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Quantitative kinetic parameters derived from dynamic contrast-enhanced (DCE) data are dependent on sig-
nal measurement quality and choice of pharmacokinetic model. However, the fundamental optimization
analysis method is equally important and its impact on pharmacokinetic parameters has been mostly over-
looked. We examine the effects of those choices on accuracy and performance of parameter estimation us-
ing both computer processing unit and graphical processing unit (GPU) numerical optimization implementa-
tions and evaluate the improvements offered by a novel optimization approach. A test framework was devel-
oped where experimentally derived population-average arterial input function and randomly sampled
parameter sets {Ktrans, Kep, Vb, �} were used to generate known tissue curves. Five numerical optimization
algorithms were evaluated: sequential quadratic programming, downhill simplex (Nelder–Mead), pattern
search, simulated annealing, and differential evolution. This was combined with various objective function
implementation details: delay approximation, discretization and varying sampling rates. Then, impact of
noise and CPU/GPU implementation was tested for speed and accuracy. Finally, the optimal method was
compared to conventional implementation as applied to clinical DCE computed tomography. Nelder–Mead,
differential evolution and sequential quadratic programming produced good results on clean and noisy input
data outperforming simulated annealing and pattern search in terms of speed and accuracy in the respective
order of 10�8%, 10�7%, and �10�6%). A novel approach for DCE numerical optimization (infinite impulse
response with fractional delay approximation) was implemented on GPU for speed increase of at least 2
orders of magnitude. Applied to clinical data, the magnitude of overall parameter error was �10%.

INTRODUCTION
Obtaining a better understanding of a (personalized) tumor or
disease microenvironment is quickly becoming a driving force
in a whole range of medical scenarios from earlier disease
diagnosis to image-based assessment of treatment efficacy (1).
In this context, dynamic contrast-enhanced (DCE) imaging is
increasingly used to help quantify vascular and tissue properties
as to inform on the functionality and dynamic behavior of the
disease and/or normal tissue. In terms of tissue perfusion and
permeability, this is typically achieved with the additional use of
tracer kinetic models that describe the flow of contrast agents
through the tissue (2).

DCE computed tomography (CT) and magnetic resonance
imaging (MRI) have been widely investigated, and despite their

obvious differences in methodology to measure dynamic con-
trast enhancement curves, they share the same parametric anal-
ysis approach: both use low-molecular-weight contrast agents
and as such they share mostly the same pharmacokinetic models
that are applied after the imaging signal is converted to contrast
concentration data (3). The delivery of the contrast agent to the
organ or region of interest (eg, a tumor) is reflected in the arterial
input function (AIF). Using the contrast enhancement curves in
the organ or region of interest as a response on the AIF, an
estimation of the tracer kinetic model parameters can be ob-
tained. An example of this would be the widely used 2-compart-
mental modified Tofts model (2).

Whereas increasing efforts are in place to help standardize
the acquisition and analysis methods of DCE imaging in both CT
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(4) and MRI (5), the solution of these tracer kinetic models is not
necessarily trivial and requires an optimization method to solve
for parameters in heterogeneous volumetric data. The effect of
image noise and voxel-based analysis has also been reported on,
showing a marked improvement in parameter robustness that
can be achieved by balancing preprocess filtering with informa-
tion loss (6). Regardless, parameters must be extracted given the
nonuniform, discrete, limited-time measurements. Implement-
ing the parameter estimation algorithm involves many other
design decisions including choice of data processing rate, con-
tinuous-to-discrete system mapping approach, and numerical
optimization algorithm. To the best of our knowledge, no inves-
tigations have been reported on the impact of the optimization
method used on resulting parametric maps. Yet, it is well-known
from other areas of research that significant differences can be
found in between optimization methods in their ability to ade-
quately resolve multiple variables simultaneously.

Given the large amount of data involved in processing DCE
parametric maps, it is further increasingly important that these
processes are as automated as possible to allow for useful inte-
gration into clinical workflows with a nearly real-time experi-
ence. Current implementations of kinetic models rely on manual
or semiautomated estimations of the fractional delay in contrast
arrival time at the region of interest. Not only is this a time-
limiting factor for a fully automated workflow, it will be shown
that lack of inclusion of this parameter in the optimization
process creates larger estimation errors. For this reason, moving
the optimization processes to a graphical processing unit (GPU)
offers known speed improvements over standard computer pro-
cessing unit (CPU) implementation of a fully inclusive optimi-
zation approach.

Having recently shown the improved correlation between CT-
and MRI-based perfusion parameters (7) when using a common
analysis platform to process DCE data regardless of the imaging
modality, the purpose of this paper is now to (1) quantify the effects
of system design choices (eg, processing sampling rate) and noise
(both aliasing and background) present in the data on accuracy and
speed of various CPU and GPU numerical optimization implemen-
tations and (2) to obtain a better understanding of parameter
accuracy in clinically relevant DCE-CT data.

METHODS
Continuous Time Model and Problem Statement
Various models exist to describe contrast solute exchange of iodine
or gadolinium-based DCE imaging methods. The modified Tofts
model is by far the most widely implemented technique and as such
it was felt worthwhile to investigate the design variations to better
understand the largest available literature of pharmacokinetic met-
rics reported. The modified Tofts model describes a linear time-
invariant first-order system. Data are acquired by the scanner,
which can be expressed as tissue concentration function Ct[n]Wc[n]
and AIF Ca[n]Wc[n] for n � {nonuniform discrete time points}.
Wc[n] is a rectangular window function that takes on the value 1 at
0 � n � c � T and 0 otherwise, where T is the sampling period. The
window function represents the fact that acquisition of measure-
ments stops after a certain time � c seconds.

The 2-compartmental model of tissue enhancement that
takes into account contributions from intravascular and the
interstitial space (which is what’s measured by the scanner) is
given by the following linear time-invariant system (2):

Ct(t)� Ca(t)��� Ktrans

1�HCT
�e�Kep(t��)u(t��)	Vb
(t��)�

� Ca(t)�H(t)
(1)

The parameters used in the model are summarized in Table 1.
The continuous-time system must be approximated by a dis-
crete-time system to carry out the computation of the output,
making use of the discrete measurements – like the ones ac-
quired from a scanner – as input to the system. The field of
digital signal processing (DSP) offers many methods to accom-
plish this. It therefore helps to examine the model in the fre-
quency domain by applying the continuous-time Fourier trans-
form resulting in equation (2).

Ct(j�) � Ca(j�)H(j�)

H(j�)
� ��

Ktrans

1 � HCT
�

Kep 	 j�
	 Vb�e��j�

H(j�) � �H1(j�) 	 H2(j�)	H3(j�)

(2)

Table 1. Tofts Model Parameters

Variable Description Units

Ct Tissue concentration of contrast agent as a function of time HU

Ca AIF representing the arterial concentration of contrast agent as a
function of time

HU

Ktrans Transfer constant from blood plasma into the EES mL/g/min

Kep Transfer constant from EES back to the blood plasma mL/g/min

Vb Blood volume per unit of tissue mL/g

t Time variable second

� Time delay from time of contrast injection to contrast arriving at
region of interest

second

HCT Hematocrit—fraction of red blood cells in blood. Value of 0.4 is
used during this investigation.

Fraction
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Examining the model in frequency allows the overall system
to be broken down into the following 3 simpler parts: sum-
mation of constant gain Vb with a first-order system, H1(j�)
and an overall delay element H3(j�). Note, the delay element
is required because the measurement site is upstream to the
input and it will take some amount of time for the contrast
agent to arrive at the measurement site. Frequency domain
analysis offers several discretization approaches—mainly fi-
nite impulse response (FIR) approximation and infinite im-
pulse response (IIR).

The objective is to find parameters Ktrans, Kep, Vb, � given the
measurements Ct[n]Wc[n] and Ca[n]Wc[n]. This is done using
constrained nonlinear numerical optimization attempting to
minimize the sum of square errors.

f(Ktrans, Kep, Vb, �) � 

n�0

c⁄T
�Ĉt[n]Wc[n] � Ct[n]Wc[n]�2

0� Ktrans �5
0� Kep �10
0� Vb �1
0� � �c

(3)

Where Ĉt�n	 represents samples of system output for a given set
of parameters Ktrans, Kep, Vb, � and a particular AIFCa[n]Wc[n].
The summation limits reflect the fact that our measurements are
cut off after n � c/T samples. The optimization constraints were
chosen to be within reasonable physical limits, and to aid certain
optimization algorithms converge quicker.

Note that to compute Ĉt�n	 the model (2) must be dis-
cretized. The discretization step introduces its own set of
errors. In particular the choice of sampling rate and contin-
uous-to-discrete mapping approach affect how well the dis-
crete-time system resembles the continuous-time system at
the range of frequencies of interest. The accuracy of fitted
parameters depends greatly on the accuracy of the system
approximating Ĉt�n	.

Discrete Approximation Methods and Sampling Rates
There are 2 main methods evaluated in this paper to approxi-
mating the continuous-time system by a discrete system. The
first method is the FIR using the window approach to filter
design and the second is IIR using bilinear transformation (also
known as Tustin’s method). How well the discrete system ap-
proximates the continuous-time system depends largely on the
sampling rate used during approximation (see online supple-
mental Appendix).

Although acquiring data at very high sampling rates is not
clinically feasible, this section discusses the ideal signal process-
ing case. Two factors affect the selection of appropriate sam-
pling rate, both of which depend on the cutoff frequency - i.e.,
the point in the frequency domain where the signal is zero.
Nyquist requires sampling rate to be at least 2x the cutoff
frequency to avoid aliasing error (8). The second factor for selecting
sampling rate is to ensure the discrete-time system matches the
continuous system closely up to the cutoff frequency. Even if
Nyquist rate criteria is satisfied, the discrete approximation may
not match the continuous system up to the cutoff frequency and
additional error may be introduced. In certain circumstances the

acquired data should be up-sampled and processed at a higher rate
to avoid introducing this additional error.

When the signals are not band limited and do not reach zero
past any frequency, like in this case, a cutoff frequency is
selected based on desired precision and computational feasibil-
ity. A low pass filter (LPF) is used prior to digitizing the signal to
attenuate components past the cutoff frequency. The degree of
attenuation in the stop band of the LPF depends on the noise
floor, which is the background noise that is technically infeasi-
ble to get rid of in the system.

In the ideal simulation case where population average AIF is
computed and then in turn used to generate signals, the noise
floor is due to errors in floating point arithmetic. Studying the
signals involved in the Tofts model, the cutoff frequency for the
ideal case can be determined based on when the frequency
components reach below the noise floor level (as if the low pass
filter was applied). It was determined that to achieve precision
on the order of single floating point arithmetic error, sampling
rate of 3500 Hz is required (more detail can be found in the
online supplemental Appendix).

Efficient Fractional Delay Approximation
As mentioned earlier, there is a delay between the time when the
contrast agent is injected and when it arrives at the measure-
ment site. This can be expressed as a continuous-time system
H3(j�). To account for this delay, the DCE analysis implemen-
tation could ask the user to visually evaluate the curves and
supply the delay value when the tissue response curve begins to
increase and optimize the other 3 kinetic parameters of the
model; this approach would be tedious for a user to perform
repeatedly for each voxel, error prone, as visual analysis could
differ between users, and error prone if the user specifies the
same delay value for a large physical area, which does not
account for the fractions of seconds that it took for tracer to
arrive at a further upstream site. Another approach to account
for the delay could involve analyzing tissue response curves
automatically based on the curve slope to determine the onset
time, and then optimize the other 3 kinetic parameters (6).
Heuristic search based on slope is susceptible to noise if there are
noisy spikes before the true onset or if the onset occurs between
samples. For this DCE analysis implementation, it was decided to
numerically optimize all 4 kinetic model parameters, including
the delay.

The discretization approaches, FIR and IIR, described in
previous sections can deal with only delay by whole number of
samples. For example if the system’s sampling period is 1 s, only
integer delay may be computed. This coarse approximation of
delay can lead to poor fit in other parameters—Ktrans, Kep, Vb. The
sampling rate can be increased to allow for a broader range of
delay values—for example, 10 Hz would allow for any delay that
is a multiple of 0.1 s—but at a proportional cost to memory
requirements and processing time. This problem can be allevi-
ated with the use of fractional delay approximation, which
allows for estimation of the output signal for any floating point
delay value (9). In our investigation the first-order Thiran filter
considerably improved the results with negligible additional
run-time cost. The delay in seconds can be implemented by
the following 2 operations: Delay By Whole # of Samples
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N � �� � T	 followed by Fractional Delay FD � � � T � �� � T	. The
first-order filter is provided in equation (4)

Hthiran(z) �
a1 	 z�1

1 	 a1z
�1

a1 �
1 � FD

1 	 FD

(4)

Testing Framework Design and Investigation Goals
The following were the investigation goals when designing the
test framework:

1. Derive theoretical background for the ideal case to validate
algorithm implementation and calibrate values for the
basic numerical optimization algorithm parameters.

2. Investigate and demonstrate the effects of discretization
method, sampling rates used during processing, noise, and
fractional delay approximation filters on the resulting ac-
curacy of the kinetic model parameters.

3. Investigate achievable accuracy of kinetic parameters ex-
tracted from clinical data set.

An experimentally derived functional form of population-aver-
age AIF (10) was sampled at 3500 Hz based on theoretical
discussion in the section with the heading “Discrete Approxi-
mation Methods and Sampling Rates” in this paper. A uniformly
distributed pseudorandom number generated was used to sam-
ple parameters Ktrans, Kep, Vb, � from the minimization con-

straints range (8). The tissue curves were then calculated for
each parameter set by a discrete-time system approximating the
continuous model at 3500 Hz.

The ideal generated tissue curves proceed to a measurement
stage where ideal high sampling rate signals are decimated and
additional Gaussian white noise may be added. A summary of
data sets analyzed and their canonical names used throughout
the paper are summarized in Table 2.

In this setup, the ground truth parameters for data sets 1 and
2 are known. The generated signals at 3500 Hz represent the
ideal case and it should be possible to recover the original
parameters used to generate the signals to within tolerances of
single floating point precision arithmetic. Running numerical
optimization on the ideal signals was used to calibrate and
configure the algorithms, as well as validate all additional cus-
tom code. The optimization algorithms evaluated in the simu-
lation include: sequential quadratic programming (SQP) (11),
downhill simplex (Nelder–Mead) (12), pattern search (PS) (13),
simulated annealing (SA) (14), and differential evolution (DE)
(15). Matlab (v2015b) optimization and global optimization
toolbox’s implementation of SQP, Nelder–Mead, PS, and SA
were used. Price et al. implementation of DE was used for the
experiments (15).

The algorithm parameters and values configured during
calibration are described in Table 3. To overcome problems of
local minima, SQP, Nelder–Mead, PS, and SA were initialized to

Table 3. Algorithm Parameters

Algorithm # Start Points Max Iterations

Exit Criteria

TolFun TolX

SQP 32 1000 10�8 10�8

Nelder–Mead 32 1000 10�8 10�8

CUDA Nelder–Mead 32 1000 10�8 10�8

PS 32 1000 10�8 NA

SA 32 1000 10�8 NA

DE 64 1000 10�8 NA

CUDA DE 512 1000 10�8 NA

Table 2. Data Sets Analyzed

Name Samples Duration Gaussian Noise

Data set 1 200 samples 1-second interval 200 seconds None

Data set 2 9 samples 2-second interval 209 seconds Added: � � 0

19 samples 5-second interval 
 � 6HU

9 samples 10-second interval

DCE-CT Brain Scan 9 samples 2-second interval 209 seconds Estimated: � � 0

19 samples 5-second interval 
 � 6HU

9 samples 10-second interval
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quasi-random starting points generated using the Halton se-
quence (16). A quasi-random sequence was used to avoid the
probability of generating tight clusters of starting points that
could arise when using a distribution generated by a pseudo-
random number generator. Each algorithm was configured to
exit based on the maximum number of iterations, a minimum
change in objective function (TolFun), and a minimum change
in estimated parameter (TolX) to avoid infinite run-time. DE
operates on a population of candidates that can conceptually be
considered as the number of starting points. Furthermore, the DE
objective function–based exit criteria was chosen such that the
algorithm would exit when the difference between minimum
and maximum values of the current objection function across
the population was found to be below the TolFun threshold. All
algorithm parameters were tweaked experimentally until the
accuracy of the results were within the maximum accuracy
allowable by a single floating point precision arithmetic or the
results produced by the algorithm did not show any further
improvement indicating numerical optimization algorithm lim-
itations.

After calibration of the algorithm parameters (TolX, TolFun,
etc.) and after having established an accuracy baseline, changes
to objective function calculation in the form of adding frac-
tional delay, changing discretization methods, and sampling
rate were implemented. The validity of such code changes was
verified by ensuring that at ideal processing rates, the accuracy
matched the baseline accuracy. Then, data sets 1 and 2 were
processed and the performance of each change was analyzed for
its impact on accuracy and speed.

Analyzing the impact results, 2 algorithms were ported to
CUDA to run on the GPU. In case of DE, the population size was
increased to 512 compared to its CPU counterpart to take ad-
vantage of the multithreaded GPU architecture and have each
optimization converge faster. Data sets 1 and 2 and an addi-
tional clinical DCE-CT brain scan were analyzed using this
numerical optimization implementation under an institutionally
approved REB protocol. The analysis was performed on CPU and
GPU.

In terms of underlying hardware and timing analysis, the
simulations were performed on several Xeon E5-2690 CPUs, and
for comparison, on Tesla K40m GPU. A high-throughput com-
puting cluster HTCondor was used; however, to narrow the
analysis to only the algorithm performance, the overhead of
data serialization, network transfer, and start-up time on remote

nodes were discarded—only the main algorithm run-time was
recorded.

In summary, earlier theoretical discussion led us to design
for the ideal case under a single floating point precision. The
algorithms were calibrated to perform within tolerances speci-
fied by the ideal case. With established confidence in correctness
of implementation and calibration parameters, 2 artificial data
sets were generated and run through the testing framework,
while several other parameters were changed including the sam-
pling rate and discretization method used on the Tofts model
and the use of fractional delay approximation versus rounded
delay for estimating the contrast arrival time at the site.
Because, the second data set had the same sampling and noise
profile of a scanned DCE-CT brain scan data set, when nu-
merical optimization was carried out on the clinical data set,
a conclusion on the accuracy of the extracted parameters
could be determined.

RESULTS
Algorithm Calibration
The percent relative error for each parameter is defined as
� � 100�|xtrue � xapprox| � |xtrue|. The percent relative errors
for each of the 4 parameters was combined into a single array of
errors and the mean statistic along with 95% confidence interval
was calculated and summarized in Table 4. Note that these
calibrations are processed at very large sampling rates as dis-
cussed in the section with the heading “Discrete Approximation
Methods and Sampling Rates” in this paper.

The SQP algorithm hits its optimization accuracy limit at
percentage errors 1 and 2 orders of magnitude below DE and
Nelder–Mead algorithms; decreasing tolerances and increasing
sampling rates did not produce better results for SQP. The likely
reason for this has to do with the fact that SQP is a gradient
approach and the function is quite flat around the optimal point.
This conclusion lead us to investigate nongradient-based ap-
proaches. From these approaches, Nelder–Mead and DE per-
formed quite well. However, PS and SA could not be configured
to achieve optimization values anywhere close to other algo-
rithms; further modifications of algorithm parameters (such as
increasing the number of starting points) produced marginally
better results at a cost of much higher run-times. Because of
these calibration results, long run-times and poor-accuracy PS
and SA algorithm were discarded as viable numerical optimiza-
tion candidates for this particular problem.

Table 4. Algorithm Calibration at 3500 Hz: Median of Percent Error and Timing

Algorithm Overall %Error Time (sec./voxel)

SQP 8.97 � 10�6 � 4.66 � 10�7 1030�16

Nelder–Mead 5.69 � 10�8 � 2.32 � 10�9 522 � 23.7

CUDA Nelder–Mead (IIR) 1.07 � 10�7 � 1.27 � 10�8 (14.5 � 9.82) � 10�3

DE 3.27 � 10�7 � 2.20 � 10�8 1230 � 12.3

CUDA DE (IIR) 3.35 � 10�7 � 2.59 � 10�8 (34.0 � 5.33) � 10�3

PS 2.79 � 1.04 13300 � 284

SA 3.85 � 1.23 2960 � 32.5
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Fractional Delay Analysis
Figure 1 shows the mean relative percent errors and the mean
run-time sec./voxel with 95% confidence interval for results
extracted from data set 1. IIR approximations at 1 Hz and 5 Hz
were used. Using rounded delay approximation, SQP performs
very poorly with the mean of the overall relative error at 56.9%
regardless of the sampling rate used to process the data. One
explanation for this is SQP exits criteria based on the objective
function change is triggered because the gradient is constant for
a range of delay values when rounding is used. Similar problems
with rounded delay can be seen with DE and Nelder–Mead
algorithm. With fractional delay approximation, instead of
rounding, the error was reduced from 10% to 0.4% for DE and
Nelder–Mead algorithms, and from 56.9% to 0.4% for the SQP
algorithm.

An alternative to approximating the fractional delay is to
use higher sampling such as 5 Hz. Somewhat surprisingly, SQP
showed no improvement when using rounded delay compared
to 1 Hz with the error still at 56.9%. The other numerical
optimization algorithms did show a significant improvement
where the overall error was 2.83%. However it should be noted
that increasing the sampling rate by some factor increases the
memory requirement by the same factor. Better accuracy can be

achieved at 1 Hz with fractional delay approximation (0.4%)
than at 5 Hz and using rounded delay (2.83%).

Figure 2 shows the fractional delay analysis run on data set
2, which has coarse, nonuniform sampling and additional � �
0, 
 � 6HU Gaussian noise added. Similar behavior can be
observed for the SQP algorithm—it exits prematurely, causing
very large errors (56.9%). Because of large amount of noise there
(aliasing and artificial), there was no significant improvement in
accuracy when using fractional delay approximation. It should
be noted that in this case, the addition of the fractional delay
approximation did not add significant amount of overall com-
putation time.

In general, fractional delay approximation greatly improves
accuracy of gradient-based numerical optimization algorithms
such as SQP. When the noise profile of the data permits, it also
improves accuracy significantly without having to process at
higher sampling rates. Because of this, fractional delay approx-
imation was added to all further analysis simulations and to the
algorithms used to analyze clinical data.

Discrete Approximation and Sampling Impact Analysis
Figure 3 shows the means of relative percent errors across all
parameters, as well as the mean logarithm of sec./voxel with

Figure 1. Data set 1. Impact of rounded delay vs fractional delay analysis processed at 1-Hz and 5-Hz infinite impulse
response (IIR) on the mean overall %error and mean run-time per voxel.
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95% confidence interval. The simulation compares 2 discrete
approximation methods—FIR and IIR—and the effect of up-
sampling data set 1 and using the more accurate discrete ap-
proximations that are a direct result of higher sampling rate.
Fractional delay approximation was used during this analysis.

In terms of accuracy, the algorithms perform almost iden-
tically across sampling rates and discretization methods. Data
set 1 was sampled at 1 Hz; the high-frequency information is
lost forever regardless of how much the signals are up-sampled.
However, if the signals were processed at 1 Hz, additional error
would be introduced owing to the discrete-system poorly ap-
proximating the continuous-time system at this low rate. Figure
3 shows that accuracy can be increased by up-sampling the data
and processing at higher rates. It is also evident that IIR approx-
imation of the Tofts continuous-time system is more accurate
than the FIR approximation at lower sampling rates, as the
accuracy achieved by IIR approximation at 1 Hz is slightly better
than the overall accuracy achieved by FIR approximation at 5
Hz. The mean of errors for each individual parameter when
using IIR approximation at 1 Hz is {0.27%, 0.10%, 8.81%,
0.13%} for the parameters {Ktrans, Kep, Vb, �}, respectively. The
overall mean error across all parameters is 2.33%. By switching
to IIR approximation at 5 Hz, the overall mean of errors reduces

to 0.40%, or individually, the error for each parameter becomes
{0.46%, 0.16%, 0.84%, 0.12%}, showing large improvements
for Vb parameter as a result of changing discretization method
and increasing the sampling rate.

The run-time for the algorithm is shown as a log plot. For all
sampling rates, IIR runs faster than FIR. The reason for this has
largely to do with the fact that for this particular system, the IIR
can be implemented in a single loop over the input data, so the
complexity is 0(M), where M is the size of the signal. On the
other hand, direct convolution requires 2 nested loops and has
complexity 0(M2). When signal size is large (such as when
higher sampling rate is used), convolution implementation can
be sped up by zero-padding the signals, computing the fast
Fourier transform (FFT), multiplication of frequency bin values,
and IFFT (17), in which case the complexity is 0(Nlog(N)), where
N is the size of padded signals. The implementation used during
simulation uses the FFT approach, which handles larger signals
much better than convolution. The algorithm complexity related
to input size is evident in the timing plot, where FIR versions
increase steadily as the sampling rate (and hence signal size)
grows, whereas the IIR versions remain relatively flat.

The combination of better scalability as a result of algo-
rithm complexity and the lower memory footprint requirement

Figure 2. Data set 2. Impact of rounded delay vs fractional delay analysis processed at 1-Hz and 5-Hz IIR on the mean
overall % error and mean run time per voxel.
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owing to better accuracy at lower sampling rates were the main
reasons for using IIR approximation of the system in the CUDA
implementation of DE and Nelder–Mead algorithms. The highly
optimized CUDA implementation of the numerical optimization
algorithms ran 2 orders of magnitude faster than their CPU
counterparts.

Data set 2 was sampled nonuniformly, coarsely (average
sampling rate 0.18) and had additional Gaussian noise (� �
0, 
 � 6HU). Although the accuracy improvements from in-
creased sampling and IIR approximation are very small, they are
still evident. This analysis conveys the fact that data sets such as
these need to be processed at only 1 Hz, as no further accuracy
improvements can be gained by up-sampling to ensure the
discrete-time system better approximates the continuous-time
system. As a result of this analysis, the IIR approximation was
chosen as the best discretization approach for this problem.

Figure 4 shows the results of the error analysis for data set
2 as a result of a changing the data sampling times. The resulting
mean percentage error in parameter estimation was the smallest
for the 1-s interval sampling interval and it increased with the
increasing sampling rate. The clinical scan intervals varied de-
pending on which part of the enhancement curve was being
measured and the percentage errors therefore roughly corre-

spond to the error values closest to the 3- and 5-s sampling
intervals.

GPU Implementation and Clinical Data Analysis
Discrete approximation and sampling impact analysis showed
that regardless of the optimization algorithm, IIR filter approx-
imation produced more accurate results at lower sampling rates.
In addition, fractional delay approximation allows for greater
accuracy at lower sampling rates. Owing to excellent calibration
accuracy, Nelder–Mead and DE, using IIR approximation and
fractional delay filter, were chosen to be implemented in CUDA
to run on the GPU. The calibration results from Table 4, along
with identical accuracy compared to CPU counterparts (Figures
3 and 4), serve as verification that the algorithm implementation
in CUDA is correct.

The best and fastest implementation (CUDA Nelder–Mead,
with IIR filter and fractional delay approximation) was used to
analyze a clinical DCE-CT brain scan. By analyzing CT scan
areas that should contain a uniform CT number value, it was
determined that the scanner may be adding as much as 
 � 6HU
noise to the data. The noise was assumed to be Gaussian distrib-
uted (18) and the same population AIF was used as for the
simulated curves. From earlier analysis on data set 2, which had

Figure 3. Overview of the impact of choice of sampling and discretization method on mean percentage overall error
and mean run-time per voxel for Data set 1.
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the same sampling and noise profiles as this CT data set, it can be
concluded that the overall accuracy of parameters estimated
from the CT data set is less than 10%.

Figure 5 shows a volume rendering of Vb parameter on the
left, and the onset delay parameter rendering color coded such
that red corresponds to earlier onset time and blue corresponds
to later onset time.

Figures 3 and 4 show the GPU-based algorithm achieves
speed improvements of 2 orders of magnitude compared with
their CPU counterparts when run on generated data. Tables 5
and 6 show speed improvement when processing CT brain scan
data. The first row is the baseline CPU implementation that uses
FIR discretization of the Tofts model. The second row shows a
modest speed increase because of changing the discretization to
IIR. Finally the benefits of implementing the algorithm to run on
a GPU are shown in the last row.

DISCUSSION AND CONCLUSIONS
Numerical optimization algorithms were carried out by design-
ing for the ideal signal processing case at single floating point

precision accuracy limits. Nelder–Mead, DE, and SQP produced
good results under ideal conditions, achieving overall relative
error 5.69�10�8%, 3.27�10�8%, and 8.97�10�6%, respec-
tively. SA and PS were found to be unsuitable for this problem
because the lowest overall relative error that could be achieved
was 3.85% and 2.79%, respectively.

The algorithms were designed and implemented to extract
parameters from data sets with a wide range of sampling and
noise profiles—ranging from the ideal and clinically infeasible
data sets without noise to noisy and sparsely sampled CT brain
data sets. To accomplish this, the thresholds for exit criteria were
chosen to be of the order of 10�8%. For very noisy data sets, this
most likely creates a large amount of unnecessary processing
that costs extra time; however, that is the trade-off to be able to
achieve high accuracy for low-noise data sets as well. In cases of
high-noise data sets, the numerical optimization exit is triggered
when change in candidate parameter drops below threshold,
rather than objective function target threshold. This is why for
DE, the exit criteria were based on thresholding the difference
between minimum/maximum objective function values across

Figure 4. Data set 2, sampling analysis. Impact of data sampling on parameter estimation accuracy for (Ktrans,
Kep, Vb, �).
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the population. Furthermore, numerical optimization algorithms
that find local minima (compared to algorithms designed with
global optimization in mind such as DE) were restarted many
times at different initial starting points. Although the continu-
ous objective function described in equation (3) may not have
multiple minima, the discrete implementation of the objective
function has many regions that would cause a numerical opti-
mization algorithm to exit without reaching a point that would
result in a better fit. For example, if rounded delay is used at
1-Hz sampling, the objective function is constant for all � � (0,
0.5), creating a saddle point which could cause numerical opti-

mization to exit. This is especially evident in the gradient-based
approach early termination summarized in Figures 1 and 2.
Therefore as many as 32 starting points were used; using fewer
starting points yielded poorer accuracy in the ideal optimization
case. Having designed an algorithm that is capable of achieving
best results in terms of accuracy for a very wide range of data,
and a framework under which to conduct tests, it is possible to
design a faster algorithm (by increasing thresholds of the exit
criteria) that is able to achieve best results for the specific
clinical data set.

Once numerical optimization algorithms were working to
within designed tolerances of single floating point precision,

Table 5. Nelder–Mead Numerical
Optimization CPU vs GPU Run-Time CT Brain
Scan

Algorithm
Mean Time
sec./Voxel

Relative
Speed

CPU FIR 1 Hz 4.37 1.0

CPU IIR 1 Hz 3.05 1.4

CUDA IIR 1 Hz 0.0026 1680.8

Table 6. DE Numerical Optimization CPU vs
GPU Run-Time CT Brain Scan

Algorithm
Mean Time
sec./Voxel

Relative
Speed

CPU FIR 1 Hz 2.51 1.0

CPU IIR 1 Hz 1.93 1.3

CUDA IIR 1 Hz 0.0068 369.1

Figure 5. Volume rendering of Vb (left) and onset delay (right) parameters.
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experiments were conducted to vary other data processing steps
and digital signal processing filters. It was shown that using
fractional delay approximation filter stabilized gradient-based
numerical optimization approaches and allowed the algorithm
to produce accurate results instead of terminating early. Fur-
thermore, fractional delay approximation allowed the discrete-
time approximation for the Tofts model at lower sampling rates.

It was also shown that IIR discrete approximation of con-
tinuous-time Tofts model produces more accurate results at
lower sampling rates. The recursive filter implementation has
lower complexity compared to FIR discrete approximation,
which requires convolution. This translates to lower memory
footprint and faster processing times.

The clinical DCE-CT brain scan volume of interest contains just
over 6 million voxels to analyze, after delineating and discarding
areas outside the patient and bone. Combination of the 2 conclu-
sions above led to an efficient port of the CPU-based algorithms
into CUDA to run on the GPU. The framework can be used inde-
pendent of image segmentation and run on every voxel or within a
specific region of interest. The improvements in correlation be-
tween CT- and MRI-based measurements of tumor perfusion pa-
tients when a common analysis platform is used falls outside the
scope of this article but is being reported on elsewhere (4).

To obtain entire brain perfusion maps required 4.3 hours
(based on run-times in Table 5) on a single GPU; the same
computation would take 179 days when processing on a single
CPU (based on run-times reported in Table 6). If volume of
interest is narrowed down further, for example, to only the

tumor and surrounding tissue, which span 5 cc or just over
100,000 voxels, then kinetic model parameters can be computed
in 4.3 min. Several orders of magnitude improvements such as
these were also reported by Wang et al. (17) who achieved an
even better 0.00025 s/voxel (compared to 0.0026 s/voxel) com-
putation times using the block-FFT approach (FIR approxima-
tion of the Tofts model) on a less powerful GPU than Tesla K40.
It should be noted that the implementation used for this paper
used 32 starting points (effectively attempting to optimize each
voxel 32 times to ensure global minimum) and stringent exit
criteria. During CUDA code optimization attempts, it was found
that the largest remaining barrier to even further speed optimi-
zation was noncoalesced memory access as a result of the delay
parameter �. In particular, on NVIDIA GPUs, the best speed can
be achieved when the following holds: if a thread N reads
memory location M, then thread N � 1 reads memory location
M � 1 for all threads executing within a scheduled block. When
implementing the delay which offsets the index of variables
being read/written, coalesced memory access optimization does
not apply, causing performance decrease.

A test framework such as this can further be used to determine
the sampling rate required to process clinical data and gauge the
magnitude of error that should be expected from the computed
parameters, as well as calibrate numerical optimization algorithms
to ensure best possible accuracy has been achieved.

Supplemental Materials
Supplemental Appendix: http://dx.doi.org/10.18383/j.tom.2018.

00048.sup.01
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