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Management of glioblastoma multiforme remains a challenging problem despite recent advances in targeted
therapies. Timely assessment of therapeutic agents is hindered by the lack of standard quantitative imaging
protocols for determining targeted response. Clinical response assessment for brain tumors is determined by
volumetric changes assessed at 10 weeks post-treatment initiation. Further, current clinical criteria fail to use
advanced quantitative imaging approaches, such as diffusion and perfusion magnetic resonance imaging.
Development of the parametric response mapping (PRM) applied to diffusion-weighted magnetic resonance
imaging has provided a sensitive and early biomarker of successful cytotoxic therapy in brain tumors while
maintaining a spatial context within the tumor. Although PRM provides an earlier readout than volumetry and
sometimes greater sensitivity compared with traditional whole-tumor diffusion statistics, it is not routinely used
for patient management; an automated and standardized software for performing the analysis and for the
generation of a clinical report document is required for this. We present a semiautomated and seamless workflow
for image coregistration, segmentation, and PRM classification of glioblastoma multiforme diffusion-weighted mag-
netic resonance imaging scans. The software solution can be integrated using local hardware or performed re-
motely in the cloud while providing connectivity to existing picture archive and communication systems. This is an
important step toward implementing PRM analysis of solid tumors in routine clinical practice.

INTRODUCTION
Patients with glioblastoma multiforme (GBM), �15% of pri-
mary brain and central nervous system tumors and 46% of
malignant brain and central nervous system tumors, face a
dismal prognosis with a 1-year survival rate of 37%, drop-
ping to 15% for a 2-year survival rate (1, 2). The current
standard of treatment includes surgical resection followed by
radiation therapy with concomitant administration of temo-
zolomide. Despite the use of aggressive therapies, recurrence
rate remains very high and patients undergo multiple rounds of
chemotherapy and radiation therapy in an attempt to control local
tumor growth (3). There remains significant interest in the devel-
opment of therapies targeting unique oncogenic signaling path-
ways; therefore, robust methods for quantifying their efficacy are
urgently required (4).

Magnetic resonance imaging (MRI) is the standard clinical
method to monitor the extent of disease and the efficacy of

treatment in patients with GBM. Determination of therapeutic
response using the Macdonald criteria, the current standard of
care, relies heavily on measurements of tumor dimensional
changes 1 month following the conclusion of a complete treat-
ment protocol, often 10–12 weeks after the commencement of
therapy (5-7). This volumetric response is measured on serial
contrast-enhanced T1-weighted (T1�C) magnetic resonance
images, relying heavily on the radiologist’s discernment of of-
ten-subtle characteristics of tumor margins. Defining tumor
margins is complicated further by pseudoprogression, a phe-
nomenon that occurs in up to two-thirds of patients treated with
radiation therapy and concomitant administration of temozolo-
mide within 3 months of completing therapy (7, 8). Treatment
with these and other agents damages normal brain parenchyma,
producing contrast enhancement and increased T2-weighted or
fluid-attenuated inversion recovery (FLAIR) signal beyond the
actual margins of the tumor. Current imaging sequences cannot
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reliably distinguish pseudoprogression from actual GBM pro-
gression. More recently, the Response Assessment in Neuro-
Oncology Working Group proposed modifications in the re-
sponse criteria for GBM to include stratification of nonen-
hancing lesions based on T2-weighted or FLAIR MRI (7).
Although Response Assessment in Neuro-Oncology has ad-
vanced the assessment of glioma response to therapy, quan-
titative imaging approaches remain underutilized in the rou-
tine clinical setting.

Diffusion-weighted imaging (DWI) is an MRI technique that is
sensitive to the microenvironmental mobility of water in tissues.
Resulting apparent diffusion coefficients (ADCs) have been shown
to inversely correlate with tumor cellular density in gliomas (9-12)
and a variety of other tumor types (13-21). One of the earliest
manifestations of a successful cytotoxic therapy is disruption of the
cell membrane and overall integrity of tumor cells, resulting in
decreased cellular density (22, 23) and thus a corresponding in-
crease in ADCs. Because molecular and cellular changes precede
gross tumor volume changes, DWI has the potential to provide an
earlier biomarker of treatment response for management of pa-
tients with cancer, which has been confirmed in many studies (9,
12, 24-30). Longitudinal comparisons of tumor ADC have tradi-
tionally focused on mean tumor values at each time point. How-
ever, spatially varying intratumor heterogeneity of response has
been observed as a major confounding factor in individual patient
assessment (31-33). The continuing development of image-pro-
cessing algorithms, such as the voxel-based parametric response
mapping (PRM), offers improved opportunities for more sensitive
characterization of disease and response (10, 34, 35).

PRM is an image analysis approach that uses spatially
aligned, longitudinal images to classify response in a voxel-
wise manner, resulting in improved sensitivity over volumet-
ric measurements, particularly in the case of spatially depen-
dent heterogeneous changes occurring in underlying imaging
metrics during therapy. PRM of apparent diffusion coefficient
maps (PRMADC, previously known as the functional diffusion
map) provides an early biomarker of treatment response in
high-grade gliomas (34, 36) and maintains spatial context in
the form of the classification map. PRM methods rely on
accurate image segmentation and coregistration (31, 37), but
the workflow remains time-intensive involving multiple cus-
tom algorithms. Experienced radiologists generally delineate
regions of interest (ROIs) manually. However, this practice is
both subjective and extremely time-consuming, particularly
when performed on multiple slices spanning the tumor on
high-resolution images to construct a volume of interest
(VOI) (38). Routine implementation of PRM in clinical prac-
tice will require a user-friendly interface and automation to
aid in significant clinical adoption.

Herein we have developed and evaluated a semiautomated
PRMADC workflow and compared results with previously pub-
lished data (12). The presented workflow was designed to enable
practical implementation and use of PRMADC in the time-con-
strained clinical environment. We also highlight the potential
for full automation of this image analysis method. Furthermore,
this technology can be accessed through cloud-based servers,
providing clinicians with a PRM summary statistical report to be

used in clinical management but without the need for installing
or maintaining local software and computing power. Overall,
results present a software solution that provides a robust and
semiautomated workflow, allowing for the evaluation of glioma
therapy response using PRMADC.

METHODS
Patients and Therapy
Patient imaging data were acquired previously as a prospec-
tive study evaluating PRMADC as an imaging biomarker for
glioma treatment response (12). 60 patients with high-grade
gliomas undergoing chemo-radiotherapy were enrolled in the
study.

Radiotherapy was delivered using 3-dimensional (3D)
conformal therapy or intensity-modulated radiotherapy with
at least 6-MV photons. Standard technique included a 2.0- to
2.5-cm margin on either the enhancing region on gadolini-
um-enhanced scans or the abnormal signal on T2-weighted
scans to 46–50 Gy, with the gross tumor treated to a final
median dose of 70 Gy in 6–7 weeks. 21 of these patients were
treated on a phase 2 protocol of high-dose (60 Gy) radiation
therapy with concurrent administration of temozolomide,
dependent on clinical circumstances. Traditional radiologic
response was assessed at week 10 by an experienced neuro-
radiologist using the Macdonald criteria.

Imaging
Diffusion and standard anatomical MRI (FLAIR), T2-weighted,
and gadolinium-enhanced T1-weighted (T1�C) images were
acquired 1 week before and 1, 3, and 10 weeks after the com-
mencement of radiation therapy with follow-up acquisitions
every 2–3 months. Diffusion imaging was accomplished using a
single-shot spin-echo echo-planar imaging protocol with diffu-
sion weighting in 3 directions. MRI acquisitions were performed
using 1 of the following 2 systems:

(1) 1.5 T MRI (n � 45; General Electric; Waukesha, Wiscon-
sin).

(2) Achieva 3 T MRI (n � 15; Philips; Best, The Netherlands).

Acquisition parameters were as follows:

• 24 axial slices, 6-mm thick, 22 cm of field of view, 1282

matrix (voxel � 17.7 mm3), repetition time � 10 000 mil-
liseconds, echo time � 71–100 milliseconds, and 1 average,
with b values of 0 and 1000 s/mm2.

• 28 axial slices, 4-mm thick, 24 cm of field of view, 1282

matrix (voxel � 14 mm3), repetition time � 2636 millisec-
onds, echo time � 46 milliseconds, and b values of 0 (1
average) and 1000 s/mm2 (2 averages).

Parallel imaging (sensitivity encoding factor 3) was used
at 3 T to reduce spatial distortion. The diffusion images for
the 3 orthogonal directions were combined to calculate an
ADC map.

ADC maps were calculated using the standard mono-expo-

nential model: ADC �
ln �S1⁄S2�

b2�b1
, where S1 is the image with b
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value b1 � 0 s/mm2 and S2 is the image with b value b2 � 1000
s/mm2. The diffusion-weighted images for the 3 orthogonal
directions were combined to form S2.

Semiautomated Tissue Segmentation
The semiautomated segmentation algorithm uses a combination
of region-based active contours and level-set approaches (39,
40). The algorithm is initialized with a user-defined seed ROI,
consisting of a rough outline of the tumor on a single slice,
where the tumor has a relatively large area. Completely auto-
mated segmentation is then performed, extending the VOI to
cover the full 3D tumor volume. Segmentations of contrast-
enhancing tumor using T1�C images were used for analysis.

Seed ROIs were generated by a 2-dimensional binary dila-
tion (3�) of a given slice from a radiologist-drawn VOI around
the contrast-enhancing region of the tumor (compare “Manual”
and “Seed” example images in Figure 3). For a given image,
multiple seed ROIs were generated in this way to test the sensi-
tivity of the segmentation algorithm to seed ROI identification.
737 seed ROIs were generated from 51 patients, each with 2
imaging time points (pretreatment and post-treatment).

For each patient and time point, the seed ROI that yielded
the optimal similarity was identified. Reproducibility of the
segmentation was explored by applying a 1-voxel shift in each
direction of this optimal seed ROI. For this analysis, shifted-seed
segmentation volumes were compared with optimal seed seg-
mentation volumes. Direct visual comparison of the segmenta-
tion volumes was also performed.

For PRM processing of 27 data sets, a 3� binary dilation on a
single central slice of the provided VOI was used as a seed ROI for
this algorithm, as mentioned above. For the remaining 15 data sets,
seed ROIs were manually drawn on a central slice through the
tumor.

Automated Coregistration
An algorithm for nonlinear registration of serially acquired
multimodal MRI images was developed which uses a 3-step

process to register the baseline and follow-up anatomical im-
ages. The first step is a 3D block-matching algorithm with an
intensity-based similarity metric that provides a global affine
transformation. The second step uses a normalized mutual in-
formation metric and a B-spline interpolator to perform local
registration of a down-sampled data set. Down-sampling is
performed to increase the computational speed of the coarse,
local registration. The control points for the B-spline interpola-
tor are placed in a uniform grid with a spacing equal to 6 voxels.
A bending energy penalty term is included to enforce a smooth
solution. The final stage repeats the normalized mutual infor-
mation and the B-spline local registration process with a full-
resolution data set and a penalty term on the determinants of the
Jacobian of the transformation are enforced to ensure a smooth
transformation. The objective of this approach is to spatially
align all serial imaging data to the pretreatment T1�C scan,
referred to as the reference scan. In brief, serial T1�C images are
spatially aligned, and the transformation matrix calculated is
used to transform all post-ADC maps to the reference scan.

Automated Parametric Response Mapping
The PRM analysis was performed following previously described
methods. In brief, each voxel inside a VOI was categorized by the
change in an ADC value (�ADC) into 1 of 3 classifications:
�ADC � 55 � 10�5 mm2/s (red, “increased ADC”); �ADC 	�55 �
10�5 mm2/s (blue, “decreased ADC”); and �55 � 10�5 mm2/s 	
�ADC 	 � 55 � 10�5 mm2/s (green, “unchanged ADC”). These
threshold values were empirically determined as the 95% con-
fidence intervals from normal contralateral brain tissues (34).
The percentage fractional tumor volume for each of these cate-
gories is quantified and reported as a metric of response
(PRMADC�, PRMADC�, and PRMADC0, respectively).

Two separate tests were conducted to demonstrate the pro-
posed workflow using previously published imaging data. First,
segmentations on preregistered images were generated using
semiautomated algorithms and compared against manual seg-
mentations generated previously by experienced radiologists.

Figure 1. Software workflow is presented
for processing and analysis of serial glioma
diffusion data for parametric response map-
ping of apparent diffusion coefficients maps
(PRMADC). Images are first processed to gen-
erate an apparent diffusion coefficient (ADC)
map and tumor segmentation. Then, fol-
low-up images are spatially aligned with
baseline images. Once ADC maps are
aligned, they are further processed into a
parametric response map, consisting of
3-voxel classifications: increased, decreased
and unchanged ADC. Summary statistics for
clinical evaluation consist of the tumor-rela-
tive volume of each classification as well as
mean ADC at each time point.
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This study used 49 coregistered patient data sets provided by the
institution. Second, original imaging data were used directly
from the institution’s picture archive and communication sys-
tem (PACS) and processed with the fully semiautomated work-
flow (segmentation, registration, and PRM). This study used 40
of the previously studied patients because of limitations query-
ing all the required retrospective data from the PACS.

Statistics
Segmentation comparisons were performed using the Dice co-
efficient of similarity (DCS), with values ranging from 0 (not at
all similar) to 1 (exactly the same). Receiver operator curve (ROC)
analysis was performed to evaluate the predictive value of
PRMADC for projecting patient 1-year survival post diagnosis.

RESULTS
Semiautomated Workflow

An optimized workflow was developed for the PRM analysis of
quantitative diffusion maps for glioma response assessment (Figure
1). First, a semiautomated segmentation algorithm allows for fast
and objective delineation of tumor volumes at baseline and fol-
low-up based on contrast-enhancing tumor (T1�C). Next, fol-
low-up T1�C images were automatically coregistered to baseline
T1�C. The resulting transformation was then applied to the calcu-
lated ADC maps. Individual voxels were then classified based on
predetermined thresholds, generating relative volumes for each
classification as a summary statistic, as well as a PRM map dis-
played as a color overlay on anatomical images.

Figure 2. Example final report of
parametric response mapping
(PRM) results from the online soft-
ware platform. This provides PRM-
relative volumes as summary sta-
tistics along with key PRM over-
lays and scatterplot for insight into
distribution patterns and spatial
context. In addition, measures of
mean tumor ADC and tumor vol-
ume are provided.
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Implementation of this workflow could be accomplished by
locally installed software or cloud-based servers with access
through a browser, and this workflow includes connectivity to
PACS storage. This flexibility will allow users access to PRM
algorithms without the need for purchasing expensive, high-
performance computers. The output display (ie, PRM report) is
designed to maximize the relevant information for the user in a
succinct manner that is easy to read (Figure 2). In addition to the
PRMADC-relative volumes, the final generated report presents
tumor-central slices with color PRM overlaid, the scatterplot
that represents the distribution of ADC values from all voxels
contained within the segmented tumor, and mean tumor ADC
and tumor volume values from both time points. The output also
includes a Digital Imaging and Communications in Medicine
series of the full pretreatment T1�C volume with the color PRM
results overlaid, downloaded directly to a PACS.

Segmentation Evaluation
Manual delineation of the tumor volume by an experienced
radiologist is time-intensive and subjective, often leading to
interoperator variation (41). This has motivated the develop-
ment of semiautomated and fully automated algorithms to pro-
vide fast and objective hands-off delineation of tumor volumes.
Semiautomated segmentations used in the current PRM plat-
form were consistently well placed, showing good agreement
with manual segmentations (Figure 3). The location of a seed
ROI (cyan line) for the illustrative example in Figure 3 was
accomplished by a 2-dimensional dilation of the manual seg-
mentation (blue line, top row) on slice 13, with the algorithm
growing into a 3D VOI for use in quantitative analysis (green
line, bottom row). The quality of the segmentation algorithm
was found to be sensitive to positioning of the seed ROI (Figure 4).
Here, the best agreement per patient between auto-segmentation
and manual segmentations is high (mean DCS of 0.703 
 0.151).
These segmentations were found to result from seed ROIs gen-
erated in the middle of the tumor, where the area of the tumor
was the largest. Comparisons including segmentations from all

individual slice seeds for each patient resulted in a wide varia-
tion (DCS � 0.445 
 0.256). Low DCS found in this analysis was
typically found when seed ROIs were positioned at the end of the

Figure 3. An example of auto-
mated segmentation reveals good
agreement with the original man-
ual segmentation. Manual seg-
mentations drawn by an experi-
enced radiologist are shown in
the top row and semiautomated
segmentation results in the sec-
ond row. Generation of the semi-
automated VOI began with the
single-slice seed ROI shown in the
bottom row (slice 13).

Figure 4. Dice coefficients comparing semiauto-
mated tumor segmentations to radiologist-defined
segmentations. Maximum Dice per patient re-
sulted in good agreement between segmentations,
left; however, use of all slice ROIs individually as
seed regions resulted in poor agreement, right.
This indicates that seed ROI positioning is critical
for an acceptable segmentation. The seed ROI
should be placed in the middle of a tumor, where
the tumor area is the largest.
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tumor volume, with a relatively low cross-sectional area. Seed
positioning on larger cross sections of the tumor produced more
stable results. We found an average difference in PRMADC� of
0.3% (
4.5%) between previous results and our semiautomated
results.

Segmentation was further evaluated by applying a
1-voxel shift in each direction to the seed ROI that resulted in
maximum DCS per patient. Resulting DCS and volumes were
compared against original (maximum DCS) segmentations
(Figure 5), showing good agreement between segmentations
initiated with original versus shifted seeds (DCS � 0.96 

0.08; RVol

2 � 0.98).

PRM Benchmarking
PRM results generated by the semiautomated software were
benchmarked against previously published results (12). ROC
analysis was performed in the previous study to find an optimal
PRMADC� cutoff for prediction of 1-year survival. Subjects used
in the ROC analysis were a subset of the original group. Semi-
automated segmentation and classification using previously
registered images (Figure 6) and the full semiautomated work-
flow results (Figure 7) both produced ROC characteristics that
are comparable to the original analysis. Limited availability of
the original imaging data for the full workflow analysis also
limited the significance of the findings using that subset; how-
ever, our results closely matched those in the same subset of the
original results.

DISCUSSION
Standard methods for determining GBM response to treat-
ment currently rely on data obtained after 4 weeks following
completion of the initial course of therapy. This approach
potentially results in patients receiving weeks of ineffective
therapy with associated systemic toxicities, delaying oppor-
tunities to improve patient outcomes through personalized,
adaptive therapy. These limitations highlight the unmet clin-
ical need for new, clinically translatable methods to assess
response treatment efficacy early in the course of therapy.
The use of PRMADC has been limited to research applications
due in part to the absence of clinically streamlined software.
The goal of the presented work was to develop a semiauto-

mated PRM process for translation into standard clinical
practice.

PRMADC requires 3D segmentation of the tumor volume, a
cumbersome, time-consuming, and skill level-dependent process
when done manually. Thus, automation of the segmentation pro-

Figure 5. Robustness of semiau-
tomated segmentation was evalu-
ated using Dice coefficients be-
tween the best-slice seed segmen-
tation and shifted-seed
segmentations (A), showing little
variation between segmentations.
Resulting volumes were also found
to remain consistent with varying
segmentation seed (B).

Figure 6. Receiver operator curve (ROC) analy-
sis was used to compare final PRMADC� results
against the same subjects’ previous results (n �

49). Semiautomated segmentation was performed
on previously coregistered images, followed by
automated PRM classification. The ROC statistics
are compared between the 2 in the table.
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cess is critical for achieving consistent results in practical clinical
implementation in the time-constrained environment of clinical
radiology and patient care. After magnetic resonance images are
acquired (DWI and T1�C), they can be automatically uploaded
to the software platform, and the only user input necessary
for this workflow is to designate the seed ROI for initializa-
tion of the segmentation algorithm. Using the presented
semiautomated approach, only a rough contouring of the
tumor boundaries on a single slice is required. We have
shown good agreement between semiautomated and manual
segmentations using the segmentation resulting from the best
seed slice for each subject (DCS � 0.704). This maximum DCS
generally resulted from a seed ROI placed on the slice with the
largest cross-sectional tumor area (ie, on a tumor-central
slice). For comparison, previous studies have determined the
mean DCS between manually drawn segmentations of T1�C-
enhancing glioma performed by separate readers to be 0.74
(42). The segmentation was also found to be quite robust, with
minimal variation resulting from spatial shifts in the seed ROI
(DCS � 0.96 
 0.08). Further development of this workflow is
ongoing, which will include a fully automated segmentation

routine, but a robust method for this has not yet been imple-
mented.

Workflow results were compared with previous results as a
benchmark (12), first focusing on the segmentation, and then
using the full workflow. The ROC results using preregistered
images, semiautomated tumor segmentation, and automated
PRM classification were consistent with previous results. Al-
though previous analyses used images that were coregistered
using an affine transformation, the presented workflow used a
nonlinear warping transform to account for the nonrigid nature
of these biological tissues. Although modest changes in tumor
volume would be expected within the 3-week time frame of this
analysis, the difference in coregistration has the potential to
affect resulting PRM values and thus their clinical interpre-
tation. Issues relating to image registration have been exten-
sively discussed in the literature; however, they indicate that
these deformable image-processing tools can be used effec-
tively to coregister brain MRI data (10, 43). However,
PRMADC� results were not found to differ greatly from pre-
vious results. This further confirmed that the semiautomated
approach for tumor segmentation provides accurate results
leading to minimal PRM differences. The ROC analysis was
further used to evaluate the fully semiautomated workflow
results (segmentation, registration, and PRM classification),
again resulting in good agreement.

Overall, we have shown that the presented approach
provides an easy-to-use solution for the clinical evaluation of
DWI scans obtained from patients with glioma. The workflow
requires minimal operator input (and thus minimal time) from
the user and yields results consistent with previously pub-
lished work. The final report generated for the user displays
all information of interest from the analysis in a manner that
is easily interpreted. Furthermore, the report also provides
information to the user related to any encountered problems
with the analysis, which would be apparent in the represen-
tative slice overlays and PRM scatterplot. Resulting segmen-
tations and PRM overlays are also available for download in
the Digital Imaging and Communications in Medicine stan-
dard format. Further development of the user interface and
results will depend on direct user input once the software is
implemented for routine clinical use.

In summary, the presented work demonstrates a clinically
accessible PRM application for the assessment of glioma
response to therapy. The streamlined process was shown to
provide robust and comparable results to the time-intensive
manual evaluation previously reported in the literature. Al-
though evaluated only in the context of glioma response
using DWI, this method remains flexible and broadly appli-
cable with easy translation to other cancers and treatments
(9, 12, 24-30), as well as other quantitative imaging modal-
ities (35, 36, 43, 44). By providing a robust software platform,
this work signifies a substantial advance toward translation
of PRM imaging biomarkers into standard clinical practice
and is a significant step toward allowing broad clinical adop-
tion of PRM.

Figure 7. The ROC analysis was used to com-
pare final PRMADC� results against the same sub-
jects’ previous results (n � 40). The full workflow
was applied to available original imaging data,
consisting of semiautomated segmentation, image
coregistration, and PRM classification. ROC statis-
tics are compared between the 2 in the table.
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