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We present a deep convolutional neural network application based on autoencoders aimed at segmentation
of increased signal regions in fluid-attenuated inversion recovery magnetic resonance imaging images. The
convolutional autoencoders were trained on the publicly available Brain Tumor Image Segmentation Bench-
mark (BRATS) data set, and the accuracy was evaluated on a data set where 3 expert segmentations were
available. The simultaneous truth and performance level estimation (STAPLE) algorithm was used to provide
the ground truth for comparison, and Dice coefficient, Jaccard coefficient, true positive fraction, and
false negative fraction were calculated. The proposed technique was within the interobserver variability
with respect to Dice, Jaccard, and true positive fraction. The developed method can be used to produce
automatic segmentations of tumor regions corresponding to signal-increased fluid-attenuated inversion
recovery regions.

INTRODUCTION
Glioma is the most common primary brain tumor type in adults
and has seen little improvement in treatment effectiveness de-
spite being an area of active research. One of the characteristics
of gliomas is that it infiltrates the surrounding brain (1). Among
gliomas, glioblastomas are the most frequent, are of high grade
and aggressive, with median survival time of 14 months (2).
Magnetic resonance imaging (MRI) is the most commonly used
modality to assess response to therapy because of its superior
soft tissue contrast compared with other imaging modalities (3).

Currently, there is significant interest in extracting quanti-
tative imaging biomarkers from MRI including anatomical and
functional images that could lead to better patient diagnosis and
follow-up. These imaging biomarkers range from texture fea-
tures to volumetric measurements extracted to predict molecular
biomarkers and overall or progression-free survival. The com-
mon requirement of all these approaches is the segmentation of
tumor from normal brain (4). Automating tumor segmentation
could significantly improve treatment planning and follow-up
(5), as manual delineation is a time-consuming task because of
either artifacts or magnetic field inhomogeneities and it also
introduces variability that might reduce the reliability of the
image-derived biomarkers.

Brain tumor segmentation is a challenging task, with many
researchers and competitors focusing on creating and evaluat-
ing newly developed algorithms. In 2012, the Brain Tumor
Image Segmentation Benchmark (BRATS) competition (3, 5) was
established as part of the MICCAI (International Conference on

Medical Image Computing and Computer Assisted Intervention)
conference, and since then, it has been the “gold standard” for
brain segmentation algorithm testing.

The brain tumor segmentation algorithms commonly de-
scribed in the literature usually exploit classical image analysis
techniques or pattern recognition techniques (6-8) with the more
recent approaches using deep convolutional neural networks
(9-16).

Each MRI series (image type) reveals different information
about the tumor. For instance, T1-weighted (T1w) images after
contrast acquisitions reveal information regarding the en-
hancing part of the tumor, whereas fluid-attenuated inver-
sion recovery (FLAIR) acquisitions capture the edema part of
the tumor.

Lesion size in FLAIR images is an important clinical param-
eter for patient assessment and follow-up. Manual estimation of
the volume of the lesions in FLAIR images is time-consuming
and highly user-dependent.

Autoencoders have recently been gaining attention for their
ability to perform segmentation tasks in medical images (17-19).
One advantage of autoencoders against other deep learning
approaches is the use of decoders that enables estimation of
features suitable for pixel-wise classification (19).

The aim of this paper is to focus on accurate quantification
of the abnormal signal areas in the FLAIR acquisitions in pa-
tients with glioma. For the purpose of this study, we use convo-
lutional autoencoders trained on the publicly available BRATS
data set and evaluate the accuracy on a data set in which 3
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expert segmentations were available. Interobserver variability
was also measured.

MATERIALS AND METHODS
Data Set
We used both the BRATS 2015 competition data set (N � 186)
and a locally collected glioma data set (N � 135). The BRATS
scans included 54 low-grade (grades 2–3) and 132 high-grade
(grade 4) gliomas. For each tumor, the ground truth was avail-
able from the BRATS Web site. All the scans were subjected (by
the BRATS authors) to the following preprocessing steps: skull
stripping, coregistration to the same anatomical template, and
interpolation to 1-mm3 voxel resolution.

The locally collected data set consisted of 135 preoperative
scans from 135 patients for which signal intensity-increased re-
gions were delineated by 3 experienced image analysts, each with
�8 years of experience (user 1, 14 years; user 2, 18 years; and user
3, 12 years). These regions were delineated using MRIcron (20). This
data set was used to evaluate the segmentation accuracy of the
proposed algorithm (referred to as validation data set).

METHODS
Preprocessing
For the locally collected data set, skull stripping was performed
using an atlas-based technique. This step was not necessary for
the BRATS data set, as skull stripping was already performed.

For both the BRATS and local data sets, we applied N4 bias
correction (21) followed by Nyúl intensity standardization (22).
The N4 bias correction step was used to correct intensity inho-
mogeneity and artifacts present in MRI acquisitions consisting
of low-frequency signals that affect their intensity levels. One

challenge with MRI segmentation is the lack of a standard image
intensities. The goal of the Nyúl method is to transform the
image histograms so that they match the mean histogram de-
termined through training. The algorithms seek to match histo-
grams at certain percentiles.

Autoencoders
Figure 1 captures the main idea of an autoencoder and its
application to image segmentation. The primary concept is that
the autoencoder learns how to reconstruct the segmented de-
sired output (namely, the segmentation mask). The encoder layer
consists of 7 convolutional layers. The convolutions are used to
produce the feature maps. In addition, a rectified-linear nonlin-
earity is applied followed by max-pooling with a 2 � 2 window.
The resulting output is subsampled by a factor of 2. Max-
pooling achieves translation invariance, accounting for small
spatial shifts. The decoder component consists of a hierarchy of
decoders, one corresponding to each encoder. Of these, the
appropriate decoders use the max-pooling indices received from
the corresponding encoder to perform nonlinear upsampling of
their input feature maps. This allows for improved boundary
delineation (19). The high decoder output is forwarded to a
trainable softmax classifier, which independently classifies each
pixel. The number of input channels is the number of classes (in
our case, tumor or no tumor) and the output of the sigmoid
classifier is a 2-channel image of probabilities. The predicted
segmentation corresponds to the class with maximum probabil-
ity at each pixel.

The autoencoder was trained in 100 (out of 132) patients
with high-grade glioma included in the BRATS data set and
tested on the 32 remaining patients. The training set was used to

Figure 1. The overall architecture of the developed convolutional autoencoder. Tumor regions were assigned to a value
of 1, whereas surrounding tissues were assigned to a value of 0.
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compute the autoencoder’s parameters (such as learning rate),
and the smaller one was used as a testing data set to ensure that
no overfitting occurred. The pixels with P � 0.5 were assigned to
the abnormal FLAIR category. All small regions consisting of
�10 voxels were removed.

From the extracted region of interest (ROI), a total of 600
000 ROIs were randomly selected. For the purpose of training,
ROIs of size 10 � 10 were evaluated (Figure 2).

Segmentation Evaluation
We applied the simultaneous truth and performance level esti-
mation (STAPLE) (23) method to the local data sets to obtain a
probabilistic estimate of the actual ground-truth segmentation
incorporating the segmentation data from multiple observers.
The STAPLE method assessed the 3 tracings to construct the
ground-truth segmentation. To evaluate the proposed algo-
rithm, the following segmentation metrics were calculated: the
Dice Coefficient (ie, the similarity index), the Jaccard coefficient
(ie, the overlap ratio), and the false positive and false negative
fractions. The Dice and Jaccard coefficient values range between
0 and 1, with values closer to 1 indicating closer similarity. Box
plot distributions were also calculated. To assess the segmenta-
tion results obtained from all the methods considered, the �2 test
was performed. For each of the quantitative measures consid-
ered in this study, the following 7 first-order statistics were
estimated: mean, standard deviation (SD), maximum value
(Max), minimum value (Min), median, first quartile (Q1), and
third quartile (Q3).

RESULTS
Comparison between the proposed method and the 3 manual
segmentations available against the STAPLE algorithm is shown
in Table 1. The statistical differences between the methods is
presented in Table 2. Compared with STAPLE, user 1 achieved
the best results with respect to all the metrics used. User 3 was
the worst performing among all users. The proposed system
achieved a Jaccard coefficient of 0.758 and ranked third (within

the interobserver agreement) with respect to all measures con-
sidered. No statistically significant difference was observed be-
tween the proposed system results and those from users 1 and 2
besides the false positive fraction (FPF) metric. User 3 was
significantly different for all the metrics besides the true positive
fraction metric.

There is high interobserver variability for the manual delin-
eation task compared with the STAPLE-derived ground truth,
particularly when comparing user 3 to users 1 and 2. In terms of
the FPF index, our method performs the worst. As depicted in
Figure 6, this can be seen in the false positive segmented regions
mostly belonging to the skull region.

Figure 3 captures the probabilistic output generated from
the autoencoder for an input image.

Figures 4 and 5 depict representative examples of the
algorithm output and its comparison with the 3 users and
the STAPLE segmentation.

Figure 5 depicts results on 4 different subjects from the
validation data set. In cases 1 and 2, we can observe differences
between users 1 and 2 and the way they create the data set. In
cases 3 and 4, we can observe undersegmentation resulting from
the proposed algorithm.

Figure 6 captures false positives observed when using our
algorithm. The majority of them can be attributed to underseg-
mentation errors of the skull stripping algorithm (failure to
remove all nonbrain tissues). The false positive segmentation
errors are more pronounced in case 2.

DISCUSSION
In this paper, we present an approach based on convolutional
autoencoders that segment regions of increased signal intensity
on FLAIR images. We used a publicly available data set to train
and test the autoencoders, whereas a different data set originat-
ing from our institution was used for validation. The validation
data set had all the areas of interest manually delineated by 3
image analysts, and STAPLE used these to create a ground-truth
labeling.

Figure 2. Fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) of a patient with high-grade
glioma originating from the Brain Tumor Image Segmentation Benchmark (BRATS) competition data set (Left panel). The
red overlay is the ground-truth segmentation highlighting the tumor region (Middle panel). A binary image containing
the ground-truth segmentation to depict the different binary patterns contained in the regions of interest (ROIs) consid-
ered (Right panel). Green boxes are example ROIs used during the training and testing phases of the autoencoder.
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Our approach was able to produce segmentation results
that fell within the interobserver variability with no statisti-
cal difference versus 2/3 users compared with the STAPLES
output in terms of the Jaccard, Dice, and true positive fraction
measures.

Our method was the worst in terms of the FPF metric (Figure
6). This can be attributed to false positive segmentations occur-
ring in areas where the skull-stripping algorithm failed. The data
provided from the BRATS competition were those of skull strip-
ping; thus, when we trained our autoencoder, it was unable to
learn the skull patterns. This was problematic, as the locally
available data set had some skull-stripping failures where the
skull was not always removed. To account for this issue, a
morphological operation was applied, which eliminated the
small false positive regions.

The results of this study indicate that there is substantial
interobserver variability for the manual delineation of the ab-
normal signal on FLAIR images. User 3 had the largest variation

compared with the ground-truth variation from users 1 and 2.
The challenge of reproducibly segmenting the increased signal
regions has been highlighted recently where a Dice coefficient of
0.69 was reported for total tumor volume segmentation in the
BRATS data set (24). Akkus et al. (25) reported a 10% variability
between 2 different manual segmentations for tumor boundaries
on T2-weighted images. Part of the task complexity is that

Table 1. Comparison Between Proposed
Method and 3 Manual Segmentations
Available Against STAPLE Algorithm

Measure Statistic User 1 User 2 User 3 Proposed

Jaccard Mean 0.923 0.840 0.758 0.785

SD 0.051 0.077 0.057 0.095

Max 1.000 1.000 0.865 0.917

Min 0.760 0.550 0.649 0.458

Median 0.931 0.856 0.747 0.821

Q1 0.901 0.815 0.711 0.729

Q3 0.957 0.879 0.809 0.849

Dice Mean 0.959 0.911 0.861 0.876

SD 0.029 0.048 0.037 0.066

Max 1.000 1.000 0.928 0.957

Min 0.864 0.710 0.787 0.629

Median 0.964 0.922 0.855 0.901

Q1 0.948 0.898 0.831 0.843

Q3 0.978 0.935 0.895 0.919

FPF Mean 0.079 0.198 0.190 0.291

SD 0.055 0.135 0.111 0.210

Max 0.253 0.819 0.460 1.181

Min 0.000 0.000 0.020 0.090

Median 0.070 0.164 0.169 0.219

Q1 0.044 0.136 0.100 0.172

Q3 0.101 0.227 0.275 0.370

TPF Mean 0.993 0.996 0.899 0.995

SD 0.032 0.015 0.062 0.016

Max 1.000 1.000 0.994 1.000

Min 0.793 0.923 0.720 0.931

Median 1.000 1.000 0.895 1.000

Q1 1.000 1.000 0.860 1.000

Q3 1.000 1.000 0.956 1.000

Abbreviations: FPF false positive fraction; TPF true positive fraction.

Table 2. Statistical Comparison Between
Proposed Algorithm and 3 Manual
Segmentations Against STAPLE Ground
Truth

User 1 User 2 User 3 Proposed

User 1

Jaccard �0.001 0.002 �0.001

Dice — �0.001 0.004 �0.001

FPF �0.001 0.011 0.04

TPF �0.001 0.625 �0.001

User 2

Jaccard 0.002 �0.001

Dice — — 0.004 �0.001

FPF 0.012 0.003

TPF 0.626 �0.001

User 3

Jaccard 0.093

Dice — — — 0.173

FPF 0.004

TPF �0.001

Proposed

Jaccard

Dice — — — —

FPF

TPF

Abbreviations: FPF false positive fraction; TPF true positive fraction.

Figure 3. Probabilistic output of the proposed
system for a case in our validation data set. As
depicted, tumor areas appear to be brighter than
surrounding tissue (Right panel).

Segmentation of Hyperintense Regions in FLAIR MRI

TOMOGRAPHY.ORG | VOLUME 2 NUMBER 4 | DECEMBER 2016 337



hyperintensity can be due to nontumor disease (eg, vascular
disease) and different users may draw different boundaries be-
cause of this. An automated algorithm may help standardize the
segmentations and make the information that can be extracted
more valuable.

Several proposed systems in the literature evaluate their
performance against the BRATS data set. In this paper, BRATS
was used to train an algorithm, and the performance was eval-
uated on a locally created data set where the ground truth was
based on 3 users (compared with BRATS where the ground truth
corresponds to 1 user). We chose to use BRATS as the training
data set because the acquisition protocol of the data was more

variable than our local data set. Training the algorithm on a less
variable data set would likely have been less successful in
generalizing to the BRATS data.

Recently, Menze et al. (8) proposed an algorithm based on a
generative probabilistic model aimed at tumor and stroke region
segmentations. Their work reported a Dice index mean value of
0.73 � 0.13 when aiming to segment the complete FLAIR lesion,
with a 0.86 � 0.06 interobserver variability. Kwon et al. (26)
reported a Dice index of 0.86 using a similar approach. Cordier
et al. (27) proposed an atlas-based approach and reported a Dice
index of 0.87. Steed et al. (28) reported an accuracy of 0.84 �
0.09 for FLAIR hyperintensity volumes in a data set of 30

Figure 4. Visual examples of the
results of the proposed software
compared to the ground truth cre-
ated using simultaneous truth and
performance level estimation (STA-
PLE) originating in 3 representa-
tive sections from 1 subject in the
test data set. Blue overlays corre-
spond to oversegmentation re-
gions (nonbrain regions included
in the tumor segmentation),
whereas red corresponds to un-
dersegmentation (tumor regions
not included by the proposed
algorithm).

Figure 5. Visual examples of the
results of the proposed software
compared with the ground truth
created using STAPLE originating
from 5 different subjects in the test
data set. Blue overlays corre-
spond to oversegmentation re-
gions (nonbrain regions included
in the tumor segmentation),
whereas red corresponds to un-
dersegmentation (tumor regions
not included by the proposed
algorithm).
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examinations. Porz et al. (24) applied a publicly available tumor
segmentation software to a data set of 25 patients with glioblas-
toma, and reported a Dice coefficient of 0.80. Juan-Albarracín et
al. (29) used a Gaussian hidden Markov Random Field and
reported a Dice coefficient of 0.77 for tumor area segmentation.
Kamnitsas et al. (16), using convolutional neural network and

conditional random field, reported a Dice index of 0.901 for
whole tumor segmentation. In addition, in a similar approach to
the proposed one, Vaidhya et al. (30) reported a Dice index of
0.814 when applied to the BRATS 215 data set.

Recently, a publicly available software tool called
BraTumIA (24) for tumor segmentation was used as a means of
calculating a set of proposed quantitative measures revealing a
good correlation between manual and automatic quantifica-
tion of the features. Compared with the proposed approach,
BraTumIA requires precontrast T1w, postcontrast T1w, T2-
weighted and FLAIR images, making direct comparison with the
proposed system challenging.

One advantage of the proposed technique against tradi-
tional machine learning algorithms is that the features are
learned directly from the images without the need of special
feature-extraction techniques. The proposed tool was developed
using Python (version 2.7.11, Python Software Foundation,
http://www.python.org). The autoencoder was developed with
the Keras Python Library (https://github.com/fchollet/keras)
and the training and execution of the code were done on an
NVIDIA K2 grid card (NVIDIA Inc., Santa Clara, California). The
algorithm needed �1 hour to segment a 256 � 256 � 150 data set.

One significant source of error in our approach was because of
poor skull stripping. The BRATS data had human-confirmed accu-
rate skull stripping; thus, the algorithm had this included in its
model. However, we used only fully automated methods, and so the
human cleanup of skull stripping was absent and resulted in many
nonbrain regions being labeled as tumorous. Our approach could
benefit from a more robust skull-stripping algorithm.

CONCLUSION
The proposed automated system is indistinguishable from ex-
pert-derived segmentations in its ability to perform glioma seg-
mentation. This approach will be useful for alleviating the in-
herent variability of human-derived tumor delineation, thereby
improving the reproducibility of image-derived biomarkers.
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