addition, k-nearest neighbors, random forest, and
nonlinear discriminant analysis were applied and proven to be reli-
able methods of differentiating fp-AML from RCC (3, 54).

Both unenhanced and enhanced CT images were incorpo-
rated into these studies. Hodgdon et al. restricted their study to
the analysis of unenhanced CT images for the reason that little
literature focused on the effect of iodinated contrast material on
texture analysis (5). Textural differences extracted from unen-
hanced CT images were independent of contrast effects. It hap-
pened that a similar case appeared in the article of Cui et al. who
found that unenhanced images performed the best in differenti-
ating fp-AML from RCC in single-phase texture analysis and
made significant contributions in the 3-phase group (30). In
addition, some studies (31–33) found significant differences in
univariate analysis during the unenhanced phase (P < .05).
Furthermore, the models based on these unenhanced CT images
can significantly decrease radiation exposure and benefit
patients suffering from renal insufficiency.

Tumor heterogeneity, which is difficult to quantify with tra-
ditional imaging methods, was proven to be greater in malignant
tumors than benign ones (55). Although the heterogeneity of re-
nal mass is a crucial feature to differentiate RCC from fp-AML
(7), the subjective analysis of heterogeneity depends too much on
experience of readers and lacks reproducibility. Recent studies
suggested that the objective quantification of heterogeneity eval-
uated by the methods of standard deviation, entropy, and uni-
formity was of help to differentiate AML from RCC (56), which
was consistent with the results of univariate analysis included in
this review. Hodgdon et al. claimed that lower lesion homogene-
ity and higher lesion entropy were biomarkers of RCCs (5). Yang
et al. reported the 3 top-ranked texture features extracted from
ROIs, and 2 of them were gray-level nonuniformity and size zone

Table 2. Study Characteristics E

Study
Publication

Year Study Period Institution
Pathology
Method

Processors and Readers

NO.
Experience

(year) Blinded

Hodgdon
et al. (5)

2015 January 2002–August 2013 The Ottwa hospital Surgical resection 2 3/8 NM

Takahashi
et al. (49)

2015 January 2003–January 2011 Mayo clinic Surgical resection 1 13 Yes

Feng
et al. (31)

2017 June 2013–September 2016 The third Xiangya hospital Surgical resection 2 7/8 NM

Cui
et al. (30)

2019 January 2008–September 2017 Jiangmen central hospital Surgical resection 2 NM NM

You
et al. (33)

2019 November 2008–December
2010

Asian medical center NM 1 6 NM

Varghese
et al. (50)

2018 June 2009–June 2015 University of Southern California Surgical resection 1 NM NM

Yan
et al. (3)

2015 January 2008–April 2014 Guangdong general hospital Biopsy or surgical
resection

2 16/36 NM

Yang G.
et al. (53)

2019 June 2009–January 2018 The affiliated hospital of
Qingdao university

Surgical resection 2 8/20 NM

Deng
et al. (51)

2019 October 2005–October 2016 Mayo clinic NM 1 15 Yes

Yang R.
et al. (32)

2019 January 2012–December 2018 Guangzhou first people’s hospital NM 2 3/14 Yes

Abbreviation: NM = not mentioned.
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nonuniformity, which were markers of tumor homogeneity,
showing that fp-AML was more homogenous than the RCC.
Similar results were obtained in other articles (31, 33, 50). Tumor
heterogeneity is a feature of malignancy, and a lesion with
increased heterogeneity is likely related to tumor angiogenesis,
cellular infiltration, and areas of necrosis (5, 55). Histological
evidence that the inner components of fp-AML appear to be
more regular than those of RCC in terms of cell proliferation and
less-invasive potential supports these findings (32).

LIMITATIONS
Intralesional fat on CT or MRI is the typical characteristic of
AML. However, some tumors contain too little fat to be detected,
which makes it difficult to differentiate them from RCCs (57). In
the past decade, texture analysis, an emerging brunch of radio-
mics, has shown promising potential to distinguish between ma-
lignant and benign tumors. This kind of new technology has
rapidly developed with the increasing digitalization in the

hospital and progress in image acquisition protocols, along with
easier access to the picture archiving and communication sys-
tems. It is an objective approach and automatic extraction of
quantitative features from images, which differs from traditional
radiology methods depending too much on the subjective visual
interpretation and expertise of radiologists and urologists (58). In
addition, texture analysis is capable of helping with the diagnosis
of both common and rare tumors and even differentiating benign
and malignant lymph nodes in patients with primary lung cancer
(58–63). In the past 5 years, focus was put on this area to differ-
entiate fp-AML from RCC. The articles included in this review
used multiple feature extraction and classification methods, and
all achieved relatively satisfactory results (AUC> 0.5).

Despite having a foreseeable optimistic and promising
future, texture analysis and machine learning encounter prob-
lems to be solved in clinical decision-making (25, 64). The limita-
tion of clinical implementation and use mostly results from the
lack of standards and reproducibility. Regarded as one of the

Table 3. Methods, Results, and Performance E

Study Phases Segmentation Extraction
Machine
Learning

Discriminative
Features

Best Performance of Models

SEN SPE ACC AUC

Hodgdon et
al. (5)

UN Manually MaZda, version 4.6 SVM
LR

Mean gray-level, angu-
lar second moment,
gray-level entropy,
sum entropy, and
sum average

88% (LR) 75% (LR) 83%�91%
(SVM)

0.89 60.04
(LR)

Takahashi et
al. (49)

UN CE-CT NM Matlab
(MathWorks)

LR Entropy 50% 98% NM 0.943

Feng et al.
(31)

UN CMP NP Manually CT kinetics
(version1.20,

GEHealthcare)

SVM Skewness, mean, me-
dian, 10th, 25th,
75th, and 90th per-
centiles (UP), energy
and entropy (UN,
CMP, and NP)

87.8% 100% 93.9% 0.955

Cui et al. (30) UN CMP NP Manually PyRadiomics
(version3.6.5)

SVM NM 89.23% 96.15% 92.69% 0.96

You et al.
(33)

UN CMP NP EP Manually Matlab
(MathWorks)

SVM Mean (UN), SD, homo-
geneity, dissimilarity,
energy, and entropy
(CMP)

82% 76% 85% 0.85

Varghese et
al. (50)

UN CMP NP EP Manually Matlab
(MathWorks)

LR NM NM NM NM 0.95�0.98

Yan et al. (3) UN CMP NP Manually MaZda, version 4.6 kNN artificial neural
classifer

NM NM NM 90.7%-100% NM

Yang G. et
al. (53)

CMP NP EP Manually Radiomics cloud
platform V2.1.2

LASSO NM 93.75% 79.17% 87.5% 0.915

Deng et al.
(51)

Portal venous phase Manually TexRAD, version
3.9

LR Entropy, maximum posi-
tive pixel

33% 97% NM 0.658

Yang R. et al.
(32)

UN CMP NP EP Manually PyRadiomics SVM, LR, Random
forest, Bagging

90th percentile, mean,
median, root mean
squared, skewness,
IMC1, IMC2, GLN,
and SZN

0.83 0.82 0.82 0.90

Abpbreviations: NM, not mentioned; UN, unenhanced; CE, contrast-enhanced; CMP, corticomedullary phase; NP, nephrographic phase; EP,
excreory phase; SD, standard deviation; LR, logistic regression; SVM, support vector machine; kNN, k-nearest neighbor; LASSO, least absolute
shrinkage and selection operator; SEN, sensitivity; SPE, specificity; ACC, accuracy; AUC, area under curve; IMC1, informational measure of
correlation 1 of the GLCM texture feature; GLN, gray-level nonuniformity of the GLSZM texture feature; SZN, size zone nonuniformity of the
GLSZM texture feature.
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foundations for scientific research, reproducibility plays an im-
portant role. Nonreproducible consequences waste the time and
money of researchers (65). The variety of CT scanners, different
methods of delineating ROIs (manually, semiautomatically, auto-
matically), and the inhomogeneity of software (commercial,
open-source, or developed in-house) used to extract and process
features may be responsible for this issue. Every step in the work-
flow of texture analysis should be standardized to achieve a bet-
ter and more convincing outcome. Recently, there have been
efforts to standardize the definitions and flow, and studies have
been conducted on the reliability and stability of features to
enhance the reproducibility (66–69).

Another limitation is the relatively small sample size.
Without universal standardized workflows, large central-
ized data repositories, or image data-sharing methods,
researchers always fight their own battle, which may give
rise to limited data. Besides, type I error and overfitting may
be unavoidable owing to the limited size of samples. It is
suggested that statistical corrections such as Holm–

Bonferroni sequential correction should be applied and
sample size should be 5–10 times of texture features ana-
lyzed to reduce these problems (40, 70).

Most studies included were retrospective studies (case–con-
trol studies), which were known sometimes to overestimate the

sensitivity and specificity of diagnosis and lead to biases (71).
Severe biases can produce adverse consequences, such as results
with errors and incorrect conclusions. Hence, a well-designed
and prospective study should be conducted to clarify the results
achieved by the articles focusing on differentiating fp-AML from
RCC. Besides, most studies on texture analysis showed only the
correlation between features and results, which, however, did not
mean causation (72).

SUMMARY
Despite the disadvantages that we discussed in the previous sec-
tion, we can initially give the conclusion that CTTA can be useful
for the differentiation of fp-AML from RCC on both unenhanced
CT and enhanced CT. Texture features such as entropy that
showed promising potential may be regarded as quantitative,
noninvasive, and effective imaging biomarkers. Models made by
machine learning–based methods performed with open-source
software or algorithms with high accuracy are encouraging for
the future imaging studies. However, deficiency and limitation
exist, and universally accepted standards need to be established.
Before the implementation into widespread clinical practice, this
kind of new technology requires further validation on a larger
scale.
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