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Magnetic resonance imaging (MRI) is used to diagnose and monitor brain tumors. Extracting additional in-
formation from medical imaging and relating it to a clinical variable of interest is broadly defined as radiom-
ics. Here, multiparametric MRI radiomic profiles (RPs) of de novo glioblastoma (GBM) brain tumors is related
with patient prognosis. Clinical imaging from 81 patients with GBM before surgery was analyzed. Four MRI
contrasts were aligned, masked by margins defined by gadolinium contrast enhancement and T2/fluid attenuated
inversion recovery hyperintensity, and contoured based on image intensity. These segmentations were combined
for visualization and quantification by assigning a 4-digit numerical code to each voxel to indicate the segmented
RP. Each RP volume was then compared with overall survival. A combined classifier was then generated on the
basis of significant RPs and optimized volume thresholds. Five RPs were predictive of overall survival before ther-
apy. Combining the RP classifiers into a single prognostic score predicted patient survival better than each alone
(P � .005). Voxels coded with 1 RP associated with poor prognosis were pathologically confirmed to contain
hypercellular tumor. This study applies radiomic profiling to de novo patients with GBM to determine imaging
signatures associated with poor prognosis at tumor diagnosis. This tool may be useful for planning surgical resec-
tion or radiation treatment margins.

INTRODUCTION
Glioblastoma (GBM) is a diffuse and highly invasive brain tumor
of astrocytic origin. Despite recent advances in medical imaging
diagnostics, radiation treatment, and chemotherapy, gliomas
remain the most lethal cancer of the central nervous system (1).
The median survival time is 14.6 months with a 5-year survival
rate of 5.1% (2, 3).

GBMs are pathologically defined by pseudopalisading ne-
crosis (4) and endothelial proliferation (5) and are highly heter-
ogeneous with areas of differing cellularity, vascularity, and
necrosis. This heterogeneity is further influenced by differing
cellular microenvironments (6-8). Recent studies have hypoth-
esized that these microenvironments create unique radiographic
signatures on magnetic resonance (MR) imaging that may indi-
cate information of clinical importance (8-10).

Magnetic resonance imaging (MRI) is commonly used to
diagnose GBM, monitor tumor progression, and assess response
to therapy (11, 12). Multiparametric MRI (MP-MRI) combines
different MR contrast sequences to provide additional comple-
mentary structural information, potentially illuminating hidden

characteristics and offering insight into both tumor and normal
tissues. Recently, techniques that use advanced image process-
ing to extract and analyze quantitative imaging features have
been used in combination with clinical variables. These tech-
niques are broadly defined as radiomics (9, 10, 13-15). Features
quantified include metrics such as intensity distribution, spatial
relationships, textural heterogeneity, and shape descriptors,
among many other characteristics (16-18). The resulting matri-
ces of feature data can then be mined along with a clinical
variable of interest, such as a genetic profile, to determine
previously hidden patterns (9, 19, 20).

The goal of this study is to develop an intuitive methodol-
ogy for extracting voxel-wise radiomic profiles (RPs) from clin-
ical imaging to describe distinct intensity characteristics from a
given combination of MRI contrasts. We hypothesized that het-
erogeneous RPs represent underlying tumor characteristics, and
thereby contain prognostic significance. This retrospective
study looks at imaging from patients with GBM before treatment
and derives a model of risk stratification for patient prognosis
based on volumetrically thresholded RPs.
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METHODOLOGY
Patient Population and Image Acquisition
In total, 81 patients with pathologically confirmed primary GBM
with T1-weighted pre- and postcontrast images, diffusion-
weighted imaging, and T2-weighted fluid-attenuated inversion
recovery (FLAIR) imaging before therapy were included in this
study. Overall survival (OS) was corrected to account for con-
trast-enhancing tumor size, which is known to be associated
with OS. Imaging was gathered before surgery using one of our
institutional MRI scanners, including 1.5 T and 3 T GE (General
Electric Health, Waukesha, Wisconsin) and Siemens magnets
(Siemens Healthcare, Erlangen, Germany). The following are
example scan parameters (all given in the format repetition
time/echo time) at 1.5 T: T1 spin-echo sequence, 666/14 milli-
seconds; contrast-enhanced T1 acquired with gadolinium,
666/14 milliseconds; apparent diffusion coefficient, calculated
from diffusion-weighted images acquired with an echo planar/
spin echo sequence, 10 000/90.7 milliseconds; and FLAIR, ac-
quired with an inversion recovery sequence, 10 002/151.8 mil-
liseconds and TI of 2200 milliseconds. All images were acquired
with submillimeter in-plane resolution.

Preprocessing
Images were coregistered to the T1 image using FSL’s FLIRT
command (FMRIB Software Library, Oxford) (21-23). The FLAIR
hyperintensity and contrast-enhancing lesion were semiauto-
matically segmented using a thresholding technique followed
by manual correction of misclassified voxels (24). To correct for
subtle intensity variance, images were smoothed with a 2-mm
full width at half maximum Gaussian filter. Each image was
then intensity-normalized by dividing voxel intensity by the
standard deviation of the whole brain (25, 26). A total region of
interest (ROI) mask was created using the union of the contrast-
enhancing lesion and the FLAIR hyperintensity ROIs. Each con-
trast was then masked to only include abnormal regions. FSL’s
FAST command (FMRIB Software Library, Oxford) (27) was used
to create a 3 tissue-class segmentation of each of the 4 images,
ranking voxel intensities by low, medium, and high. Each was
then coded with a value of 1, 2, and 3, respectively.

RP Generation
Images were coded based on the RP on a voxel-wise basis; for
ease of interpretation, a 4-digit code was assigned to each voxel
representing the intensity-based segmentation from each of the
4 images. The digit order chosen was T1, ADC, T1�C, and
FLAIR. Codes ranged from 1111, representing dark voxels on all
images, to 3333, representing all bright voxels. The left panel of
Figure 1 shows the 4 clinical images used to generate RPs. The
ROI used for all 4 images is the T1 enhancement combined with
the FLAIR hyperintensity. These images are segmented individ-
ually within the ROI and given values of 1–3 based on intensity
and neighboring pixel information. These 4 images are com-
bined into one, with each voxel containing the segmentation
value from all 4 images.

An RP is defined as all voxels within an image that
contain the same 4-digit code. The resulting map contains 81
(34) potential RPs. Profiles were evaluated within the follow-
ing 4 ROIs:

(1) Within the contrast-enhancing lesion only (T1E).
(2) Within the FLAIR hyperintensity only (FLAIR).
(3) Within the union of the FLAIR hyperintensity and

contrast-enhancing lesion (FTU).
(4) Within the FLAIR hyperintensity excluding contrast

enhancement (FEC).

Statistical Approach
We performed an exploratory analysis to first determine which
RPs were correlated with OS. The optimal volumetric threshold
was then calculated for each significant profile using a log-rank
Kaplan–Meier survival analysis. High- and low-volume groups
were required to have at least 10 patients. Because of the high
number of statistical tests performed, a strict P value of �.0005
was considered significant.

To generate a combined indicator score, each patient was
given a score from 0 to 5, indicating how many RP thresholds
were exceeded. A Cox regression approach was used to calculate
the hazard ratio associated with the number of profiles above
threshold. A final Kaplan–Meier analysis was performed be-
tween patients scoring 0–2 and patients scoring 3–5.

Histological Validation
The imaging data from the final time point before death were
processed as described above in 2 additional patients undergo-
ing autopsy. These patients underwent treatment. The patients’
brains were sectioned in the same orientation and thickness as
their last MRI. Tissue specimens were acquired from areas sus-
picious of tumor, including regions highlighted by RPs, then
paraffin-embedded and stained using hematoxylin and eosin.
The histology was then coregistered to the T1 image using
methods previously established (24, 28). To assess the underly-
ing pathology, the RP was overlaid on the histology.

RESULTS
Five profiles were identified as highly correlated with survival
independent of the tumor volume, where higher volumes of each
RP were associated with poorer prognosis. These included 2133

Figure 1. Individual region of interest (ROI) seg-
mentation of 4 image contrasts (Left). Combination
of individual segmentation to generate radiomic
profile (RP) map (Right).
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within FTU ROIs and 1133, 1213, 1233, and 3133 within T1E
ROIs (P � .0005). Figure 2 shows the profiles significantly
correlated with survival overlaid on FLAIR (2133 in FTU) or
T1�C (all others).

Volume thresholds associated with each RP are shown in
Table 1. The number of RPs above threshold predicted patient
survival, where patients above threshold in 3–5 of the RPs
showed decreased OS compared with those with 2 or fewer RPs
above threshold (P � .001), and survival curves associated with
prognostic score and risk group can be seen in Figure 3. The
addition of each RP above volume threshold was associated with
a hazard ratio of 1.44 (P � .001). Profile 1133 was histologically
confirmed to contain dense hypercellularity and necrosis in 2
patients. Figure 4 shows the histological validation of profile
1133. Panel A shows a FLAIR image at the time point nearest
to death, with profile 1133 mapped onto the patient’s image.
An outline of the tissue sample is shown overlaid in white. A
large cluster of 1133 is within the tissue sample, and panel B

shows a magnified view of the area in the tissue sample
indicated by the RP.

DISCUSSION
This study presents a method of combining information from a
variety of MRIs to create profiles that quantify heterogeneity in
tumor appearance. We found that 5 RPs significantly correlated
with survival when thresholded by volume. When combined,
these profiles created a prognostic indicator that may be used to
evaluate prognosis noninvasively before treatment. Figure 3
shows 2 Kaplan–Meier plots, and it represents the risk-stratifi-
cation model these profiles generate. In the left panel, all 6
prognostic scores have individual Kaplan–Meier curves. Al-
though the sample size is smaller, the survival times stratify on
the basis of the prognostic score. The right panel shows a
combined prognostic score, where all patients with 0–2 score
are grouped together in a low-risk group, and patients scoring
3–5 are considered high risk. There is a statistically significant
difference in survival time between low- and high-risk patients
(P � .001). At autopsy, hypercellular tumor and necrosis was
found in voxels indicated by one of the RPs in 2 patients.

Previous studies have found that the visual appearance of
brain tumors on imaging such as mass effect, brain tumor
contrast enhancement, degree of T2 edema, and contrast to T2
ratio is related to the genetic phenotype of brain tumors (19).
Previous radiomic analysis of MP-MRI has found that imaging
features such as standard deviation of energy and gray level run
emphasis are significantly correlated with patient prognosis
(29). Radiomic analysis typically produces a larger number of
agnostic features, features that are mathematically extracted
descriptors of tumor properties (14). Image features used in
radiomic analysis have been shown to capture distinct pheno-
typic differences in cancers such as those of the lungs (30-33)
and the head and neck (9, 33-36).

One of the goals of this study was to bridge the gap between
what radiologists interpret with MP-MRI and the field of ra-
diomics. Agnostic radiomic features such as image entropy or

Figure 2. Profiles correlated with survival iso-
lated and overlaid on FLAIR (2133 in FTU) or
T1�C (all others).

Table 1. Profiles Correlated With Survival

Profile Condition
Cutoff
(mm3)

N Above/Below
Threshold

2133** FTU 236 52/29

1133*** T1E 30 53/28

1213*** T1E 178 17/64

1233** T1E 451 33/48

3133** T1E 125 57/24

**P � .0001; ***P � .00001.

Figure 3. Survival vs prognostic score for scores
of 0–6 (Left). Low (0–2) and high (3–5) risk
group vs survival (Right).
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image energy are often found to be associated with a clinical
metric of interest. Because these features are typically calculated
within an ROI, radiologists are limited to interpreting a score
rather than a heterogeneous image. The radiomic profiling
method presented here results in a simple-to-interpret 4-digit
code that maps tumor heterogeneity in a visually meaningful
way. Figure 5 compares 2 patients, one with a small tumor and
a high-risk score and the other with a larger tumor and a lower
prognostic score. The raw FLAIR and T1�C images, as well as
the combined ROI, are shown. The bottom panel groups all
profiles into one of 3 categories such that the map is easier to
read. Blue indicates profiles not significantly correlated with
survival, green represents profiles correlated with survival be-
low threshold, and yellow indicates profiles correlated with
survival that are above threshold. Despite the smaller tumor in
the patient on the right, 5 profiles above threshold result in a
much smaller survival time. Additional analysis of the RP volu-
metrics provides risk stratification, predicting patient prognosis
in a manner that is intuitively understandable to a radiologist.
The resulting profile maps may be useful for defining resection
margins or targeted radiotherapy.

Current practice in GBM imaging involves regular imaging
sessions. Radiomic profiling in its current state best functions at
the first scans after diagnosis, potentially directing, radiother-
apy or surgical resection. Future studies will validate this
method over time, accounting for treatment effects and moni-
toring if changes in RPs continue to correlate with prognosis.
The current method is semiautomatic, involving human input
only in checking the ROIs after they are initially identified by
thresholding. With a more advanced ROI-detection method, this
approach could become a fully automated tool at the physicians’
disposal. No additional scans would be required to implement
this method. The time to generate the RP maps is under 30
seconds assuming the ROIs are already available.

The 4 MRI contrasts included in this analysis are standard in
most clinical brain tumor protocols. ADC, which measures the
diffusion of water within tissue, has been shown to be inversely
correlated with tissue cellularity (37). An increase in ADC has
also been hypothesized to indicate cell death (38). FLAIR is a

Figure 4. RP (red) and boundar-
ies of tissue sample (white) over-
laid on fluid attenuated inversion
recovery (FLAIR) image (A). Hy-
percellular tumor in areas of his-
tology indicated by RP 1133 (B).

Figure 5. Low-risk patient with good predicted
prognosis survives longer than average survival
time (Left). High-risk patient with poor predicted
prognosis dies shortly after diagnosis (Right). Low-
risk profiles (blue) and high-risk profiles above
threshold shown in Table 1 (orange) and high-risk
profile below threshold (green) (Bottom).
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heavily T2-weighted fluid inversion sequence, which suppresses
cerebrospinal fluid, so that excess fluid within the brain
becomes hyperintense (39). FLAIR hyperintensity is generally
interpreted as a combination of infiltrative tumor cells and
vasogenic edema.

The code 1133 was hypothesized to be the most significant
profile before analysis because it best describes the appearance
of invasive tumor on all the following 4 contrasts evaluated:
dark on T1, diffusion restricted on ADC, enhancing on T1�C,
and within the region of edema on FLAIR. The environments
1113 and 1123 (the same profile with different T1�C values) are
not significant in any condition, suggesting that contrast en-
hancement was the important characteristic in this profile. Four
of the 5 significant profiles take the form XX33, indicating that
they are contrast-enhancing and hyperintense in the FLAIR.
Interestingly, no profiles outside of the contrast-enhancing le-
sion were found to be indicative of OS.

The volume threshold for each profile was unexpectedly
variable, where some profiles, such as 1133, have a near-zero
threshold, whereas others, such as 1233, have a threshold over
450 mm3. Future studies should assess phenotypic differences in
these RPs.

There were several sources of potential error in this study.
Segmentations of both the T1E and FLAIR hyperintensity were
performed semiautomatically, with manual correction of mis-
classified voxels, and thus, are prone to potential human error.
Variable imaging parameters, magnet strength, and vendor may

also contribute as sources of error. Because of the retrospective
nature of the study, images were acquired over the course of
several years under similar but slightly varying imaging param-
eters. The data set would likely produce more robust profiles if
the parameters and imaging systems had been identical. We
controlled for this by intensity-normalizing each image.

These profiles will have greater clinical importance if they
can be linked to a distinct histological pattern. Each profile may
describe a specific phenotype or microenvironment. Further histo-
logical validation with more patients is necessary. Treatment ef-
fects, however, may change the profile volume, threshold, or which
profiles are most useful in predicting prognosis. Monitoring profile
growth over time will allow us to better control for both treatment
effects and time dependence. A variation in prognostic score over
time may provide useful clinical information.

In conclusion, this study presents an easily interpretable
method for creating radiographic profiles by combining inten-
sity information from multiple MRI scans. When thresholded by
volume, 5 RPs significantly correlated with survival. A prognos-
tic indicator that combined the 5 may potentially be used to
evaluate prognosis noninvasively before treatment. We also
pathologically validated that voxels indicated by one of the RPs
contained hypercellular tumor and necrosis in 2 patients. The
method presented in this paper may prove clinically useful in
providing a risk-stratification model for clinicians treating
newly diagnosed GBM.
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