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We identified computational imaging features on 18F-fluorodeoxyglucose positron emission tomography
(PET) that predict recurrence/progression in non–small cell lung cancer (NSCLC). We retrospectively identi-
fied 291 patients with NSCLC from 2 prospectively acquired cohorts (training, n � 145; validation, n �
146). We contoured the metabolic tumor volume (MTV) on all pretreatment PET images and added a
3-dimensional penumbra region that extended outward 1 cm from the tumor surface. We generated 512
radiomics features, selected 435 features based on robustness to contour variations, and then applied ran-
domized sparse regression (LASSO) to identify features that predicted time to recurrence in the training co-
hort. We built Cox proportional hazards models in the training cohort and independently evaluated the mod-
els in the validation cohort. Two features including stage and a MTV plus penumbra texture feature were se-
lected by LASSO. Both features were significant univariate predictors, with stage being the best predictor
(hazard ratio [HR] � 2.15 [95% confidence interval (CI): 1.56–2.95], P � .001). However, adding the
MTV plus penumbra texture feature to stage significantly improved prediction (P � .006). This multivariate model
was a significant predictor of time to recurrence in the training cohort (concordance � 0.74 [95% CI: 0.66–
0.81], P � .001) that was validated in a separate validation cohort (concordance � 0.74 [95% CI: 0.67–0.81],
P � .001). A combined radiomics and clinical model improved NSCLC recurrence prediction. FDG PET radiomic
features may be useful biomarkers for lung cancer prognosis and add clinical utility for risk stratification.

INTRODUCTION
Lung cancer remains the most common cause of cancer death
worldwide, and the 5-year survival rates of non–small cell lung
cancer (NSCLC) remain quite poor despite advances in diagnosis
and treatment (1, 2). Further, many patients will develop recur-
rence or progression following primary treatment. The absolute
risk of any recurrence at 5 years post-treatment ranges from
33% to 52%, with the majority occurring at a distant site (3, 4).
Among prognostic factors for predicting outcomes in NSCLC,
tumor stage based on the American Joint Committee on Cancer
(AJCC) staging system is currently considered the best for pre-
dicting outcomes (5). More accurate clinical, imaging, and mo-
lecular biomarkers will be extremely useful for stratifying pa-

tients who are at a higher risk of recurrence and who might
benefit from adjuvant or more aggressive treatment options (6).

Maximum standardized uptake value (SUVmax) on fluo-
rine-18F fluoro-2-deoxy-D-glucose (FDG) positron emission
tomography (PET) imaging has also been shown to predict
recurrence or death in NSCLC (7). However, this is a single-
voxel metric; we hypothesized that applying a radiomics
approach to extract more complex information (eg, texture)
from standard medical images could provide additional prog-
nostic information (8, 9).

While recent work has evaluated the potential for radiomics
features to augment traditional metrics of response (10-12), the
majority of studies to date have focused on only the metabolic
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tumor volume (MTV) on PET and, to the best of our knowledge,
no study has investigated the peritumoral region. Tumor inva-
sion from the main mass can be defined by infiltration of
stroma, blood vessels, or visceral pleura (13). Recent studies
have also shown the potential for tumor cells to spread into air
spaces in the lung tissue adjacent to the tumor volume (14). It is
well known that these features may present as border spicula-
tion, vascular convergence, or pleural attachment surrounding
the tumor on anatomical imaging, and that they may result in
subtle heterogeneous uptake on PET imaging (15).

We investigated the potential of FDG-PET radiomics to
predict recurrence in NSCLC by (1) assessing the variability in
radiomic feature extraction from PET images and (2) building
and validating a radiomics model to predict time to recurrence.
We hypothesize that computational imaging features in the
tumor and surrounding area on FDG-PET can augment clinical
features to improve recurrence prediction.

METHODOLOGY
Patient Selection
We retrospectively analyzed a total of 291 patients with NSCLC
from 2 distinct cohorts of prospectively acquired patients (n �
145 and n � 146). The study was approved by our Institutional
Review Board, and all subjects signed informed consent before
participation. Our study was also compliant with the Health
Insurance Portability and Accountability Act.

The training cohort consisted of subjects from a pool of
patients with early-stage NSCLC referred for surgical treatment
at 2 local medical centers between 2008 and 2012 with preop-
erative PET/computed tomography (CT) performed before sur-
gery (n � 145). This data set is publicly available on The Cancer
Imaging Archive (16, 17). We used a second cohort (n � 146) for
model validation. This was a cohort from 3 local medical centers
between 2010 and 2016. Subjects were selected from patients
undergoing evaluation for lung cancer by PET/CT imaging be-
fore definitive treatment as part of an observational biomarker
study. In both the training and validation cohorts, there were no
patients that received neoadjuvant therapy.

The AJCC seventh edition system was used for staging.
Pathological staging was used in the training cohort and a
combination of clinical and pathological staging in the valida-
tion cohort. Demographic differences between the training and
validation cohorts were assessed using the Wilcoxon rank-sum
test for continuous variables and the �2 test for categorical
variables. All patients were followed per standard clinical pro-
tocol with clinical examination and imaging. We analyzed the
combined endpoint of disease recurrence or progression. For
stage I–IIIA subjects, we defined recurrence as either local,
regional, or distant. For patients with stage IIIB–IV disease, we
defined an event as any progression of disease. Time to event or
last known follow-up was recorded from the date of pretreat-
ment PET imaging.

Image Acquisition
Pretreatment FDG-PET/CT scans were acquired using a standard
clinical protocol at 1 of 3 local medical centers. Images were
acquired using either a GE Discovery VCT (GE Health care,
Waukesha, WI), a GE Discovery LS PET/CT (GE Healthcare,

Waukesha, WI), a Siemens Biograph mCT (Siemens Healthcare,
Erlangen, Germany), or a Phillips Allegro/Gemini TF PET/CT
(Phillips Healthcare, Cleveland, OH). Patients underwent scan-
ning following fasting for a minimum of 6–8 h. A dose of 12–17
mCi of FDG was administered and patients underwent scanning
from the skull base to mid-thigh using bed positions acquired every
2–5 minutes �45–60 minutes after injection. Manufacturer-spe-
cific CT-based attenuated correction was performed using ordered
subset expectation maximization reconstruction.

Region of Interest Delineations
Pretreatment PET images were converted to SUV units normal-
ized by body weight. Two research assistants (S.M. and S.B.)
were trained by a board-certified physician in Nuclear Medicine
(G.D.) in using MIM Version 6.6 (MIM Software Inc., Cleveland,
OH) to contour tumor MTVs using the semiautomatic PET-edge
gradient-based segmentation tool. Both observers contoured all
images independently in the training cohort. A subset of 21
images considered difficult to contour were reviewed by the
same physician and re-delineated if necessary. To assess intrao-
bserver variability, observer 1 (S.M.) contoured all images a
second time after a delay of 3 months. We calculated the Dice
similarity coefficient (DSC), mean absolute distance (MAD) of
the boundary, and absolute volume difference between each set
of contours to assess inter- and intraobserver variability of the
MTV regions in the training cohort. Observer 1 alone contoured
all images in the validation cohort.

We then generated a 3-dimensional penumbra region ex-
tending outward 1 cm from the surface of the MTV to sample
surrounding uptake by using a 3D distance transform with a
threshold of 1 cm. This distance was intuitively chosen to sam-
ple enough surrounding tissue given the voxel sizes of the PET
images, while avoiding oversampling normal tissue. In addition
to the MTV alone, we also evaluated the following 2 additional
regions: the MTV plus penumbra and the penumbra only (ex-
cluding the MTV).

Feature Extraction
We extracted radiomics features in the MTV, penumbra, and
MTV plus penumbra regions in both cohorts using The Quanti-
tative Image Feature Engine (18) implemented in MATLAB
R2016B (The MathWorks, Natick, MA). In the MTV, features
included size (n � 4), sphericity (n � 1), local volume-invariant
integral (LVII) shape (n � 39), histogram intensity (n � 12), and
gray-level co-occurrence matrix (GLCM) texture (n � 144) (19,
20), for a total of 200 features. Because the penumbra region was
generated from the MTV, 44 size and shape measures were not
calculated in the penumbra and MTV plus penumbra regions
(because they would not be independent measurements), for a
total of 156 features in each. This resulted in a total of 512
features for analysis as summarized in Table 1. We set a fixed
intensity bin size of 0.2 SUV for texture feature calculation to
allow a meaningful comparison between images on the same
SUV scale. This discretization may also reduce the differences
between multiple scanners used in this study (21).

We then calculated intraclass correlation coefficients (ICCs)
across the 3 sets of outlines for each radiomic feature to assess
inter- and intraobserver variability. Robust features, defined as
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those with ICCs �0.8 in the training cohort, were selected for
further analysis (22, 23).

Model Building and Validation
All radiomic features were normalized (Z-score transformation)
before feature selection and model building. We further opti-
mized the features through a generalized linear model via the
least absolute shrinkage and selection operator (LASSO) (24)
Cox regression using the glmnet package in R software version
3.4.3 (25). LASSO is a shrinkage and variable selection method
for high-dimensional data, which was used to select top features
to predict time to recurrence in the training cohort. The robust
radiomic features and the 2 known clinical predictors (stage and
SUVmax) were provided to LASSO. Alpha, the regularization
parameter, was set to 1 (LASSO penalty) to minimize the number
of selected features by shrinking most of the coefficients to zero
and to minimize potential overfitting in the training cohort. In
total, 100 randomizations of 4-fold cross-validation was used to
reduce the effect of randomness in fold selection. The mean
cross-validated error curves were averaged for each tuning pa-
rameter lambda value across all randomizations. The lambda
and corresponding radiomic features associated with the mini-
mum error were selected.

We built univariate and multivariate Cox proportional haz-
ards models in the training cohort using the most frequently
selected radiomic and/or clinical features. We evaluated the
Akaike information criterion (AIC) to compare the quality of the
different models, with lower AICs representing a higher quality
model. We assessed the likelihood ratio P-value for the derived
models to show recurrence prediction significance. HRs and
95% CIs were reported for individual variables. To evaluate
nested models combining the clinical and/or radiomic features,
the likelihood ratio test was used to compare the goodness of fit.

To verify prediction validity, we locked the coefficients of
the variables in the top model generated from the training
cohort and evaluated it in the validation cohort. The prognostic
value was assessed using the concordance index with Noether’s
test to determine significance from random (0.5). We performed
Kaplan–Meier analysis to separate high- and low-risk groups

based on the median risk score in the training cohort. We
performed a Student’s t test for dependent samples to compare
concordance indices between the models. All statistical analyses
and model building were performed using R. Statistical signifi-
cance was assessed at the P � .05 level.

RESULTS
Patient Demographics
The training and validation cohorts were similarly matched with
regard to median age (P � .057) and tumor location (P � .571)
(Table 2). The training cohort had a higher proportion of males
(P � .005) and adenocarcinoma histology (P � .035). There was
a slightly higher proportion of stage IV patients in the validation
cohort (P � .001), resulting in a larger percentage of patients
who recurred/progressed (P � .038). The median time to recur-
rence was 14 months (range, 2–97) in the training cohort and 15
months (range, 1–59) in the validation cohort. The median
follow-up time for censored patients without an event was 50
months (range, 1–115) in the training cohort and 32 months
(range, 1–76) in the validation cohort.

Segmentation Variability
Table 3 shows the Dice Similarity Coefficient (DSC), Mean Ab-
solute Boundary Distance (MAD), and absolute volume differ-
ence between observers in the training cohort. Overall, semiau-
tomatic segmentations were highly reproducible with an
average DSC �0.9, MAD �1 mm, and volume differences �1
mL. When we inspected images with low DSC, high MAD, and/or
high volume differences, we found that lesions that had the
largest degree of variability tended to have a low uptake (eg,
SUVmax �2), heterogeneous uptake, and/or were adjacent to
structures with a similar metabolic uptake as the tumor (eg, the
heart or mediastinum), making the precise boundary of the
tumor difficult to determine. These features were evident in
�20% of the cases.

Feature Variability
Table 4 shows the ICCs of the 4 different classes of radiomic
features in each of the 3 regions of interest. We found that a total

Table 1. Number of Extracted Features

Region of
Interest

Feature
Type

Number of
Features

Total Number of
Features in ROI

Metabolic Tumor Volume (MTV)

Size 4

200

Sphericity 1

LVII shape 39

Intensity 12

GLCM texture 144

Penumbra
Intensity 12

156
GLCM texture 144

MTV � Penumbra
Intensity 12

156
GLCM texture 144

Total Number of Features 512
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Table 2. Baseline Patient and Lesion Characteristics

Training
(n�145)

Validation
(n�146) P-value

Age, years 69 (42–87) 71 (41–96) .057

Gender Male 109 (75%) 87 (60%) .005

Tumor Location

Right upper lobe 52 (36%) 50 (34%)

.571

Right middle lobe 14 (10%) 9 (6%)

Right lower lobe 21 (14%) 26 (18%)

Left upper lobe 38 (26%) 34 (23%)

Left lower lobe 20 (14%) 27 (19%)

Tumor Histology

Adenocarcinoma 113 (78%) 103 (71%)

.035Squamous cell 29 (20%) 30 (21%)

Non–small cell cancer not
otherwise specified 3 (2%) 13 (9%)

Tumor Stage

0a 4 (3%) 0 (0%)

�.001

I 89 (61%) 100 (68%)

II 28 (19%) 13 (9%)

III 21 (14%) 17 (12%)

IV 3 (2%) 16 (11%)

Recurrence/Progression
Yes 40 (28%) 57 (39%)

.038
No 105 (72%) 89 (61%)

Variables shown as median (range) or number (%).
a Pathological stage 0 disease is defined as a carcinoma in situ (TisN0M0) as per the American Joint Committee on Cancer (AJCC) 7th edition staging system.

Table 3. Inter- and Intraobserver Variability in Metabolic Tumor Volume (MTV) PET-edge Segmentations

Observera
Dice Similarity

Coefficient (DSC)
Mean Absolute

Boundary Distance (MAD, mm)
Absolute Volume
Difference (mL)b

A vs a (Intra) 0.916 (0.090) 0.548 (0.544) 0.71 (1.66)

A vs B (Inter) 0.917 (0.087) 0.559 (0.507) 0.58 (0.92)

a vs B (Inter) 0.904 (0.105) 0.628 (0.631) 0.79 (1.46)

All values are the mean (standard deviation).
a Observer 1 contoured each tumor twice (A and a) and observer 2 contoured each lesion once (B).
b For reference, the average [range] volumes of all MTV contours by the three observers were 15.4 [0.4–297.8], 15.3 [0.4–296.9], and 15.3 [0.3–296.0] mL.

Table 4. Intraclass Correlation Coefficients for All FDG-PET Radiomic Features

Feature Type

MTV Penumbra MTV � Penumbra

Inter- Intra- Inter- Intra- Inter- Intra-

Size 0.996
(0.99–1.00)

0.994
(0.99–1.00) – – – –

Intensity 0.977
(0.89–1.00)

0.972
(0.84–1.00)

0.931
(0.48–0.99)

0.916
(0.36–0.99)

0.995
(0.98–1.00)

0.995
(0.98–1.00)

Shape 0.867
(0.37–0.98)

0.847
(0.39–0.98) – – – –

Texture 0.898
(0.50–0.99)

0.893
(0.48–0.99)

0.892
(0.14–0.99)

0.925
(0.50–0.99)

0.981
(0.28–1.00)

0.977
(0.66–1.00)

All values are shown as the mean (range).
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of 435 of the 512 features (85%) had an ICC �0.8 (Table 5)
and were considered robust to differences in the segmenta-
tions (22, 23).

Feature Selection and Model Training
Across the 100 randomizations, the average minimum cross-
validation error was 10.5% at a lambda value of 0.1296 in the
training cohort. This lambda generated 2 features with nonzero
coefficients, stage, and 1 MTV plus penumbra GLCM texture
feature (maximum probability). Although SUVmax has previ-
ously been shown to be associated with recurrence in NSCLC, it
was not selected by LASSO as a top feature. However, it was
found to be a significant univariate predictor in our cohort
(Table 6), consistent with previous studies (7).

Figure 1 visualizes the Pearson correlation coefficients of
the top features. For reference, correlation of the top features
with MTV volume and SUVmax is also shown. All correlations
were low and the radiomic feature showed no correlation with
stage, volume, or SUVmax.

Univariate Cox regression model statistics, including the
AIC, likelihood ratios, P-values, and HRs, are shown for the top
features in Table 6. Both features were significant univariate
predictors of time to recurrence. Overall, stage was the best
univariate predictor.

Because stage was the best univariate predictor, the likeli-
hood ratio test was performed to assess significant improve-
ments to this well-established clinical model for recurrence
prediction. Additional features were added to determine signif-
icant improvements to the model. Adding the MTV plus penum-
bra texture feature to stage significantly improved the model
(P � .006). This multivariate model was a significant predictor

of time to recurrence in the training cohort (likelihood ratio �
27.59, P � .001, concordance � 0.74 [95% CI: 0.66-0.81]). Both
stage (HR � 1.92 [95% CI: 1.37–2.67], P � .001) and the
radiomic texture feature (HR � 0.52 [95% CI: 0.30–0.91], P �
.02) were significant covariates in the multivariate model. Add-
ing SUVmax to stage did not significantly improve the clinical
model performance (P � .22). It also did not significantly im-
prove performance in the combined stage and radiomic model
(P � .73).

Model Validation
Univariate results were confirmed in the validation cohort
(Table 7), with all features being significant predictors of time
to recurrence. The locked multivariate model from the train-
ing cohort, which included stage and the radiomic texture
feature, was a significant predictor in the validation cohort
(concordance � 0.74 [95% CI: 0.67–0.81], Noether’s P �
.001). We separated the patients into high- and low-risk
groups on the basis of the median risk score in the training
cohort. Kaplan–Meier time-to-recurrence curves for the mul-
tivariate model in both cohorts are shown in Figure 2. Recur-
rence was lower in the group below the median model risk
score.

The multivariate model including stage and the radiomic
feature significantly outperformed the best performing clinical
model of stage in the training (P � .036) and validation (P �
.033) cohorts. The combined model also outperformed the ra-
diomic feature alone in both the training cohort (P � .019) and
the validation cohort (P � .001).

Figure 3 exemplifies 2 patients with similar SUVmax that
would typically be considered to be at a high risk of recurrence.

Table 5. Number (percent) of Robust FDG-PET Radiomic Features Selected in Each Category by Virtue of an ICC � 0.8

Feature Type

MTV Penumbra MTV � Penumbra

Inter- Intra- Inter- Intra- Inter- Intra-

Size 4 (100%) 4 (100%) – – – –

Intensity 12 (100%) 12 (100%) 11 (92%) 11 (92%) 12 (100%) 12 (100%)

Shape 27 (68%) 30 (75%) – – – –

Texture 115 (80%) 115 (80%) 118 (82%) 131 (91%) 144 (100%) 142 (99%)

Table 6. Cox Proportional Hazards Model Statistics for Univariate Features in the Training Cohort

Feature
Akaike Information

Criterion
Likelihood

Ratio P-value HR [95% CI]
Concordance

[95% CI]

Stage 341.7 19.98 �.001 2.15
[1.56–2.95]

0.68
[0.60–0.76]

Gray-level Cooccurrence Matrix
Maximum Probability
(MTV � Penumbra)

347.5 14.18 �.001 0.41
[0.23–0.74]

0.66
[0.57–0.74]

SUVmax 353.7 7.99 .005 1.06
[1.02–1.10]

0.67
[0.58–0.75]
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Yet, the combined model including radiomics correctly pre-
dicted the recurrence status of each patient on the basis of the
median risk value. Based on qualitative inspection, the high-risk
patient had more heterogeneous uptake in the penumbra region
compared with the low-risk patient.

DISCUSSION
We show here evidence that texture in the MTV and nearby
surrounding region can predict recurrence in NSCLC. Further-
more, augmenting this radiomic feature with stage significantly
improved performance over stage alone, which was validated in

Table 7. Cox Proportional Hazards Model Statistics for Univariate Features in the Validation Cohort

Feature
Akaike Information

Criterion Likelihood Ratio P-value HR [95% CI]
Concordance

[95% CI]

Stage 475.6 35.7 �.001 2.13
[1.69–2.68]

0.69
[0.63–0.76]

Gray-level Cooccurrence
Matrix Maximum Probability
(MTV � Penumbra)

497.2 14.14 �.001 0.50
[0.33–0.76]

0.66
[0.60–0.72]

SUVmax 506.1 5.24 .02 1.03
[1.01–1.05]

0.67
[0.61–0.73]
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Figure 1. Pearson correlation
coefficient heatmap for the
radiomic and standard clinical
variables.
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an independent data set. This model also showed potential value
in risk-stratifying patients with NSCLC who are at high versus
low risk of recurrence or progression. A general rule in modeling
studies is that 10 patients are needed for every feature selected in
the model (8). To minimize overfitting, our final model consisted
of only 2 features. However further studies on larger sample
sizes with additional features may improve prognostic perfor-
mance and applicability to other cohorts.

The radiomic feature selected was a GLCM texture feature in
the combined MTV plus penumbra volume. This feature, which
describes local texture variations, suggests that patients whose
PET images show a more heterogeneous texture, specifically in
the penumbra region surrounding the MTV, are more likely to
recur. This suggests the importance of image data in the sur-
rounding region for recurrence prediction. This region may
contain uptake not measured in the MTV (and not by the SUVmax)
and could indicate areas of disease adjacent to the primary mass.
The texture being detected in this region may be indicative of an

invasive component of the tumor, for example, spiculations or
tumor spread through blood vessels, but this requires further
investigation (15).

Notably, size or shape features, including the commonly
used metrics of maximum axial diameter and 3D volume, were
not selected as predictive features. SUVmax was also not selected,
and adding it to clinical or combined models did not signifi-
cantly improve performance. This suggests that texture features
may provide more useful information than traditional metrics
for predicting recurrence/progression.

Previous work in the field of radiomics has evaluated FDG-
PET features for outcome prediction in lung cancer. Jansen et al.
found the GLCM energy texture feature was a significant pre-
dictor of overall survival in oligometastatic NSCLC (26). Others
have shown that texture features may be beneficial for predict-
ing local control, distant metastasis, and disease-free survival in
lung cancer (10-12). However, the majority of studies to date
have focused on only the MTV. To the best of our knowledge,
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Figure 2. Kaplan–Meier curves
for the multivariate stage and ra-
diomic texture model risk scores
in the training cohort (n � 145,
P � .001) (A) and the validation
cohort (n � 146, P � .001) (B).
Patients have been stratified on
the basis of median risk value in
the training cohort. The shaded
regions represent the 95% confi-
dence intervals (CI) and “�” indi-
cates censored data.

(A)

(B)
SUVmax = 10.1
Stage II
Low-Risk Radiomics
No recurrence 

SUVmax = 10.3
Stage I
High-Risk Radiomics
Recurrence

Figure 3. Example computed
tomography (CT) image (left),
corresponding positron emission
tomography (PET) image (mid-
dle), and fused PET/CT images
(right) for 2 patients, where the
metabolic tumor volume (MTV) is
encircled in magenta and the
penumbra in between the ma-
genta and blue outlines. Patients
(A) and (B) had relatively high
SUVmax values, but the radiomics
model distinguished the high-risk
patient (A) who recurred at 16-
month follow-up and the low-risk
patient (B) who had not recurred
at just under 5 years of follow-up.
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ours is the first study that evaluates the lung tumor penumbral
region of PET images for recurrence prediction. Future work
integrating CT imaging features or molecular data may improve
prognostic performance.

Our study investigated PET/CT images from multiple scan-
ners and institutions, potentially introducing variability in im-
age data and quality and therefore the construction of a predic-
tive model. We used a standard acquisition protocol across all
institutions to minimize this variability (27, 28). This may still
result in signal variations in the tumor and penumbra regions;
therefore, further studies investigating single scanners are war-
ranted and may improve model performance.

Previous work has also shown that PET radiomic features
are dependent more on delineation variability than on recon-
struction algorithm (29) and that texture features are less af-
fected by difference in scanners (30). Many radiomic features
also show high test–retest stability with repeat PET imaging (31).
The PET-edge segmentation tool we used for tumor segmenta-
tion showed high reproducibility with associated radiomic fea-
ture robustness. Segmentations were performed with commer-
cially available software (MIM Software, Inc.), making it an
easily deployed and integrated system.

Our work is also applicable in a “real world,” nonresearch
setting, where different scanners and images of variable quality
are routinely used for clinical assessment. However, additional
external validation of this radiomics model is warranted to

determine the impact of different scanners and acquisition pro-
tocols on model predictions.

Our study has several limitations. The primary limitation is
that the penumbra region was not restricted to the lung volume,
that is, it may at times have included the adjacent chest wall,
major blood vessels, and/or mediastinum. However, as features
were selected from within this region, it is providing relevant
information for the prediction of recurrence. The effect of this
and the efforts to minimize it remain the subject of further
investigation. Owing to differences in breathing between the
PET and CT images, accurate registration of the lung boundary
is challenging. We also investigated only a single distance of 1
cm for the penumbra region; it is possible that larger or smaller
distances could improve or degrade performance. Another lim-
itation is the inherent low resolution of the PET images, limiting
the amount of information we can analyze for each tumor owing
to lower voxel quantities for smaller tumors. Finally, the sample
sizes analyzed were relatively small, and validation of this
model in larger data sets is warranted.

In conclusion, a PET texture feature in the metabolic tumor
volume and surrounding region augmented staging for NSCLC
recurrence prediction. This model may be useful in identifying
patients who are at a higher risk of recurrence or progression
and may assist physicians in determining what patients may
benefit from adjuvant or personalized treatment options at the
time of diagnosis.
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