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Noninvasive diagnosis of lung cancer in early stages is one task where radiomics helps. Clinical practice
shows that the size of a nodule has high predictive power for malignancy. In the literature, convolutional neu-
ral networks (CNNs) have become widely used in medical image analysis. We study the ability of a CNN to
capture nodule size in computed tomography images after images are resized for CNN input. For our experi-
ments, we used the National Lung Screening Trial data set. Nodules were labeled into 2 categories (small/
large) based on the original size of a nodule. After all extracted patches were re-sampled into 100-by-100-
pixel images, a CNN was able to successfully classify test nodules into small- and large-size groups with
high accuracy. To show the generality of our discovery, we repeated size classification experiments using
Common Objects in Context (COCO) data set. From the data set, we selected 3 categories of images,
namely, bears, cats, and dogs. For all 3 categories a 5-�2-fold cross-validation was performed to put them
into small and large classes. The average area under receiver operating curve is 0.954, 0.952, and 0.979
for the bear, cat, and dog categories, respectively. Thus, camera image rescaling also enables a CNN to
discover the size of an object. The source code for experiments with the COCO data set is publicly available
in Github (https://github.com/VisionAI-USF/COCO_Size_Decoding/).

INTRODUCTION
In radiomics studies, convolutional neural networks (CNNs) are
applied to address different medical questions including diagnos-
ing (1–4), treatment response (5–7), and patient survival time
prediction (8–10). An unexpected consequence has been
observed when CNNs are used in image analyses, in that CNNs
may learn unexpected image properties. For example, Zech et al.
(11) presented a CNN model for pneumonia detection in chest x-
ray images and showed that the resulting model could identify
hospitals, departments, and imaging device because patients
with different risk scores of pneumonia were scanned using dif-
ferent imaging protocols. In addition, sicker patients ended up in
particular locations. Therefore, hospital, department and scanner
information are predictive by themselves and was learned by the
CNN.

In our previous work (12), we presented a CNN model that
was trained to predict whether a benign lung nodule will become
a malignant tumor in 2 years using low-dose computed tomogra-
phy (CT) images. As one of the preprocessing steps, we used a
warping technique to resize images to the CNN’s input resolution.
The warping method extracts a patch with a minimum bounding

box, which is enough to include the region of interest (ROI). For a
given an ROI, a bounding box was defined as a rectangle whose
width and height were equal to the width and the height of ROI.
The rectangle was located on an image such that it enclosed the
ROI. Voxels/pixels within the rectangle were extracted as a patch.
After extraction, the patch is resampled to the size required for
the CNN input. The alternative for warping is cropping. Cropping
extracts an ROI patch with size equal to the CNN input image,
thus resampling is not used. Figure 1 shows a visual representa-
tion of the warping and cropping methods.

The warping method scales the X and Y axes of an image
using Sx and Sy coefficients, respectively. These scaling coeffi-
cients depend on the size of an ROI. We hypothesize that a CNN
may learn texture-specific modifications associated with resam-
pling and therefore learn the size of an ROI, that is, when the
warping method is used, CNN learns an object’s (nodule’s) size.
In lung cancer diagnosis, nodule size represented by the ROI is a
highly predictive feature; thus, a CNN may learn one of the most
predictive diagnostic features.

To test our hypothesis that nodule size was implicitly learned
by our model (12), we designed a series of experiments. Lung
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nodules from low-dose CTs belonging to the National Lung
Screening Trial (NLST) were divided into 2 groups, namely, small
and large, using different labeling methods. For experiments with
the NLST data set, we used a CNN architecture from our previous
work (12) which focused on lung cancer prediction in the future.
We trained a model from scratch and tuned pretrained models.
Moreover, we tested whether this phenomenon is more than a
unique effect that occurred in the NLST data set (ie, if a CNN can
decode size information from nonmedical images). For that, we
used the Common Objects in Context (COCO) data set (13, 14). We
selected 3 out of 80 object categories, namely, bears, cars, and
dogs. The COCO data set provides RGB images and segmentations
of objects where the size of the objects varies. For the selected cat-
egories, we repeated the size classification experiment using
5-� 2-fold cross-validation. The COCO data set is publicly
available.

As such, the goal of this work is to demonstrate that upsam-
pling encodes nodule size information in lung CT images in
which size has implications for nodule classification. Camera
images were used to show that this is not a fluke phenomenon.
The preprocessing, training, and testing source code is publicly
available in Github (15).

MATERIALS AND METHODS
National Lung Screening Data Set
The NLST is a randomized trial of 53,439 patients that compared
low-dose CT with standard chest radiography. After the baseline
screening (T0), follow-up screenings (T1 and/or T2) were con-
ducted at intervals of�1 year. If a screening participant was diag-
nosed with cancer at T0 or at T1, they did not have subsequent
screening at T1 or T2, respectively. According to the NLST proto-
col, a screen was considered positive if a noncalcified nodule had
its longest diameter >4mm. For positive screenings, radiologists
provided clinical description such as location and margins.

Based on prior work, we identified 2 cohorts from NLST (16).
Patients with lung cancer in the training cohort (cohort1) had a

positive screening result (noncancer) at T0 and had a positive
screening result at T1 that was diagnosed as lung cancer
(N=104). Patients with lung cancer in the test cohort (cohort2)
had a positive nodule result (noncancer) at T0 and T1 and had a
positive screening result at T2 that was diagnosed as lung cancer.
For each cancer patient, 2 positive screen noncancer subjects
were selected and matched by age, sex, and smoking history.
Participants were excluded if technical problems with the images
or other challenges that prevented the analysis of nodules. When
removing a cancer patient from the data set, the corresponding
noncancer patients remained. A detailed description of the data
set can be found in the study by Cherezov et al. (17).

Radiomic Features
In this work we have not focused on lung cancer diagnosis; thus,
we relabeled patients. Labels in this study represent the size of a
nodule—small or large. Different categorization methods can be
used for relabeling. To analyze model performance and stability,
we used 5 methods for categorization. Longest diameters for a
nodule of 6, 8, and 10 mmwere used as a threshold for splits. They
were chosen because they are considered representative milestones
in the evolution of a nodule according to Lung-RADS (18).

We used a single-click semiautomatic intensity–based seg-
mentation algorithm with a subsequent segmentation quality
check by a radiologist. The longest diameter of a nodule was
computed according to the Response Evaluation Criteria in Solid
Tumors (RECIST) protocol (19) using the Definiens software (20).
First, the largest segmentation area slice is selected. In the result-
ing slice, all possible lines are plotted such that each line starts
and ends in voxels that are considered as boundary voxels (a
voxel for which at least one the neighboring voxels is considered
as outside of the ROI). Among the plotted lines the line that has
the largest length is selected and considered as the nodule longest
diameter.

As shown in Figure 1, scaling parameters, Sx and Sy, for
patch length and height, respectively, are independent. The

Figure 1. Cropping (A) and warping (B) patch
extraction methods. The solid line represents the
region of interest border. The dashed line repre-
sents an extracted patch border. This assumes
that convoluted neural network (CNN) input is a
100-�100-pixel image. X and Y represent the
corresponding patch’s width and height,
respectively.
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smaller the length/height the larger the corresponding scaling fac-
tor and influence on texture. Thus, for each patch, we selected the
smallest of the 2 values, namely, length or height. For labeling, as
a threshold, we used a median of the smallest values in the training
cohort. Finally, as a threshold value, we used the median value of
a nodule ROI area in pixels. The numbers of patients within each
class for all labeling approaches are shown in Table 1. Cohort1 T0
was used as a training data set. Cohort 2 T0, T1, and T2 were used
as an unseen test cohort.

COCOData Set
The COCO data set (13, 14) consists of 330,000 large-scale
images, among which>200,000 images are labeled. Overall there
are 1.5 million segmented objects of 80 categories. In the COCO
data set object segmentations were provided by the data set
developers. These segmentations were used for patch extraction
without any modifications.

In our work, we used images provided by the COCO team. The
training and the validation sets from 2014 and 2017 challenges were
combined into a single dataset. 5-� 2-fold cross-validation tech-
nique was performed on the combined data set. The preprocessing,
training, and testing source code is publicly available in Github (15).

For the selected categories of bears, cats, and dogs, 2730,
9940, and 11 452 object’s patches were extracted, respectively.
For patch extraction, we used bounding boxes provided by the
COCO data set. The largest bounding box within each category
was computed. For all 3 categories, the maximum bounding box
was 640� 640 pixels. As a part of warping method, all the
patches were resampled into 640� 640 images and used as input
to a CNN for training and testing.

In the COCO data set we used only 1 labeling method. We
computed the median area of extracted patches before resam-
pling and used the resulting value for thresholding, that is, if a
patch area is smaller than the median area of a category, then the
resampled image is considered small, otherwise it is considered
as a large image. Labeling was performed individually for each
category before cross-validation.

Previous Results onNLST Data Set
In NLST, for our experiments, we chose a CNN architecture and
pretrained model presented by Paul et al. (12) because the authors

used the same data set for training the model and showed up-to-
date performance. The original model was trained to predict if a
benign nodule will evolve into a malignant tumor in 2 years.
Following our hypothesis, this trained model could (and did)
learn nodule sizes from texture and malignancy characteristics.
We studied this question in experiments described in the follow-
ing sections.

The CNNmodel was a cascade network. There are 2 branches
(“left”/”right”). The “left” branch consists of a max-pooling layer
before merging. The “right” branch consists of 2 convolution
layers in which each branch was followed by a max-pooling
layer. After the second max-pooling layers, the “right” and the
“left” branches are merged. After merging there are convolution
and a max-pooling layers. Their result is represented as a vector
(flattened) and is used as input to a single fully connected layer,
which is considered as an output layer in the architecture. The
CNN model showed 76% accuracy on the NLST data set. Detailed
information about the architecture and performance of the model
can be found in the original paper.

In comparison, Hawkins et al. (21) used 219 radiomics fea-
tures (size, location intensity, and texture features) extracted
from each patient in NLST cohorts to build a conventional radio-
mics model (naive Bayesian, Random Forests, SVM classifiers) to
predict if an indeterminate nodule will evolve into a malignant
tumor in 2 years. As a baseline result, Hawkins used the accuracy
of the ROI volume feature only. The accuracy of the volume fea-
ture was 71.6%. A complete list of experiments and detailed in-
formation about results can be found in the original paper.

Experiments
The design of experiments using the NLST data set was focused
on the following 3 questions:

(1) Is a CNN model capable of learning an original nodule’s
size after image resampling?

(2) Is a CNN model capable of using encoded size informa-
tion in its decision-making process?

(3) Does the model from our previous work implicitly use
encoded size information?

To check the generality of a CNN implicitly learning an
object’s size, we designed a size detection experiment on a color
(RGB) camera data set.

Table 1. Number of Patients in Groups after Labeling Nodules by Size E

Threshold
Cohort1 T0 Cohort2 T0 Cohort2 T1 Cohort2 T2

Small Large Small Large Small Large Small Large

Longest diameter 6mm 57 204 44 193 39 171 44 166

Longest diameter 8mm 129 132 126 111 106 104 89 121

Longest diameter 10mm 183 65 172 65 140 70 126 84

Median of min size 122 139 89 148 128 82 124 86

Median nodule area 128 133 99 138 123 87 117 93

Total 261 237 210 210

The number of patients in cohort 2 at T0 and T1/T2 vary because some patients were excluded due to low image quality or patient removal for the trial.
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Experiment Design for theNLST Data Set
Table 1 shows the number of patients within each class after
relabeling them into size categories. First (experiment 1) we
trained a CNN model from scratch using Paul’s architecture (12).
All weights were randomly initialized and the model was trained
on cohort 1 to classify nodules with respect to one of the size
labeling methods described above. The goal of this experiment
was to determine how much information about the size of a nod-
ule that is encoded into the texture by resampling can be
extracted by a CNN.

Second (experiment 2) we tuned the CNN model created as a
result in experiment 1, originally trained to classify nodule size.
The model was tuned (100 epochs with 0.0001 learning rate, 0.1
dropout) to predict if a benign nodule evolves into a malignant
nodule in 2 years. Learning rates for all convolution layers were
set to zero, fixing the features extracted from the image, and the
last fully connected layer was randomly reinitialized. The goal of
this experiment was to determine whether when encoded by scal-
ing and decoded by CNN, size information can be used in a deci-
sion-making process for lung cancer diagnosis.

Third (experiment 3) we tuned Paul’s pretrained CNN model
designed to predict if a benign nodule will evolve into a malig-
nant tumor in 2 years. The model was tuned (100 epochs with
0.0001 learning rate, 0.1 dropout) to predict nodule size. A
detailed description of the model can be found in our previous
work (12). Learning rates for all convolution layers, which would

have extracted features from the images, were set to zero and the
last layer, fully connected, was randomly reinitialized. The goal
of this experiment is to determine how much information about
nodule size was used by Paul’s CNN (12).

In experiments 1 and 2, cohort 1 T0 was used for a training
and cohort 2 T0, T1, T2 were used for testing. For comparability
with our previous results in experiment 3, we used cohort 1 T0
for training and cohort 2 T0 for testing.

Experiment Design for the COCOData Set
We performed 5- � 2-fold cross-validation technique for the
COCO data set. At each iteration, a training fold was used to de-
velop a CNN model capable of classifying an extracted patch into
1 of 2 categories (small/large). The CNN architecture is shown in
Figure 2 (learning rate = 0.0001, decay = 0.001, epochs = 100).
We used early stopping techniques, with patience = 10. As a vali-
dation set, we used 20% of the training fold. The CNN was
trained from scratch for each training fold. For repeatability we
used predefined individual seeds for each data set split into folds
and training/validation sets.

RESULTS
For the NLST data set, we assessed whether the CNN architecture
from Paul et al. from our previous work (12) was capable of
decoding size information when trained from scratch. The pre-
trained model can be tuned for size group classification. Finally,

Figure 2. The CNN architecture used for size
classification in the CommonObjects in Context
(COCO) data set. There are 8 convolution
layers with 3�3 kernels. Each convolution
layer is followed by a max-pooling layer with a
2�2 window and stride equal to 2. For all but
the last layers, the rectified linear unit (ReLU)
activation function was used. The softmax acti-
vation function was used for the last fully con-
nected (FC) layer. Dropout for all FC layers was
set to 0.75.

Table 2. Accuracy and AUC (in Brackets) of a CNN Trained from Scratch for Classification a Nodule Original Size
Group (Experiment 1)

Threshold Cohort2 T0 (%) Cohort2 T1 (%) Cohort2 T2 (%)

Longest diameter 6mm 95 (0.97) 79.52 (0.85) 81.4 (0.85)

Longest diameter 8mm 89 (0.947) 79 (0.839) 76 (0.82)

Longest diameter 10mm 94.5 (0.9784) 87 (0.867) 84 (0.877)

Median of min size 99.2 (0.9998) 92.38 (0.94) 94.28 (0.95)

Median nodule size 94.93 (0.9894) 97.14 (0.9978) 95.7 (0.9974)
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a model trained for size classification can be tuned for tumor
malignancy classification.

For the COCO data set, we checked if a CNN is capable of
classifying common camera images into size groups.

NLST Results
Results of experiment 1 (Table 2) show that a CNN model can dis-
tinguish the difference between small and large nodules with
high accuracy. Labeling using 6, 8, and 10mm of a nodule’s lon-
gest diameter as a threshold showed smaller accuracy values
compared with other labeling methods. Potentially this is caused
by the fact that the longest diameter length does not take into
account lengths of nodule projections onto axes, which, as we
discussed in sections above and showed in Figure 1, define Sx
and Sy scaling factors and, as a result, encode size into image
texture.

Hawkins et al. (21) used the accuracy of an ROI volume fea-
ture in a baseline performance model for the prediction that a be-
nign nodule evolves into a malignant tumor in 2 years. In that
experiment, the accuracy was 71.6%. Paul et al. (12) using the
same data set, but a CNN for a nodule classification, improved
the accuracy to 76%. These values can be considered as lower-
and upper-bound values for experiment 2. In the experiment we
tuned a CNN model, trained to classify the size of an ROI, to clas-
sify if a benign nodule will evolve into a malignant tumor in 2
years. Following our assumption that if a CNN learns to extract
the size of ROI then the CNN’s accuracy should not be signifi-
cantly smaller than the baseline result provided by Hawkins,
although performance using 2D versus 3D features may vary.
Paul’s CNN model was trained from scratch to predict the malig-
nancy of a nodule. Thus, results of a tuned model in experiment
2 would not be expected to be higher because most likely Paul’s
CNN model learned to extract additional texture features associ-
ated with cancer compared with a model trained to extract size
information.

Results from experiment 2 (Table 3) show that a CNN trained
to classify nodule size can be used for diagnosis. Nevertheless,
owing to the fact that accuracy values in the experiment are con-
sistently smaller than the accuracy of the CNN trained for diagno-
sis, we can surmise that the model from our previous work (12)
learns additional image characteristics.

Results from experiment 3 (Table 4) show that the CNN model
trained for nodule malignancy prediction (12) can be used for nod-
ule size detection, and as a result, we assume that nodule size is a
feature of the image that the model learned.

COCOResults
The result for 5-� 2-fold cross-validation on the COCO data set
is shown in Table 5. As we can see for all the selected categories
accuracy and area under the curve metrics show “high” perform-
ance. Performance in the “dog” category is higher than that in
the other 2 categories. We assume that this is related to the num-
ber of images among different categories. There are 11 452,
9940, and 2730 images for “dog,” “cat,” and “bear” categories,
respectively.

DISCUSSION
In this paper, we used 2 data sets to test the hypothesis that
the size of an object (ie, pulmonary nodule) is encoded into
the image texture by resampling during the preprocessing
step and decoded by a CNN. Using images from NLST data
set, we trained a model from scratch and also tuned pre-
trained models from our previous work (12). Using images
from the COCO data set, we performed 5- � 2-fold cross-vali-
dation in which all CNN models were trained from scratch.
The results of the experiments support our hypothesis on
both data sets. Thus, image warping (resampling) implicitly
encodes an object’s size information into texture.

It is unknown if a CNN model that was trained and tested
on the NLST data set considered heterogeneity of a nodule.

Table 3. Accuracy and AUC (in Brackets) of a CNN Trained for Nodule Original Size Classification after Tuning for
Cancer Classification (Experiment 2)

Threshold LD 6 mm LD 8 mm LD 10 mm Median of Min Size Median Nodule Size

Accuracy (%) 72.15 (0.76) 74.26 (0.788) 75.1 (0.8182) 74.26 (0.786) 74.26 (0.794)

Accuracy of a CNN trained from scratch to classify cancer is 76%. Accuracy of cancer classification using a tumor volume only is 71.6%.

Table 4. Accuracy and AUC (in Brackets) of a CNN Trained for Cancer Classification after Tuning to Classify a
Nodules Original Size Group (Experiment 3)

Threshold Cohort2 T0 (%) Cohort2 T1 (%) Cohort2 T2 (%)

Longest diameter 6mm 93.67 (0.969) 79.52 (0.82) 81.4 (0.858)

Longest diameter 8mm 90.3 (0.923) 81 (0.8438) 80.5 (0.828)

Longest diameter 10mm 93.67 (0.9763) 87.14 (0.9235) 84.76 (0.907)

Median of min size 100 (1) 92.4 (0.937) 94.3 (0.962)

Median nodule size 97.89 (0.989) 98.57 (0.989) 98.09 (0.99)
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Generally, smaller lesions are more homogeneous and
become increasingly heterogeneous as the size (and volume)
increases. At the same time, the COCO data set consists of
objects that can be barely evaluated from a homogeneity/
heterogeneity point of view. Nevertheless, the CNN effi-
ciently differentiated “small” and “large” objects. Overall, it
is possible that heterogeneity is a characteristic of a nodule
that was used by a CNN for decision-making.

In the case where we used the median area of a nodule as a
threshold for splitting the NLST data set into “small” and “large”
nodules, the resulting classes are well balanced (Table 1). Both
size categories do have benign and malignant nodules, and at the
same time, results for size classification remain high. Thus, we
may conclude that heterogeneity of a nodule cannot be the only
texture characteristic that the CNN potentially used for decision-
making.

As we can see from Tables 2 and 4, if a nodule’s longest di-
ameter feature was used as a criterion for the NLST split into size
categories, then performance for size classification decreases in
cohort 2 T1 and T2. Nevertheless, for the other labeling methods,
classification accuracy and AUC remain high. Thus, we can con-
clude that classification performance depends on labeling meth-
ods that were applied.

We performed an additional experiment. Instead of clas-
sification of size groups, we tested using regression to
directly predict size. Because the regression task is more

complicated and requires more data in comparison to the
classification task, we used the COCO data set for the experi-
ment. The experiment is similar to the one we described in
experiment design for the COCO data set section, but instead
of size category, labels represent the size of extracted
patches. The CNN model shown in Figure 2 was adapted to
the regression task (1 output neuron, mean square error loss
function, linear activation function for the last layer); 5- �
2-fold cross-validation was performed. As for performance
metrics, the Pearson correlation coefficient between pre-
dicted size and the actual size was used. For the bear, cat, and
dog categories, we got mean Pearson correlation coefficient
values 0.861, 0.867, and 0.9 respectively. The goal of this pa-
per is to show that upsampling encodes nodule size informa-
tion in lung CT in which size has implications for nodule
classification. Thus, we consider the results of the regression
task, and questions such as “Why does upsampling encode
size?” “How accurately can size be determined?” as material
for future work. Hence, we do not include details of the
experiment in this paper. Nevertheless, the provided Github
source code is able to perform regression tasks.

Radiomics, as a cross-disciplinary field, uses clinical
data, imaging data, and machine learning tools. It was con-
sidered that when CNN models are used it will be hard to
include clinical features into a model. Nevertheless, we
showed that at least in our previous models, the CNN learned
to decode a nodule’s size and used it in its decision-making
process. As a result, this raises a question: Is it possible to
encode some other clinical features into medical images
such that a CNN model could use it and which will benefit
the performance of the model? As we can see, there are some
examples when it occurs. A model recognized hospitals,
departments, and scanners from chest x-ray images because
this information was related to pneumonia risk score (11). In
our work, the CNN model was able to learn tumor size
because the size is an important feature in lung cancer diag-
nosis and malignancy prediction. In these examples, clinical
information was encoded accidentally and researchers did
not choose what information to encode. Thus, the question is
if it is possible to control that process?

We shared the code which we used for experiments in the
COCO data set. The code is capable of repeating the provided
experiments with categories that were used in this work as well
as of performing the same experiments based on the remaining
categories. In addition, the code provides tools for different types
of filtering (15).
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Table 5. Accuracy and AUC (in Brackets)
Results for 5- � 2-Fold Cross-Validation in the
COCO Data Set

Run Fold Bear Cat Dog

1
A 89.8 (0.942) 88.5 (0.929) 93.4 (0.983)

B 89.9 (0.964) 88.2 (0.968) 93.9 (0.974)

2
A 85.2 (0.946) 88.6 (0.966) 93 (0.98)

B 88.3 (0.965) 89.8 (0.956) 94.1 (0.98)

3
A 88.5 (0.964) 88.6 (0.951) 86.3 (0.971)

B 90.7 (0.969) 86.6 (0.951) 91.6 (0.98)

4
A 88.5 (0.97) 87.2 (0.954) 92.4 (0.986)

B 90.5 (0.944) 89.2 (0.959) 93.2 (0.981)

5
A 89.8 (0.95) 88.8 (0.953) 93.1 (0.982)

B 88.8 (0.933) 88.8 (0.94) 93.5 (0.982)
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