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Breast parenchymal enhancement (BPE) has shown association with breast cancer risk and response to neo-
adjuvant treatment. However, BPE quantification is challenging, and there is no standardized segmentation
method for measurement. We investigated the use of a fully automated breast fibroglandular tissue segmenta-
tion method to calculate BPE from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for use
as a predictor of pathologic complete response (pCR) following neoadjuvant treatment in the I-SPY 2 TRIAL.
In this trial, patients had DCE-MRI at baseline (T0), after 3weeks of treatment (T1), after 12weeks of treat-
ment and between drug regimens (T2), and after completion of treatment (T3). A retrospective analysis of 2
cohorts was performed: one with 735 patients and another with a final cohort of 340 patients, meeting a
high-quality benchmark for segmentation. We evaluated 3 subvolumes of interest segmented from bilateral
T1-weighted axial breast DCE-MRI: full stack (all axial slices), half stack (center 50% of slices), and center 5
slices. The differences between methods were assessed, and a univariate logistic regression model was imple-
mented to determine the predictive performance of each segmentation method. The results showed that the
half stack method provided the best compromise between sampling error from too little tissue and inclusion of
incorrectly segmented tissues from extreme superior and inferior regions. Our results indicate that BPE calcu-
lated using the half stack segmentation approach has potential as an early biomarker for response to treat-
ment in the hormone receptor–negative and human epidermal growth factor receptor 2–positive subtype.

INTRODUCTION
Neoadjuvant chemotherapy (NAC) of breast cancer has shown
equivalent effectiveness in comparison to adjuvant chemother-
apy in terms of disease-free and overall survival (1, 2). NAC has
the advantage of allowing a down-grade of the primary tumor
for breast-conserving surgery and providing in vivo information
about a patient’s response to a specific regimen (3–5). The I-SPY
2 TRIAL (Investigation of Serial Studies to Predict Your
Therapeutic Response through Imaging and Molecular Analysis
2) is a multicenter clinical trial for patients with locally advanced
breast cancer undergoing NAC with the primary endpoint of
pathological complete response (pCR) (6). Patients undergo
dynamic-contrast enhanced MRI (DCE-MRI) examinations before,

during, and after NAC. DCE-MRI provides additional insight into
tumor physiology and may be able to provide better imaging bio-
markers to treatment response than anatomical imaging alone (7–
10). Results from the ACRIN 6657 trial showed that functional tu-
mor volume measured by magnetic resonance imaging (MRI) was
associated with pCR and recurrence-free survival, and functional
tumor volume was a stronger indicator of response than clinical
assessment (11–14).

Background parenchymal enhancement (BPE) on breast
DCE-MRI is a physiological feature describing signal enhance-
ment resulting from the uptake of gadolinium-based intravenous
contrast by normal breast tissue (15). BPE observed in breast
fibroglandular tissue (FGT) shows an association with breast
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cancer risk (16–19) and has also been investigated for use as an
imaging biomarker to predict NAC response (20–22). Studies
have shown BPE to be subtype-dependent with positive associa-
tion for hormone receptor status (23, 24). Currently, 4 categories
of BPE are qualitatively defined in the Breast Imaging Reporting
and Data System (BI-RADS) atlas: minimal, mild, moderate, and
marked (25). Acceptance of BPE as a biomarker is constrained by
limited single-site studies with small sample sizes and varying
methods for visual and quantitative BPE assessment (26). A
recent review by Liao et al. reported the results of a number of
studies using quantitative BPE measurements to evaluate treat-
ment outcomes with varying methods for BPE quantification
between studies (19, 22, 27, 28). To address inter-reader variabili-
ty associated with qualitative BPE assessment, a standardized
quantitative method is also needed.

Here, we evaluated 3 segmentation approaches for meas-
uring quantitative contralateral BPE and compared them for pre-
diction of pCR using data from the multicenter I-SPY2 trial. The
overall aim was to determine an accurate, fully automatic, and
robust segmentation method to quantitatively measure contra-
lateral BPE and optimize its predictive power for assessing treat-
ment response.

MATERIALS AND METHODS
Patient Population
Women ≥18years of age diagnosed with stage II/III breast cancer
and tumor size measuring ≥2.5 cm were eligible to enroll in the I-
SPY 2 TRIAL (6). Patients with evidence of distant metastasis were
excluded from the study. Biomarker assessments based on hor-
mone (estrogen and progesterone) receptors (HRþ/�), human epi-
dermal growth factor receptor 2 (HER2þ/�) status, and a 70-gene
assay (MammaPrint, Agendia, Amsterdam, The Netherlands) were
performed at baseline (T0) and used for treatment randomization
(6). In addition to standard immunohistochemical and fluorescence
in situ hybridization (FISH) assays, the protocol included a microar-
ray-based assay of HER2 expression (TargetPrint, Agendia) to

assign HR and HER2 statuses. Patients with tumors that were desig-
nated as HRþ/HER2� and low risk according to the MammaPrint
70-gene assay were excluded because the potential benefit of
receiving investigational drugs along with chemotherapy for
patients with less proliferative tumors are low with consideration
of the risk of drug side effects (29, 30). All patients provided written
informed consent to participate in the trial. A second consent was
obtained if the patient was randomized to an experimental
treatment.

Pathologic Assessment of Response
Figure 1 shows the schema of the I-SPY 2 TRIAL. Pathologic
complete response (pCR), defined as the absence of residual can-
cer in the breast or lymph nodes as evaluated by a trained pathol-
ogist at the time of surgery, is the primary endpoint of the trial.
All patients were classified as either pCR or non-pCR. Patients
who left the study without completing the entire course of treat-
ment or did not undergo surgery for any reason were labeled as
non-pCR.

MRI Acquisition
MRI examinations were performed before the initiation of NAC
(baseline, T0), after 3weeks of treatment (early-treatment, T1),
after 12weeks and between drug regimens (inter-regimen, T2),
and after completion of NAC and before surgery (presurgery, T3).
MRI data were acquired with 1.5 T or 3 T scanners with a dedi-
cated breast RF coil, across a variety of vendor platforms and
institutions. All MRI examinations for the same patient were per-
formed using the same magnet configuration (manufacturer,
field strength, and breast coil model). The standardized image ac-
quisition protocol included T2-weighted and DCE-MRI sequences
performed bilaterally in the axial orientation.

DCE-MRI was acquired as a series of 3D fat-suppressed T1-
weighted images with the following parameters as specified in
the I-SPY2 MRI protocol: repetition time = 4–10 milliseconds,
minimum echo time, flip angle = 10°–20°, field of view=260–
360mm to achieve full bilateral coverage, acquisition matrix =

Figure 1. I-SPY 2 study schema
and adaptive randomization.
Patients were randomized to the
control (paclitaxel for HER2� or
paclitaxelþ trastuzumab for
HER2þ) or one of the experimental
drug arms. Participants received a
weekly dose of paclitaxel alone
(control) or in combination with an
experimental agent for 12 weekly
cycles followed by 4 (every 2–
3weeks) cycles of anthracycline–
cyclophosphamide (AC) before
surgery.
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384–512 with in-plane resolution � 1.4mm, slice thickness �
2.5mm, and temporal resolution = 80–100 seconds. Gadolinium
contrast agent was administered intravenously at a dose of
0.1mmol/kg body weight and at a rate of 2mL/s, followed by a
20-mL saline flush. The same contrast agent brand was used for
all MRI examinations for the same patient. Precontrast and multi-
ple postcontrast images were acquired using identical sequence
parameters. Postcontrast imaging continued for at least 8minutes
following contrast agent injection.

Quantitative Image Analysis
Nonuniformity of low spatial frequency intensity owing to coil
sensitivity variations seen in the MRI data is known as bias or
inhomogeneity. To correct for image inhomogeneity, all exami-
nations were preprocessed with N4 bias correction, an improve-
ment upon the N3 (nonparametric nonuniformity normalization)
method (31). Automatic whole breast segmentation was per-
formed on all examinations on each slice using locally developed
software. Both breasts were initially segmented from background
for the volumes anterior to the sternal notch using the precon-
trast image reformatted to the coronal orientation. The FGT vol-
ume of only the contralateral breast was then segmented using
fuzzy c-means (FCM) clustering (32). Segmentation of 3 different

sized subvolumes was investigated: all axial slices containing
FGT voxels (full stack), central 50% of included slices (half stack),
and the central 5 slices (center 5). A visual representation of the
subvolumes is shown in Figure 2. All magnetic resonance exami-
nations were centrally processed at the core I-SPY 2 imaging
core laboratory using in-house software developed in IDL (ITT
Visual Information Solutions, Boulder, CO).

Within each segmentation mask, mean background paren-
chymal enhancement (BPE) in the contralateral breast was calcu-
lated from DCE-MRI at each treatment time point as:

BPE ¼ 1
N

�o
N

i¼1

S1 � S0
S0

� �

where S0 is the precontrast signal intensity, S1 is the postcontrast
signal intensity of the image volume acquired closest to
2.5minutes after contrast injection, and N is the number of
included voxels.

A subset of 148 patients underwent unilateral manual whole
breast segmentation of the contralateral breast followed by auto-
matic FGT segmentation to better encapsulate as much FGT as
possible. Manual whole breast segmentation excluded any
regions with artifacts such as inhomogeneous fat saturation or
coil bias, observed typically in the most superior and inferior

Figure 2. Visual examples of the compared 3 subvolumes: full stack (A), half stack (B), and center 5 subvolumes (C).
Each image is a representative sagittal slice of the same breast in which the highlighted region is the segment of axial sli-
ces used for background parenchymal enhancement (BPE) quantification.

Figure 3. An example of a typical good BPE
segmentation on an axial slice: fully-automatic
whole breast segmentation (A) and derived FGT
mask in blue from fuzzy c-means clustering (B).
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axial slices to minimize inclusion of non-FGT voxels in the BPE
quantification. Owing to the time-consuming nature of perform-
ing manual delineation, the full cohort was not assessed, and this
manually delineated subset was used as a reference standard. The
Pearson’s linear correlation coefficient, r, was calculated to
assess the difference in BPE quantification between the fully
automated and semimanual methods.

Quality Assessment of BPE Calculation
Visual quality of breast tissue segmentation for each exami-
nation was examined by a radiologist and was graded on
how well the automatic segmentation performed on tissue
classification, because image quality (eg, coil artifacts, poor
fat suppression) can cause errors in the segmentation pro-
cess. Automatic segmentation quality was visually graded
as good, adequate, poor, or failed quality using representa-
tive images chosen at the center slice and at ends of the
selected subvolume. Figure 3 shows an example of a typical
good tissue segmentation for accurate BPE quantification.

The quality assurance grades were used to further stratify
the quality of BPE values used for analysis.

An initial 990 I-SPY2 patients enrolled on drug arms com-
pleted by November 2016 were included and considered for anal-
ysis. Patients who did not have a DCE-MRI scan at early-
treatment (T1) or inter-regimen (T2), had a rejected DCE-MRI
scan, or had a failed segmentation quality grade were excluded
from analysis and comprised the first cohort for analysis. A final
cohort was defined after additional removal of examinations
with poor segmentation quality, leaving only good and adequate
segmentation-quality examinations.

Statistical Analysis
Statistical analysis was performed to assess the predictive per-
formance of a single magnetic resonance predictor for pCR vs
non-pCR outcomes. All statistical analyses were performed using
SciPy 1.3 (https://scipy.org) and Python 3.7 (Python Software
Foundation, Wilmington, DE).

Table 1. Patient Characteristics E

Any Segmentation Quality
(N=990)

Good or Adequate Segmentation
Quality (N=340) P Value

Age at Screening (Years) 0.78a

Missing 1 0

Mean (SD) 48.8 (10.6) 48.9 (10.0)

Range 23.0–77.0 24.0–77.0

Race/Ethnicity 0.43b

Missing 1 0

American Indian or Alaska
Native

4 (0%) 2 (1%)

Asian 68 (7%) 23 (7%)

Black or African American 121 (12%) 28 (8%)

Mixed Race/Ethnicity 7 (1%) 4 (1%)

Native Hawaiian or Pacific
Islander

5 (1%) 2 (1%)

White 784 (79%) 281 (83%)

Menopausal Status 0.52b

Missing 202 70

Post/Perimenopausal 324 (41%) 117 (43%)

Premenopausal 464 (59%) 153 (57%)

Pathologic Complete Response 0.86b

pCR 324 (33%) 113 (33%)

nPCR 666 (67%) 227 (67%)

Receptor Status 0.70b

Missing 2 0

HRþHER2þ 156 (16%) 57 (17%)

HRþHER2� 380 (38%) 140 (41%)

HR�HER2þ 89 (9%) 27 (8%)

HR�HER2� 363 (37%) 116 (34%)
a Kruskal–Wallis rank sum test.
b Pearson chi-square test.
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The percent change in mean BPE from T0 to T1 (%DBPE0_1)
was used in a univariate analysis for pCR prediction and is calcu-
lated as:

%DBPE01 ¼ BPE1 � BPE0

BPE0

� �
� 100%

The area under the ROC curve (AUC) of a logistic regression
model was used to assess the predictive performance of %D
BPE0_1 in the full cohort and within subtypes. P-values for
AUCs being different from .5 were estimated using the Mann–
Whitney U test. Results with P-values < 0.05 were considered
statistically significant.

RESULTS
Patient Characteristics
In total, 990 patients with pCR outcome enrolled in the I-SPY2
TRIAL from completed drug arms before November 2016 were
included in this study. Patients who did not have a DCE-MRI
scan at early-treatment (T1) or inter-regimen (T2) had a failed
segmentation quality grade, or had a rejected DCE-MRI scan,
because other image quality or protocol adherence issues were
excluded. After preliminary exclusion, BPE was calculated in
735 women (median age, 49 years; range, 24–77) and were
included in the first cohort analysis, in which 258 (35.1%)
patients achieved pCR. An additional 395 patients were
excluded owing to strict quality assessment of poor tissue seg-
mentations including undersampling, coil artifacts, poor fat
suppression. For the second cohort, 340 women (median age,
49 years; range, 24–77) were included, in which 113 (33.2%)
patients achieved pCR. Patients with hormone receptor–nega-
tive disease were more likely to achieve pCR than those with
hormone receptor–positive disease. Patient characteristics are
shown in Table 1 and a flow diagram of patient exclusion is
visualized in Figure 4. No statistically significant differences
were found in patient characteristics between the enrolled
population of 990 patients and final analysis cohort of 340
patient that excluded poor-quality BPE.

Univariate Analysis
The comparability of 3 segmentation methods, full stack, half
stack, and center 5 was assessed in the full cohort and within HR
and human epidermal growth factor receptor 2 (HER2) subtypes.
To analyze the strength of the linear relationship, the Pearson’s
linear correlation coefficient (r) was calculated between segmen-
tation methods. The r values for full vs half, half vs center 5, and
full vs center 5 were 0.953, 0.867, and 0.840, respectively.
However, a high correlation is not necessarily indicative of
meaningful results, as it does not provide information about pos-
sible bias. To visualize systematic bias versus random variation
between the 3 automated segmentation methods, Bland–Altman
plots (Figure 5) were calculated in the quality-restricted second
cohort to see if our various automated method differed from each
other (33). The mean differences for all 3 comparisons are very
close to 0, suggesting that the estimated bias is low. All 3 plots
also show that there are no apparent variations with mean val-
ues, with most of the points within the 95% limits of agreement.
Comparison with Manual BPE Reference Standard.We calcu-

lated BPE for a subset of patients that had a manual whole breast

segmentation to compare the relationship between automated
and manual methods. Figure 6 shows the Pearson’s linear corre-
lation. All automated methods showed high agreement with the
manual reference method, with best agreement using the half
stack method. The r values between manual and full stack, half
stack, and center 5 are 0.971, 0.977, and 0.925, respectively, with
all P-values = .001.

Table 2 shows the pCR rate and the reported AUCs for per-
cent change in mean contralateral BPE from baseline to early
treatment (%DBPE0_1) and from baseline to inter-regimen (%D
BPE0_2) for each segmentation method within the full cohort
and within subtypes. The data in this table contain all segmenta-
tion quality categories including poor, adequate, and good visual
segmentations. AUCs in the full cohort ranged from 0.51 to 0.53
and AUCs varied within subtype from 0.56 to 0.58 in HRþ/
HER2þ, 0.52 to 0.53 in HRþ/HER2�, 0.56 to 0.59 in HR�/
HER2þ, and 0.51 to 0.52 in HR�/HER2�. These results reached
statistical significance in the HRþ/HER2� subtype for the T2
time-point predictor (%DBPE0_2).

When patients were restricted to adequate and good vis-
ual segmentation quality (Table 3), the associated AUCs for
both BPE predictors remained similar between segmentation
methods. The pCR rate was higher for HR�/HER2þ patients
with adequate/good quality than the patients with any seg-
mentation quality (81.5% versus 68.9%). AUCs in the full
cohort ranged from 0.50 to 0.51 and AUCs varied within
subtype from 0.44 to 0.57 in HRþ/HER2þ, 0.54 to 0.57 in
HRþ/HER2�, 0.78 to 0.87 in HR�/HER2þ, and 0.50 to 0.55
in HR�/HER2�. The highest AUC values, which were also
statistically significant, were found in the HR�/HER2þ sub-
type at the early time point (%DBPE0_1). Although sample
sizes were reduced by ≥50% in every subtype after restrict-
ing for segmentation quality, differences in AUCs between
subtypes became more apparent, with notably higher AUC

Figure 4. Flow diagram of the study data-
base showing the exclusion criteria to obtain
the first 735 patient cohort and the second
quality-restricted cohort of 340 patients.
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values achieved in the HR�/HER2þ subtype at the T1 time
point. Comparison of AUC values in the quality-restricted
and unrestricted cohorts highlights the small variation
between segmentation methods relative to differences
between subtypes.

DISCUSSION
BPE observed in breast FGT shows an association with breast
cancer risk. We further investigated BPE’s use as an imaging bio-
marker to predict NAC response. For BPE to be used as a robust,
clinically meaningful biomarker, an automated quantitative seg-
mentation method is necessary to remove subjectivity and inter-
reader variability associated with qualitative methods (34).
Although manual segmentation yields promising results, manual
delineation of the breast surface and visual confirmation of tissue
boundaries are time-consuming and subject to inter-reader vari-
ability. The use of automated segmentation may provide repro-
ducible quantitative results required for validation and for
ensuring repeatability. This study compared automated quantita-
tive methods for BPE calculation using different levels of tissue
sampling to improve segmentation quality and assessed the abil-
ity of each method to predict treatment response.

Figure 5. Bland–Altman plots comparing BPE
values from 3 subvolumes of the dynamic con-
trast-enhanced magnetic resonance imaging
(DCE-MRI) used for segmentation with our best-
quality assessment. Full vs half (A). Half vs cen-
ter 5 (B). Full vs center 5 (C).

Figure 6. Pearson linear correlation plots
comparing BPE0 values of the 3 fully auto-
mated methods to the semimanual method.
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When visual assessment of segmentation quality was used, a
large proportion or percentage of cases, 54% of the data set, were
excluded from analysis. A limitation of this retrospective study
may be the image quality, in which patients up until 2016 were
included in the analysis. Since then, we have implemented better

equipment and are continually improving our segmentation
methods. When the exclusion criteria were relaxed, allowing
artifacts or undersampling of tissue, our findings remained con-
sistent within and between subtypes. In Table 1, the Kruskal–
Wallis rank sum test and Pearson’s chi-square test performed

Table 2. AUCs from Logistic Regression in the First Cohort of 735 Patients Using Percent Change in Mean cBPE as a
Predictor for pCR

Patient Cohort N pCR Rate (%) Method

%DBPE0_1 %DBPE0_2

AUC P-Value AUC P-Value

Full Cohort 735 35.1

Full stack 0.53 .09* 0.52 .14

Half stack 0.52 .23 0.52 .18

Center 5 0.51 .30 0.50 .50

HRþ/HER2þ 112 33.9

Full stack 0.58 .08* 0.53 .30

Half stack 0.56 .14 0.53 .31

Center 5 0.56 .15 0.52 .39

HRþ/HER2� 299 19.1

Full stack 0.53 .23 0.61 .01**

Half stack 0.52 .32 0.60 .01**

Center 5 0.53 .24 0.59 .02**

HR�/HER2þ 61 68.9

Full stack 0.57 .20 0.62 .08*

Half stack 0.59 .14 0.60 .11

Center 5 0.56 .25 0.53 .35

HR�/HER2� 263 46.0

Full stack 0.52 .33 0.50 .49

Half stack 0.51 .42 0.50 .46

Center 5 0.52 .28 0.54 .15

All measurements were obtained from bias corrected images with poor, adequate, and good segmentation quality. *P< .10; **P< .05.

Table 3. AUCs from Logistic Regression in the Second Quality Restricted Cohort of 340 Patients Using Percent
Change in Mean cBPE as a Predictor for pCR

Patient Cohort N pCR Rate (%) Method

%DBPE0_1 %DBPE0_2

AUC P-Value AUC P-Value

Full Cohort 340 33.2

Full stack 0.51 .40 0.55 .08*

Half stack 0.51 .35 0.54 .11

Center 5 0.50 .49 0.50 .46

HRþ/HER2þ 57 31.6

Full stack 0.44 .25 0.51 .44

Half stack 0.45 .26 0.50 .48

Center 5 0.57 .21 0.49 .46

HRþ/HER2� 140 17.9

Full stack 0.54 .25 0.61 .05**

Half stack 0.53 .33 0.59 .07*

Center 5 0.57 .13 0.59 .08*

HR�/HER2þ 27 81.5

Full stack 0.78 .03** 0.66 .14

Half stack 0.87 .01** 0.65 .15

Center 5 0.78 .03** 0.64 .18

HR�/HER2� 116 41.4

Full stack 0.53 .32 0.58 .08*

Half stack 0.55 .17 0.57 .09*

Center 5 0.50 .47 0.50 .47

All measurements were obtained from bias-corrected images with adequate and good segmentation quality only. *P< .10; **P< .05.
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between the second quality-restricted cohort, and the initial 990
patients considered for analysis showed that the difference
between cohorts is not statistically significant, suggesting that
the included cohort reflects that of the population included in the
I-SPY2 trial. However, the results in the HRþ/HER2� subtype
for %DBPE0_2 were reinforced in the quality-limited cohort,
indicating that image quality may have different impacts in dif-
ferent subtypes. Results had higher relative AUCs for pCR
prediction.

AUC values were similar for each segmentation method with
only small differences for the full cohort as well as within sub-
types and do not appear substantially meaningful for pCR predic-
tion in the first cohort of 735 patients and when quality was
restricted to 340 patients. Interesting AUC results from %D
BPE0_2 are seen in Table 2 for the HRþ and HER2� subtype
group. Our results show that BPE at the later time point may be
predictive of HRþ/HER2� patient’s response to treatment with
no clear differences between methods. Variations within subtype
were relatively small in comparison to the AUC differences
between subtypes. For example, the differences in the full cohort
at T0 to T1 only vary by 0.01 in Table 3. Percent change in BPE
did not show strong predictive power, which can be generalized
to the full cohort. However, in HR� and HER2þ patients where
there was a higher percentage of pCR, the change in mean BPE
showed statistically significant predictive power toward pCR at
the earlier time point in response to taxane-based treatment.
Within the HR� and HER2þ subtype, the jump in AUC may sig-
nify change in BPE as a good imaging biomarker for early detec-
tion of pCR in a neoadjuvant setting. Although the HR�/HER2þ
cohort size consists of 27 patients, of whom 22 achieved pCR,
additional validation needs to be performed on a larger sample
size.

Our results corroborate those of the work of Dong et al., sup-
porting current findings that women with HR� tumors were
more likely to achieve pCR than HRþ tumors and indicating that
decreased BPE in women with HER2þ breast cancer may predict
effective response to NAC treatment (35). BPE is affected by hor-
monal changes where estrogen can lead to increased contrast
uptake in tissue as well as dilation of the blood vessels (36).

Fully automatic segmentation demonstrated some limita-
tions. Figure 7 visually shows some limitations of the full stack
method and the center 5 method. The full stack may pick up
noise and false masking in the outermost regions of the DCE-
MRI. The example on the left in Figure 7 shows an axial slice that
contains a contralateral breast artifact from an implanted venous
access port used to deliver chemotherapy. The artifact adversely
affected the automatic segmentation, which falsely classified the
artifact as tissue. The full stack method is also the most computa-
tionally intensive method and does not appear to provide more
predictive benefit than the half stack. Another limitation was
that the center referenced for the center 5 slice method may not
always have been well centered within the breast, and thus, it
might not give a representative sample of the tissue; whereas, the
half stack method may sample enough of the breast to capture all
of the FGT while excluding the other edges that may pick up arti-
facts. The example on the right in Figure 7 shows the smaller vol-
ume of interest using the center 5 slice method.

We showed that using the half stack method was the best
compromise to optimize our clinical decision tool through vali-
dation. This compromise uses fewer computational resources
while still retaining the same predictive performance as the full
stack method. Using the half stack method, our study, along with
many others, shows the importance of a longitudinal analysis
using BPE as a predictor for positive response to treatment.
Based on these observations, we recommend using the half-stack
volume of interest moving forward. Future plans include com-
paring our results to a manually segmented reference standard,
implementing automatic nipple slice detection, and adding con-
tralateral BPE into a multivariate model to hopefully improve
predictive performance for treatment response.

In conclusion, quantitative BPE calculated from DCE-MRI is an
emerging imaging biomarker that has shown promise as an indica-
tor of early response to neoadjuvant treatment. We showed that our
BPE calculations from different-sized subvolumes of DCE-MRI
scans are robust against each other and provide results with close
agreement. From our study, we recommend moving forward with
the half stack method for a fully automatic segmentation method
for repeatable quantitative BPEmeasurements.

Figure 7. Examples showing limitations of the
(A) full stack method, which contains an artifact
from an implanted venous access port used to
deliver chemotherapy, and the (B) center 5
method, which may not always be well-centered
within the breast, and thus might not give a rep-
resentative sample of the tissue.
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