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Radiomics is an image analysis approach for extracting large amounts of quantitative information from medi-
cal images using a variety of computational methods. Our goal was to evaluate the utility of radiomic fea-
ture analysis from 18F-fluorothymidine positron emission tomography (FLT PET) obtained at baseline in predic-
tion of treatment response in patients with head and neck cancer. Thirty patients with advanced-stage oro-
pharyngeal or laryngeal cancer, treated with definitive chemoradiation therapy, underwent FLT PET imaging
before treatment. In total, 377 radiomic features of FLT uptake and feature variants were extracted from vol-
umes of interest; these features variants were defined by either the primary tumor or the total lesion burden,
which consisted of the primary tumor and all FLT-avid nodes. Feature variants included normalized measure-
ments of uptake, which were calculated by dividing lesion uptake values by the mean uptake value in the
bone marrow. Feature reduction was performed using clustering to remove redundancy, leaving 172 repre-
sentative features. Effects of these features on progression-free survival were modeled with Cox regression
and P-values corrected for multiple comparisons. In total, 9 features were considered significant. Our results
suggest that smaller, more homogenous lesions at baseline were associated with better prognosis. In addi-
tion, features extracted from total lesion burden had a higher concordance index than primary tumor features
for 8 of the 9 significant features. Furthermore, total lesion burden features showed lower interobserver
variability.

INTRODUCTION
Concomitant chemoradiation is used as an organ-sparing treat-
ment strategy for advanced oropharyngeal and larynx cancers.
Although outcomes vary based on stage, site, and other factors
including human papilloma virus status, the 3-year progres-
sion-free survival of patients with advanced-stage head and
neck cancer after chemoradiation therapy (CRT) is �60% (1).
Patients in whom cancer recurs after initial CRT are consid-
ered for salvage surgery; but, patients with presalvage Stage
IV disease and those with presalvage Stage III disease at
recurrence have poor prognosis with a median survival of �6
month and 14 months, respectively (2). As both new targeted
therapies and radiation therapy (RT) delivery methods are
developed, there is a need to develop biomarkers that may
help stratify patients a priori for different treatment modal-
ities or that can predict the likelihood of durable response

versus ultimate failure earlier during therapy to allow for
adaptive treatment approaches.

Positron emission tomography (PET) with 18F-fluorodeoxy-
glucose (FDG PET) is widely used in pretreatment staging and
post-therapy evaluation of head and neck cancers after RT or
CRT. Because of its high negative predictive value in detection of
recurrent disease, the National Comprehensive Cancer Network
Guidelines now recommend omitting consolidative surgery
(neck dissection) if the post-therapy FDG PET obtained at least
12 weeks after initial therapy is negative for residual tumor (3).
However, the role of FDG PET in predicting failure of CRT or
monitoring treatment response to (chemo)radiation during or
early after treatment is not well established (12 weeks after
initial therapy is typically required).

Radiation therapy and chemotherapy affect proliferation
rates in treated tumors. In addition, pretreatment proliferation
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rates may be a determinant of sensitivity to chemotherapy and
RT. Assessment of cancer proliferation rates and changes in cell
proliferation rate may therefore accurately predict ultimate
therapeutic response. 3=-deoxy-3=-18F-fluorothymidine (FLT), a
thymidine analogue that is not incorporated into DNA, is the
most widely studied PET agent for imaging cell proliferation.
The intracellular trapping of FLT is regulated by thymidine
kinase 1, a key enzyme in DNA synthesis, with high activity
during the proliferative phase of the cell cycle and low activity
in the quiescent phase (4). Several studies have shown that
untreated head and neck cancers can be imaged with FLT PET
with a high tumor-to-background contrast (5–9).

Radiomics is an image analysis approach with the goal of
extracting large amounts of quantitative information from med-
ical images using a variety of computational methods. Extracted
features include measurements of intensity (uptake), shape, and
texture. The objective of this study was to evaluate the utility of
FLT PET radiomic features obtained at baseline in the prediction
of treatment response in patients with head and neck squamous
cell cancer (HNSCC). The present work provides a basis for
further optimization of predictive FLT PET features, which can
then be further evaluated in future clinical trials.

METHODOLOGY
Patients
A single-center prospective study was performed in patients
who had histologically confirmed HNSCC and were scheduled to
receive definitive concurrent CRT per standard cancer care.
Other eligibility criteria included a Karnofsky score of �60,
acceptable bone marrow reserve (absolute neutrophil count,
�1.5 K/mL; platelet count, �100 K/mL) and kidney (serum
creatinine, �2.1 mg/dL), and liver function (bilirubin, �1.0
mg/dL; ALT/AST, �2.5 times upper limits of normal for the
institution). These criteria generally excluded patients who were
not robust enough to receive combined modality therapy. Pa-
tients were excluded if they had chemotherapy or radiotherapy
within 4 weeks before the study (no induction chemotherapy) or
were receiving investigational drugs or nucleoside analogues
(such as 5-Fluorouracil that could interfere with FLT uptake). All
patients were scheduled to undergo a baseline FLT PET scan
within 30 days of the initiation of CRT. This was generally done
the week before starting treatment. Platinum-based chemother-
apy was started the first day of radiotherapy, either with high-
dose cisplatinum or a combination of cisplatinum or carboplati-
num combined with a taxane. Patients were followed every 3
months with clinical exams for the first year per our clinical
routine and 2–4 times per year subsequently. Surveillance FDG
PET scans were obtained at 3–4 months after treatment. Subse-
quent follow-up imaging was individualized on the basis of
symptoms and clinical findings. This research was approved by
the University of Iowa Institutional Review Board, and all sub-
jects signed an informed consent. The research was conducted
according to the principles of the Declaration of Helsinki and
Good Clinical Practice.

In total, 30 patients with squamous cell head and neck
cancer, including 27 oropharyngeal cancers, 1 unknown pri-
mary, and 2 laryngeal cancers, were available for analysis. There
were 26 male and 4 female patients with an age range of 36–76

years (median, 57 years). The demographics of the patients
including distribution of tumor stages are summarized in
Table 1. After a median follow-up of 26 months (range, 7–36
months), 8 patients died of disease, 1 patient was alive with
distant metastasis (DM), and 21 patients had no evidence of
disease. Among the 8 patients who died from the disease, 4
patients had local recurrence (LR), 1 patient had local recurrence
and distant metastasis (LR � DM), and 3 patients had DM alone
at the time of initial recurrence or progression. Three patients
underwent salvage surgery after completion of radiotherapy
because of local recurrence and had no evidence of disease at
last follow-up. The median follow-up in patients with no evi-
dence of disease was 25 months.

FLT PET Imaging
For the synthesis of FLT, fluorine-18 fluoride was reacted with
3=-anhydrothymidine-5=-benzoate following the procedure of

Table 1. Overview of Patients in the FLT PET
Study (n � 30)

Patient
Characteristics Categories Total [%]

Median
[Range]

Age at
diagnosis
(years)

57 [36–76]

Sex Male 26 [86.7]

Female 4 [13.3]

Site Oropharynx 27 [90.0]

Larynx 2 [6.7]

Unknown
primary

1 [3.3]

T-Stage Tx 1 [3.3]

T1 1 [3.3]

T2 15 [50.0]

T3 7 [23.3]

T4 6 [20.0]

N-Stage N0 5 [16.7]

N1 5 [16.7]

N2 16 [53.3]

N3 4 [13.3]

Overall
Stage

II 2 [6.7]

III 9 [30.0]

IVA 13 [43.3]

IVB 6 [20.0]

Follow-Up
(Months)

22.0 [4.6–36.0]

Survival
Status

Progression-
free
survival

21 [70]

Progression
or
death

9a[30]

a Consists of 4 patients with LR, 4 patients with DM, and 1 patient with
LR � DM.
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Machulla et al. (10). The benzoate protecting group was removed
with base hydrolysis and the product purified by semiprep HPLC
with 10% ethanol/90% isotonic saline as the mobile phase with
typical yields of 5%–8%. FLT was infused via a syringe pump
over 2 minutes followed by 10-mL saline flush administered
manually. The administered activity of FLT was 2.6 MBq/kg
(0.07 mCi/kg) with a maximum dose of 185 MBq (5 mCi).
Imaging was performed on a Siemens ECAT EXACT HR � PET
scanner (Siemens Medical Solutions USA, Inc., Knoxville, TN)
for 40 minutes, starting 60 minutes after injection. Transmission
imaging was performed before the injection of FLT. Whole-body
scans were obtained for 28 patients, and scans of the head and
neck region were obtained for only 2 patients. Images were
iteratively reconstructed (2 iterations � 8 subsets, Gaussian 8.0
mm, zoom � 1.2) with a resulting voxel size of 4.29 � 4.29 �
4.29 mm.

Image Analysis
For primary tumors and FLT-avid lymph nodes, volumes of
interest (VOIs) defined by high FLT uptake above background
were generated by a nuclear medicine physician using a semi-
automated segmentation software developed for head and neck
tumors in PET (11). Primary tumors were segmented on FLT PET
in all patients except for 1 patient who had an unknown primary
tumor site. FLT-avid nodal metastases in the neck were identi-
fied in 23 patients. In total, 83 lesions/VOIs were identified using
the semiautomated PET segmentation tool. Each VOI received an
individual label. Subsequently, these labels were used to define
2 different measurement region categories (ie, VOIs) from which
radiomic features were extracted. The first measurement region
category PT consisted of VOIs representing primary tumor only.
The second category LB was the total lesion burden, which
corresponds to the primary tumor and all FLT-avid nodes com-
bined. To calculate quantitative features for LB, all lesion pre-
viously segmented in a FLT scan were combined into 1 image
mask, forming a single VOI. For each measurement region,
radiomic features describing intensity, shape, and texture prop-
erties were calculated by using the open-source packages PET-
IndiC (12) and pyradiomics (13). All features were derived from
standardized uptake value (SUV) normalized PET images. A total
of 104 quantitative baseline PT features and an additional 99
baseline LB features were extracted from each patient. Note that
5 shape features (ie, slice maximum 2D diameter, column max-
imum 2D diameter, row maximum 2D diameter, maximum 3D
diameter, and sphericity) are meant for single, connected VOIs,
so these were excluded from the LB features.

For texture features, the histogram bin size was fixed at 0.25
SUV. The selected bin size follows van Velden et al. (14), where
the total number of bins will be �64 bins, depending on the
lesion SUV range. A fixed bin size is used rather than a fixed
number of bins because lesion SUV ranges vary among patients
and fixing the number of bins is less appropriate for the clinical
setting (15).

In addition to SUV-based measurements, normalized mea-
surements of uptake were calculated by dividing lesion SUVs by
the mean SUV in the bone marrow. The goal of normalization is
to compare the cell proliferation in cancerous tissue to that of a
normal structure. Normalization of SUVs was accomplished by

generating a VOI around the largest vertebra completely visible
in the field of view using the same segmentation software
described above. In total, 30 vertebral VOIs were created using
the semiautomated segmentation tool. For most patients, the L5
vertebra was segmented. The L4 vertebra was segmented for 1
patient owing to the L5 vertebra not being completely within the
field of view. Because 2 patients had PET scans that did not
include lumbar vertebrae, the T4 or T6 vertebra were segmented
instead. Patient SUVs were then normalized by dividing by the
mean vertebral SUV, and radiomic features were again calcu-
lated from the lesion VOIs. In total, 87 vertebra-normalized PT
features and 87 vertebra-normalized LB features were generated
from each patient. Note that normalization is not applicable for
11 features (ie, shape features) and has no effect on Q1–Q4
distributions, skewness, and kurtosis. For texture features based
on normalized uptake, the histogram bin size was fixed at 0.125
(unitless). Note that the bin size is reduced compared with
unnormalized texture features (bin size, 0.25), because normal-
ization reduces the lesion intensity ranges compared with un-
normalized lesions. In total, 377 baseline radiomic features were
extracted from each patient.

Feature Reduction
Redundancy of quantitative features was reduced by using a
clustering algorithm. The goal of feature reduction was to re-
place highly correlated features with a single representative
feature. Such a step could be achieved by utilizing a PCA-based
feature selection step [eg, FactoMineR (16)]. However, due to the
sparseness of our feature space, a more appropriate feature
selection method was utilized. First, the similarities of features
were calculated by determining the Pearson correlation (r) for all
pairs of features. Next, features were clustered according to
similarity using an affinity propagation (AP) clustering algo-
rithm (17), an unsupervised dimension reduction technique that
others have utilized in the analysis of quantitative imaging
features (18–20). An advantage of AP clustering over k-means
clustering is that the total number of clusters at the output is
automatically determined. Moreover, the algorithm is able to
handle infinite dissimilarities, meaning 2 features that are
highly dissimilar will not be placed in the same cluster. There-
fore, to allow features with only strong correlations defined by
r � 0.90 to be clustered together, all features with pairwise
similarity values less than 0.90 were artificially set to have
infinite dissimilarity before application of the AP clustering
algorithm. As output, the algorithm produces a reduced set of
representative exemplar features. An exemplar feature can be
either a single feature with no strong correlations with other
features or a representative of a cluster containing �2 features.
The feature reduction step was performed using the apcluster
package (21) in version 3.2.3 of the R statistical software (22).

Statistical Evaluation
Survival analysis was conducted to estimate and test the effects
of quantitative features in the reduced set on progression-free
survival (PFS). Time to event for PFS was defined as time from
start of treatment to recurrence or death. Effects on survival
during the 36-mo, post-treatment period were of primary inter-
est. Hence, subjects who did not experience an event by month
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36 were censored at that point in time for the analysis. Cox
regression was used to model the effects of individual quantita-
tive features on survival. Using multiple predictors in a Cox
regression model on a small cohort has the potential to overfit
the patient data. Therefore, a Cox model with a single predictor
was chosen to avoid overfitting. Estimated effects are summa-
rized with hazard ratios (HRs) and the concordance (c)-index.
The c-index is an estimate of the probability that, out of 2 ran-
domly selected patients, the model can discriminate which patient
will survive longer (23). Values can range from 0.0 to 1.0, with 0.5
indicating absence of discriminant value for the model, 0.7 indi-
cating reasonable discriminant value, and 1.0 indicating perfect
discriminant value. Two-sided P-values for tests of significance of
features in the models are reported. To account for multiple statis-
tical tests, the false-discovery rate (FDR) was computed using the

Benjamini–Hochberg method (24). Features with a FDR of 10%
were identified as significant. All statistical tests were performed
using the survival package (25) for R.

Interobserver Variability Analysis
To study the variabiltity of feature measurement, a second observer
independently generated segmentations (VOIs) for the same 83
lesions and features were calculated as described above. The fea-
tures extracted from the second observer’s VOIs were then com-
pared to the features extracted from the VOIs of the first observer.
Agreement in feature measurement was compared using the intra-
class correlation coefficient (ICC). To investigate the impact of
interobserver segmentations on model performance, a separate
model for each predictive feature was generated using segmenta-
tions by the second observer. The performance of these models
were then compared to the initial models from the first observer.
Differences of model performance were reported as changes in
c-index values.

RESULTS
Feature Reduction
The feature reduction step took the 377 FLT features as input and
clustered similar features together to produce 172 uncorrelated
clusters. Figure 1 shows the distribution of cluster sizes. Ninety-
six clusters had a size of one, meaning there were 96 features
(25.5%) that were not highly correlated with any other feature
(r � 0.9). The remaining 76 clusters had size of �2, with the
maximum being a size of 10.

Correlation of Baseline Features With Treatment
Outcome
Feature performance was estimated using each feature as a
predictor in a univariate Cox regression model. A total of 37

Figure 1. Cluster size distribution for the 172
clusters identified in the feature reduction step.

Table 2. Comparison of Predictive FLT Features (Progression-Free Survival) With 3 Commonly Used Features,
SUVmax, SUVpeak, and SUVmean

Feature (VOI, normalization) P-Value HR [95% CI] FDR c-Index

Gray-Level Non-Uniformitya (LB, N) 0.0002 3.11 [1.70, 5.68] 0.043 0.86

Gray-Level Non-Uniformityb (LB, N) 0.0012 3.12 [1.56, 6.24] 0.058 0.72

Spherical Disproportion (LB, U) 0.0012 4.10 [1.56, 10.80] 0.058 0.74

Information Measure of Correlation 2c (LB, U) 0.0017 0.32 [0.16, 0.65] 0.058 0.79

Zone Percentageb (LB, N) 0.0020 0.18 [0.04, 0.78] 0.058 0.75

Gray-Level Non-Uniformitya (LB, U) 0.0020 2.21 [1.40, 3.47] 0.058 0.83

Q1 Distribution (LB, U) 0.0042 0.36 [0.17, 0.75] 0.088 0.78

Volume (LB, U) 0.0043 2.44 [1.38, 4.32] 0.088 0.74

Information Measure of Correlation 1c (LB, U) 0.0046 4.07 [1.23, 13.42] 0.088 0.78

SUVmax (LB, U) 0.1916 0.60 [0.27, 1.33] 0.395 0.66

SUVpeak
d (LB, U) 0.3341 0.69 [0.32, 1.48] — 0.63

SUVmean
d (LB, U) 0.5038 0.76 [0.34, 1.71] — 0.62

Abbreviations: VOI, volume of interest; HR, hazard ratio; CI, confidence interval; FDR, false-discovery rate; PT, primary tumor; LB, lesion burden; U,
unnormalized; N, normalized.

a Calculated from the gray-level run length matrix (GLRLM).
b Calculated from the gray-level size zone matrix (GLSZM).
c Calculated from the gray-level co-occurrence matrix (GLCM).
d Not selected in feature reduction step, so FDR was not calculated.
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exemplar baseline features (21.5%) had P-values below the 5%
level. After adjusting for multiple testing to control the false-
discovery rate, a total of 9 baseline features were identified as
significant at the set 10% FDR level. Table 2 summarizes the
unadjusted Cox regression P-values, estimated hazard ratios
with corresponding confidence intervals, FDRs, and c-index
values for the 9 significant features as well as for 3 commonly
used features (ie, SUVmax, SUVpeak, and SUVmean). SUVpeak was
defined as the highest average uptake within a 1 cm3 sphere that
is completely contained within the VOI. Note that SUVpeak and
SUVmean were not selected in the feature reduction step, so
univariate analyses were done separately and no FDRs were
calculated for SUVpeak and SUVmean. The clinical parameter for
primary tumor stage (T-stage) was not significantly associated
with survival.

Figure 2 shows a heatmap of correlations among the 9
significant features. The feature reduction step used a high
correlation threshold (r � 0.90), so moderate correlations among
the best-performing features still exist. By showing the correla-
tions of the features in a heatmap, good-performing lesion
characteristics, rather than individual features, may be ob-
served. For example, features that measure lesion size (eg, vol-
ume) and shape (eg, spherical disproportion) had good perfor-
mance. Also, measures of lesion heterogeneity (eg, gray-level
nonuniformity and zone percentage) had good performance.

Interobserver Variability Analysis
Table 3 shows the results of the variability analysis for the 9
significant features and the commonly used features SUVmax,
SUVpeak, and SUVmean. Gray-level nonuniformity from the gray-
level size zone matrix (GLSZM) had moderate agreement be-
tween the 2 observers. The other 8 significant features had
strong agreement between the 2 observers. Both SUVmax and

SUVpeak had perfect agreement between the 2 observers and
SUVmean had strong agreement.

To assess model performance stability, the segmentations of
the second observer were used to produce a second model for

Table 3. Interobserver Agreement for
Predictive FLT Features and 3 Commonly Used
Features, SUVmax, SUVpeak, and SUVmean

Feature (VOI, normalization)
Measurement

Agreement

Gray-level Non-Uniformitya (LB, N) 0.99

Gray-level Non-Uniformityb (LB, N) 0.75

Spherical Disproportion (LB, U) 0.96

Information Measure of Correlation 2c (LB, U) 0.98

Zone Percentageb (LB, N) 0.91

Gray-level Non-Uniformitya (LB, U) 0.99

Q1 Distribution (LB, U) 0.90

Volume (LB, U) 0.99

Information Measure of Correlation 1c (LB, U) 0.95

SUVmax (LB, U) 1.00

SUVpeak (LB, U) 1.00

SUVmean (LB, U) 0.94

Measurement agreement was calculated as the Intraclass Correlation
Coefficient (ICC) between the feature values of the first and second
observer.

Abbreviations: VOI, volume of interest; LB, lesion burden; U, unnormal-
ized; N, normalized.
a Calculated from the gray-level run length matrix (GLRLM).
b Calculated from the gray-level size zone matrix (GLSZM).
c Calculated from the gray-level co-occurrence matrix (GLCM).

Figure 2. Heatmap of correlations among the 9
baseline 18F-fluorothymidine (FLT) features with
the best performance.
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each of the predictive features shown in Table 2. Table 4 shows
the performance differences of the second model in reference to
the first model for the univariate predictors with the best per-
formance. For most features, only small changes in performance
(c-index) were observed, indicating that model performance was
stable. Only 1 feature (Q1 distribution) had a change in c-index
�5 percentage points.

DISCUSSION
Performance
In this work, we investigated associations of patient outcomes
with radiomic features derived from FLT PET lesion segmenta-
tions. Radiomics generates many features that can be highly
correlated from each subject, so a feature reduction step was
included to remove redundancies from the feature space. Despite
this reduction, a large number of features were not highly
correlated and tested in the performance analysis, so controlling
the false-discovery rate was used to reduce false positives. A
total of 9 FLT features were considered significant.

Our results suggest that a favorable prognosis is associated
with a small lesion size, a more sphere-like lesion shape, and
homogeneous intensity. Figure 3 shows the baseline scans of 2
patients with different outcomes and different FLT-avid lesion
shapes. The surviving patient (Figure 3A) has a small, sphere-
like lesion. The patient later classified with progressive disease
(Figure 3B) has large lesions with a large, irregular surface area.
Our results also suggest that lesion texture/homogeneity of
intensity may be an indicator of outcome. Figure 4 shows the
baseline scans of 2 patients with different outcomes and differ-
ent lesion textures. The surviving patient (Figure 4A) has lesions
with smaller regions of more uniform texture. The patient later
classified with progressive disease (Figure 4B) has large regions
and an overall nonuniform texture.

The authors are not aware of any publications that normal-
ize lesion uptakes with the mean vertebral uptake before anal-
ysis of response prediction for HNSCC with FLT PET. Three out
of the 5 best-performing intensity-based features were normal-
ized with the mean vertebral uptake. Table 5 compares the
c-indices of intensity-based FLT features with and without nor-
malization. Texture features from the gray-level co-occurrence
matrix have poorer performance after normalization. Texture
features from the gray-level run length matrix and the GLSZM
have a small increase in performance after normalization. Due
to our small cohort of patients, more analysis is needed on a
larger patient population to determine if these differences are
significant.

All features identified as having an association with patient
outcome were calculated from the total lesion burden (Table 2).
This suggests that important information about the disease is
found not only in the primary tumor, but also in the FLT-avid
lymph nodes. Table 6 compares the c-indices of the 9 best-
performing FLT features calculated from the primary tumor and
the total lesion burden. All but 1 feature (ie, information mea-
sure of correlation 1) had higher performance when calculated
from the total lesion burden. Furthermore, the interoperator
agreement (ICC) average and standard deviation of the 9 best-
performing FLT features for primary tumor and the total lesion
burden was 0.88 � 0.13 and 0.94 � 0.08, respectively. Thus, FLT
PET features derived from total lesion burden show higher
agreement, and 8 out of the 9 best-performing features had
strong agreement between different observers (Table 3). As

Table 4. Differences of Model Performance
Due to Interobserver Segmentation
Variability

Feature (VOI, normalization) �c-index

Gray-Level Non-Uniformitya (LB, N) 0.00

Gray-Level Non-Uniformityb (LB, N) 	0.01

Spherical Disproportion (LB, U) 	0.03

Information Measure of Correlation 2c (LB, U) 0.03

Zone Percentageb (LB, N) 0.01

Gray-Level Non-Uniformitya (LB, U) 0.01

Q1 Distribution (LB, U) 	0.07

Volume (LB, U) 	0.01

Information Measure of Correlation 1c (LB, U) 0.03

Change Calculations are the Difference (
) of the c-Indices Between
the Model of the First Observer and the Model of the Second Observer.

Abbreviations: VOI, volume of interest; LB, lesion burden; U, unnormal-
ized; N, normalized.
a Calculated from the gray-level run length matrix (GLRLM).
b Calculated from the gray-level size zone matrix (GLSZM).
c Calculated from the gray-level co-occurrence matrix (GLCM).

Figure 3. Baseline FLT scan
slices showing differences in le-
sion size and shape. Patient later
classified as progression-free sur-
vival at follow-up (A). Patient later
classified as progression at fol-
low-up (B). A favorable prognosis
was associated with small tumor
volume (Vol) and a lower spheri-
cal disproportion (SphDisp).
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stated before, more analysis is needed on a larger patient pop-
ulation to determine if these differences are significant.

Related Work
The association of standard FLT features and outcome has been
previously studied. For example, Hoshikawa et al. reported that
baseline FLT tumor volume and total lesion proliferation (TLP)
were predictive of locoregional tumor control in 32 patients
with HNSCC treated with CRT and surgery (26). We found
similar results to their findings for the total lesion burden vol-
ume (P � .004) and total lesion burden TLP (P � .012) for
predicting 3-y progression-free survival. Note that total lesion
burden TLP in our analysis was not selected during the feature
reduction step. Hoshikawa et al. later reported that baseline FLT
tumor volume, TLP, and SUVmax were predictive of locoregional
tumor control in 53 patients with HNSCC treated with RT or CRT
(27). Our results are not similar to their findings for unnormal-
ized SUVmax (P � .192). This may be due to our smaller patient
cohort (30 vs. 53). However, Linecker et al. reported earlier that

high FLT uptake is associated with poor outcome in 20 patients
treated with RT and CRT (8).

The authors are aware of 2 other publications that report
correlations of FLT based radiomic features and patient out-
comes. Willaime et al. reported that radiomic features were
predictive of treatment response in 11 breast cancer patients
treated with chemotherapy (28). However, the different cancer
site and treatment type does not allow for a meaningful com-
parison with our results. Majdoub et al. (29) reported that tumor
proliferative volume and textural features are predictive of dis-
ease-free survival in 45 patients with HNSCC treated with RT
and CRT. They found that large, more heterogeneous lesions

Table 5. Comparison of c-Index Values for
Unnormalized and Normalized Features

Feature Unnormalized Normalized

Gray-Level Non-Uniformitya 0.83 0.86

Gray-Level Non-Uniformityb 0.66 0.72

Information Measure of Correlation 2c 0.79 0.63

Zone Percentageb 0.73 0.75

Information Measure of Correlation 1c 0.78 0.56

Higher c-Index Values for Each Feature are Indicated in Bold.
a Calculated from the gray-level run length matrix (GLRLM).
b Calculated from the gray-level size zone matrix (GLSZM).
c Calculated from the gray-level co-occurrence matrix (GLCM).

Table 6. Comparison of c-Index Values for
Features Calculated from the Primary Tumor
and the Total Lesion Burden

Feature (Normalization)
Primary
Tumor

Lesion
Burden

Gray-Level Non-Uniformitya (N) 0.71 0.86

Gray-Level Non-Uniformityb (N) 0.50 0.72

Spherical Disproportion (U) 0.49 0.74

Information Measure of Correlation 2c (U) 0.75 0.79

Zone Percentageb (N) 0.68 0.75

Gray-Level Non-Uniformitya (U) 0.71 0.83

Q1 Distribution (U) 0.64 0.78

Volume (U) 0.59 0.74

Information Measure of Correlation 1c (U) 0.79 0.78

Higher c-Index Values for Each Feature are Indicated in Bold.
Abbreviations: U, unnormalized; N, normalized.
a Calculated from the gray-level run length matrix (GLRLM).
b Calculated from the gray-level size zone matrix (GLSZM).
c Calculated from the gray-level co-occurrence matrix (GLCM).

Figure 4. Baseline FLT scan
slices showing differences in le-
sion texture. Patient later classi-
fied as progression-free survival
at follow-up (A). Patient later clas-
sified as progression at follow-up
(B). A favorable prognosis was
associated with more homoge-
neous lesions and finer textures.
Gray-level nonuniformity from the
gray-level run length matrix
(GLNU) has a lower value for
more uniform regions. Zone per-
centage from the gray-level size
zone matrix (ZonePct) has a
higher value for regions with finer
textures.
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were associated with a less favorable prognosis, which is con-
sistent with our findings.

In current clinical practice, FDG PET imaging is com-
monly utilized for assessment of response to treatment. For
this purpose, simple quantitative image features like SUV-
max, SUVpeak (30), metabolic tumor volume (MTV), or total
lesion glycolysis (TLG) have been proposed, out of which
SUVmax is most widely adopted. In a recent study, Castelli et
al. (31) summarized the results of 45 studies regarding the
predictive value of such FDG PET features with respect to
clinical outcome in HNC treatment with chemoradiotherapy
(CRT). The study concluded that MTV and TLG in pretreat-
ment PET scans showed good correlation with disease free
survival (DFS) or overall survival (OS). In this work, we have
investigated FLT PET derived image features. At this stage, it is
unclear which imaging approach (ie, tracer) results in better pre-
dictive performance. For example, the volume defined by above
normal tracer uptake showed good performance on FLT data
(Table 2) as well as in FDG PET studies (31). However, to decide
which approach is preferable, a dedicated study is needed.

Limitations
This study has several limitations. The HPV (human papilloma
virus) status, which is now a well-known prognostic factor in
oropharyngeal cancers, was not available for this cohort as it
was not routinely obtained when subjects were enrolled in this
study. Furthermore, the effects of repeated scans and image
reconstruction parameters on FLT-based radiomic features was
not determined. Willaime et al. did investigate test–retest vari-
ability of texture features in breast cancer using FLT PET (28).
They report similar results to a study by Tixier et al., which
investigated the test-retest variability of FDG PET texture fea-
tures using 16 patients with esophageal cancer (32). Both studies

found that measures of tumor homogeneity and entropy had good
repeatability. Leijenaar et al. investigated the repeatability of FDG
PET texture features in non–small cell lung cancer (33). A majority
of features (71%) were stable during test-retest analysis.

Yan et al. reported that zone percentage of the GLSZM
was sensitive to image reconstruction parameters and should
be used with caution (34). Their work used 20 patients with
lung lesions imaged with FDG PET. Zone percentage was
associated with patient outcome in our results, and it is a
measure of fine textures. It is reasonable to expect that high
variability of zone percentage calculations by different image
reconstruction parameters would also occur in FLT PET. Re-
construction parameters were held constant for the images in
our study.

CONCLUSION
In conclusion, radiomics is a useful approach for extracting
large amounts of information from tumor images. We investi-
gated the association of patient outcomes with radiomic features
extracted from tumors imaged with FLT PET. Radiomics features
performed favorably compared to standard clinical stage. We
found that smaller, more homogenous lesions at baseline were
associated with a better prognosis in 30 patients with head and
neck cancer. Therefore, for future studies of FLT-based predic-
tion of outcome, we recommend including radiomic features of
lesion size, shape, and texture features that measure lesion
homogeneity. We also recommend that radiomic features be
calculated from the total lesion burden, rather than the primary
tumor only, so that the largest amount of disease information is
used for analysis. Our findings enable future optimization of
FLT-based features which can then be assessed in validation
studies.
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