
Citation: Varshney, M.; Kumar, P.; Ali,

M.; Gulzar, Y. Dynamic Random Walk

and Dynamic Opposition Learning for

Improving Aquila Optimizer: Solving

Constrained Engineering Design

Problems. Biomimetics 2024, 9, 215.

https://doi.org/10.3390/

biomimetics9040215

Academic Editors: Ameer Hamza

Khan, Shuai Li and Danish Hussain

Received: 28 February 2024

Revised: 27 March 2024

Accepted: 2 April 2024

Published: 4 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

Dynamic Random Walk and Dynamic Opposition Learning for
Improving Aquila Optimizer: Solving Constrained Engineering
Design Problems
Megha Varshney 1 , Pravesh Kumar 1, Musrrat Ali 2,* and Yonis Gulzar 3

1 Rajkiya Engineering College (AKTU, Lucknow), Bijnor 246725, India; megha.math21@recb.ac.in (M.V.)
2 Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
3 Department of Management Information Systems, College of Business Administration, King Faisal University,

Al Ahsa 31982, Saudi Arabia; ygulzar@kfu.edu.sa
* Correspondence: mkasim@kfu.edu.sa

Abstract: One of the most important tasks in handling real-world global optimization problems is to
achieve a balance between exploration and exploitation in any nature-inspired optimization method.
As a result, the search agents of an algorithm constantly strive to investigate the unexplored regions of
a search space. Aquila Optimizer (AO) is a recent addition to the field of metaheuristics that finds the
solution to an optimization problem using the hunting behavior of Aquila. However, in some cases,
AO skips the true solutions and is trapped at sub-optimal solutions. These problems lead to premature
convergence (stagnation), which is harmful in determining the global optima. Therefore, to solve the
above-mentioned problem, the present study aims to establish comparatively better synergy between
exploration and exploitation and to escape from local stagnation in AO. In this direction, firstly, the
exploration ability of AO is improved by integrating Dynamic Random Walk (DRW), and, secondly,
the balance between exploration and exploitation is maintained through Dynamic Oppositional
Learning (DOL). Due to its dynamic search space and low complexity, the DOL-inspired DRW
technique is more computationally efficient and has higher exploration potential for convergence to
the best optimum. This allows the algorithm to be improved even further and prevents premature
convergence. The proposed algorithm is named DAO. A well-known set of CEC2017 and CEC2019
benchmark functions as well as three engineering problems are used for the performance evaluation.
The superior ability of the proposed DAO is demonstrated by the examination of the numerical data
produced and its comparison with existing metaheuristic algorithms.

Keywords: aquila optimizer; dynamic random walk; dynamic opposite learning; engineering design
problems

1. Introduction

Global optimization is a term used to characterize several scientific and engineer-
ing problems that can be resolved using different optimization techniques. These days,
the preferred methods for global optimization are metaheuristic algorithms (MAs) since
they are protected against local maximum efficacy by their stochastic and dynamic na-
ture [1]. Genetic Evolution [2], Differential Evolution (DE) [3], Particle Swarm Optimization
(PSO) [4], Reptile Search Algorithm (RSA) [5], Whale Optimization Algorithm (WOA) [6],
Brain Storm Optimization (BSO) [7], Teaching–Learning-Based Optimization (TLBO) [8],
etc., are several MAs that have emerged over the past 20 years. One of the better algorithms
is the AO method, which Abualigah proposed in 2021 [9], because it is simple to build,
has consistent performance, and few configurable parameters. Its strong optimization
capabilities have helped with a variety of global optimization problems, including feature
selection [10], vehicle route planning [11], and machine scheduling [12].

Biomimetics 2024, 9, 215. https://doi.org/10.3390/biomimetics9040215 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics9040215
https://doi.org/10.3390/biomimetics9040215
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0009-0007-0851-9594
https://orcid.org/0000-0002-4837-1850
https://orcid.org/0000-0002-6515-1569
https://doi.org/10.3390/biomimetics9040215
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics9040215?type=check_update&version=3

Biomimetics 2024, 9, 215 2 of 23

The No Free Lunch (NFL) theorem [13] was a significant advancement in the field of
nature-inspired algorithms. It is impossible to develop a single optimization algorithm that
solves every optimization problem, according to the NFL theorem. To put it simply, even if
optimization method “A” is ideally suited for a particular set of problems, there is always
a subset of problems on which it would perform poorly. As a result, the NFL theorem
provides the area of nature-inspired algorithms life and enables academics to either suggest
new algorithms or enhance already existing ones. In order to improve existing algorithms,
an effective approach for doing so is hybridization—combining the best aspects of multiple
algorithms to create a hybridized algorithm. The present study aims to combine the benefits
of better exploration and the efficiency of maintaining a balance between exploration and
exploitation by improving the AO, DOL, and DRW techniques. This is achieved by drawing
inspiration from the advantages of improving the algorithm.

The new NIOA, called Aquila Optimizer, uses the Aquila bird’s hunting strategy in
an attempt to discover the best solution to an optimization problem. AO is capable of
handling a broad range of optimization problems [14]. The first drawback of this algorithm
is premature convergence, which happens when the algorithm has a stagnation issue and
is unable to explore the whole search space during the process. The second drawback is
its low computational efficiency. This provides a poor ideal solution and also prevents the
algorithm from searching the whole search space. Aquila Optimizer takes a longer time
to converge and to reach the ideal solution than other existing metaheuristic algorithms.
Therefore, in the current study, Aquila Optimizer is enhanced so that it can explore the
more promising areas that are left in the population’s memory. By combining AO with
DRW and DOL, suitable harmony between the exploration and exploitation process is
formed. The DOL [15] method with its asymmetric and dynamic search space exhibits
a great deal of promise. In the meanwhile, the dynamic opposite number, a random
candidate, can be computed quickly and easily. This may enhance the algorithm’s capacity
for exploitation and increase the rate of convergence. The DRW [16] approach focuses on
iteratively improving a solution by exploring its closer neighborhood because balancing
the search for new promising areas with refining solutions within existing areas is the key
to metaheuristics. The following are the paper’s contributions:

1. To increase the AO algorithm’s computing effectiveness and capacity for local optimal
avoidance, a new DRW technique is put forth.

2. To enhance the algorithm’s performance and balance between exploration and ex-
ploitation, the DOL approach is incorporated into AO for the very first time.

3. The performance of DAO is examined on twenty-nine benchmark functions of CEC
2017, ten benchmark functions of CEC 2019, and then on three engineering design
problems, and the results are compared with various algorithms.

The following part of the paper is structured as follows: the fundamental ideas of
AO, DOL, and DRW are presented in Section 2. The previous work on AO is explained in
Section 3. In Section 4, the proposed DAO algorithm is explained. Section 5 presents the
experiments and their findings. Section 6 shows the engineering applications. The study’s
conclusion is finally presented in Section 7.

2. Algorithm Preliminaries
2.1. Aquila Optimizer

The Aquila bird’s hunting strategy served as the inspiration for the Aquila Optimizer
(AO) metaheuristic optimization technique [9]. AO mimics the four main prey-hunting
strategies, explained as follows:

2.1.1. Expanded Exploration

The expanded exploration x1 of Aquila Optimizer mimics the high-achieving quickly
descending hunting strategy observed in Aquila birds. With this strategy, the bird soars to
enormous heights, giving it the opportunity to inspect the whole search area, identify po-

Biomimetics 2024, 9, 215 3 of 23

tential prey, and select the ideal hunting place. Equation (1) in [9] provides a mathematical
illustration of this strategy.

x(h+1)
1 = x(h)best ×

(
1 − h

H

)
+

(
x(h)M − rand × x(h)best

)
(1)

In Equation (1), the maximum number of iterations is represented as H where h denotes
the current iteration. The response for the subsequent iteration indicated as

(
x(h+1)

1

)
is

found by the first search in the candidate solution population (x1). The expression
(

x(h)best

)
represents the best outcome achieved so far in the hth iteration. A count of iterations is
employed through an equation

(
1 − h

H

)
to modify the search space’s depth. Additionally,

using Equation (2), where N represents the population size and D is the dimension size,
the average value of the locations of connected existing solutions at the hth iteration is
determined, represented as x(h)M .

x(h)M =
1
N ∑N

i=1xi(h), for all i = 1, 2, . . . , D (2)

2.1.2. Narrowed Exploration

In this approach, the Aquila bird hunts; to track prey, they must fly in a contour-like
pattern and execute swift gliding strikes inside a small research region. The primary aim of
this methodology

(
x(h+1)

2

)
, as expressed mathematically in Equation (3), is to identify a

solution for the subsequent iterations.

x(h+1)
2 = x(h)best × Levy(D) + x(h)R + (v − u)× rand (3)

In this approach, Levy(D) is the Levy flying distribution for dimension space D. At
the hth iteration, the random solution

(
x(h)R

)
is taken in the range of [1 N], where N is the

population size. The Levy flight distribution is calculated using a fixed constant value of
s = 0.01 and two randomly selected parameters, u and v, which have values between 0 and
1. The mathematical expression for this computation is provided by Equation (4).

Levy(D) = s × u × σ

|v|
1
a

(4)

Equation (5) finds the value σ, which is obtained using the constant parameter a = 1.5.

σ =

 Γ(1 + a)× sin
(

πa
2
)

Γ
(
(1+a)

2

)
× a × 2(

a−1
2)

 (5)

Equations (6) and (7) depict the spiral form inside the search range, denoted by y and
x, respectively. Equation (3) specifies this spiral form.

y = r1 + UD1 cos
(
−ωD1 +

(
3π

2

))
(6)

x = r1 + UD1 sin
(
−ωD1 +

(
3π

2

))
(7)

Variable r1, over a predefined number of search iterations, takes values between 1 and
20. The constant values of ω and U are 0.005 and 0.00565, respectively. D1 ∈ Z has a range
from 1 to the dimension D of the search space.

Biomimetics 2024, 9, 215 4 of 23

2.1.3. Expanded Exploitation

During the investigation phase, the Aquila bird meticulously examines the prey area
before attacking with a low, slow fall. This strategy, sometimes referred to as expanded
exploitation x3, is represented mathematically in Equation (8).

x(h+1)
3 =

(
xh

best − x(h)M

)
× θ − rand + ((ub − lb)× rand + lb)× ρ (8)(

x(h+1)
3

)
, the result of Equation (8), represents the result for the subsequent iteration.

In the hth iteration, xbest(h) denotes the current best solution obtained, and
(

x(h)M

)
denotes

the average value of the current solution as determined by Equation (2). Variable “rand”
is assigned a random number within the range of (0, 1), while tuning parameters θ and ρ
are typically assigned values of 0.1 each. Symbols ub and lb represent the upper and lower
bounds, respectively.

2.1.4. Narrowed Exploitation

Aquila birds hunt by taking advantage of their prey’s unpredictable ground movement
patterns to grab their prey directly. This hunting strategy serves as the basis for the
constrained exploitation technique

(
x(h)4

)
design, which is produced by Equation (9),

which also yields the hth iteration of the following solution, denoted as
(

x(h+1)
4

)
. Equation

(10), which expresses the quality function J, was put out to provide a well-balanced
search approach.

x(h+1)
4 = J × x(h)best −

(
P1 × rand × x(h)1

)
− P2 × Levy(D) + rand × P1 (9)

Equations (11) and (12) are used to determine the mobility pattern for the Aquila’s
prey tracking (P1) and the trajectory of an attack during an escape, from the beginning
to the terminal point (P2). Both the maximum number of iterations H and the current
iteration number h are used in the computations.

J(h) = h
2×rand()−1
(1−H)2 (10)

P1 = 2 × rand − 1 (11)

P2 = 2 ×
(

1 − h
H

)
(12)

2.2. Concept of Dynamic Oppositional Learning (DOL)

The objectives of the optimization algorithms are to produce solutions, improve
approximated solutions, and look for additional solutions inside the domain. The needs
of tackling a complex problem cannot be met by the current solutions. Then, a variety
of learning techniques are developed to improve optimization algorithms’ performance.
Owing to its higher convergence capacity, the opposition-based learning (OBL) technique
is the most frequently acknowledged among these learning systems. The following is an
introduction to the definition of OBL [15]:

OBL is made up of the real number x ∈ R in the interval x ∈ [a, b]. Furthermore, the
opposite number, xOBL, is produced.

xOBL = a + b − x (13)

Regarding a situation with several dimensions, the definition is demonstrated as
follows: x = (x1, x2, . . . , xD) is a point in D dimensional coordinates if and only if
x1, x2, . . . , xD ∈ R in the interval [ai, bi]. As the iteration changes, the associated low

Biomimetics 2024, 9, 215 5 of 23

and high bounds of the population are denoted by ai and bi, respectively. In the meantime,
the definition of the multidimensional opposite point is

xOBL
i = ai + bi − xi (14)

Even while the OBL method enhances the algorithm’s searching capabilities, it still has
certain drawbacks, such being premature. Various variations of OBL have been proposed
to enhance its performance. To expand the domain known as original notion of quasi-
opposite-based learning (QOBL), for example, a quasi-opposite number is employed [17].
In the meantime, a quasi-reflection number is introduced in the interval between the present
location and the center position in order to implement a quasi-reflection-based learning
(QRBL) method [18].

Phase of Dynamic Opposite Learning: In addition to the OBL variations mentioned
above, a novel learning approach called dynamic opposite learning operator (DOL) is
used in this work. In order to enhance the TLBO algorithm’s performance, Xu et al.
originally suggested the DOL method in [15]. When dealing with complex issues, the
DOL is included to prevent the algorithm from being too young [19]. Furthermore, in
an asymmetric and dynamic search environment, the DOL learning technique is a new
variation of the opposition-based learning (OBL) strategy that aids in population learning
from the opposite points [20,21].

2.2.1. Dynamic Population Initialization

x ∈ [a, b] was defined as the initial population in the initialization step. Additionally,
xOBL is produced in the opposing domain. xRO(xRO = rand · xOBL, rand ∈ [0, 1]

)
is intro-

duced to replace xOBL in order to expand the searching space and convert the previous
symmetric searching space into a dynamic asymmetric domain. The optimizer is then able
to prevent prematurity by expanding the searching space. Therefore, in order to enhance
the capacity to overcome local optima, a weighting factor wd is incorporated. This is how
the mathematical model is displayed:

xDOL = x + wd · r1 ·
(

r2 · xOBL − x
)

(15)

where r2 ∈ [0, 1] is a random parameter. When faced with a multifaceted goal, it manifests
as follows:

xDOL
ij = xij + wd · r1 ·

[
r2 · xOBL

ij − xij

]
(16)

where i = 1, 2, . . . , N is the population size, j = 1, 2, . . . , D is the dimension of an
individual, r1 and r2 denote random numbers among [0, 1].

2.2.2. Dynamic Population Jumping Process

In DOL, a jumping rate (Jr) is used to update the population, and a positive weighting
factor (wd) is employed to balance the capabilities of exploration and exploitation. The
following is an implementation of the DOL operation procedure, provided that the selection
probability is less than Jr.

xDOL
ij = xij + wd · r1 ·

[
r2 ·

(
aj + bj − xij

)
− xij

]
(17)

where a random value xij is produced as the starting populace; N is the population size;
i is the ith solution; xDOL

ij is the population created by the DOL technique; j displays the

dimension of jth; two random parameters in [0, 1] are called r1 and r2; the weighting factor
wd is set to 3; and the jumping rate Jr is set at 1 by conducting sensitivity analysis as in
Table 1.

Biomimetics 2024, 9, 215 6 of 23

Table 1. The sensitivity analysis of w and Jr.

w

Mean

F3 F6 F18 F23

Jr = 0.3 Jr = 1 Jr = 0.3 Jr = 1 Jr = 0.3 Jr = 1 Jr = 0.3 Jr = 1

1 6.582 × 103 6.859 × 103 4.251 × 101 4.839 × 101 2.387 × 105 1.457 × 105 4.256 × 102 4.340 × 102

2 6.502 × 103 5.187 × 103 4.216 × 101 3.776 × 101 3.041 × 105 1.567 × 105 4.101 × 102 3.865 × 102

3 6.750 × 103 4.022 × 103 4.469 × 101 3.675 × 101 2.224 × 106 6.025 × 105 3.982 × 102 3.818 × 102

4 8.326 × 103 5.279 × 103 4.476 × 101 3.885 × 101 1.045 × 106 6.649 × 105 4.082 × 102 3.868 × 102

5 8.613 × 103 4.975 × 103 4.468 × 101 3.908 × 101 4.604 × 106 1.106 × 106 4.109 × 102 3.888 × 102

6 9.230 × 103 5.749 × 103 4.886 × 101 4.031 × 101 3.238 × 106 2.014 × 106 4.166 × 102 4.025 × 102

7 9.451 × 103 7.962 × 103 5.108 × 101 4.931 × 101 5.852 × 106 5.806 × 106 4.192 × 102 4.218 × 102

8 1.031 × 104 8.989 × 103 5.228 × 101 4.922 × 101 3.966 × 106 1.155 × 107 4.223 × 102 4.357 × 102

9 9.738 × 103 1.003 × 104 5.263 × 101 5.246 × 101 1.043 × 107 1.255 × 107 4.181 × 102 4.472 × 102

10 1.087 × 104 1.108 × 104 5.446 × 101 5.205 × 101 2.989 × 107 3.067 × 107 4.311 × 102 4.574 × 102

Note: bold is used to indicate the best result.

2.3. Concept of Dynamic Random Walk (DRW)

Dynamic Random Walk (DRW) can be applied to the expanded exploration phase of
the Aquila Optimizer metaheuristic algorithm to improve its exploration ability and help it
escape local optima by the following equation:

x = xbest + w · r3 · (r4 · rwv − xbest) (18)

where rwv, random walk vector, is provided by rwv = r(1, D)− 0.5. Two random parame-
ters in [0, 1] are called r3 and r4. DRW is incorporated into AO to improve its exploration
ability. In the early stages of the optimization process, DRW is used to allow the search
agents to explore a large search space.

3. Previous Work on AO and DOL

There is always room to enhance an algorithm by increasing and balancing the op-
erators’ exploitation and exploration since the NFL theorem opposes the existence of an
algorithm that is best suited for all optimization tasks. Plenty of work has been completed
in the literature to improve the search efficiency in AO. These improvements include ad-
justing the algorithm’s parameters, including new movement strategies, and merging the
algorithm with other optimization methods. The improved versions of AO can handle
a large range of difficult real-world optimization problems better than the standard AO.
The strategies used in AO are hybridization with NIOAs [22,23], oppositional-based learn-
ing [24], chaotic sequence [25], Levy flight-based strategy [26], Gauss map and crisscross
operator [27], Niche Thought with Dispersed Chaotic Swarm [28], random learning mecha-
nism and Nelder–Mead Simplex Search [29], wavelet mutation [30], Weighted Adaptive
Searching Technique [31], Binay AO [32], and multi-objective AO [33].

DOL strategies are also used in many NIOAs to enhance their performance. First,
they were introduced with Teaching–Learning-based Optimization [15], Grey Wolf Opti-
mizer [34], Whale Optimization Algorithm [35], Antlion Optimizer [16], Bald Eagle Search
Optimization [36], in the hybrid version of Aquila Optimizer, and Artificial Rabbits Op-
timization Algorithm [37], and the comprehensive survey with other algorithms can be
found in the literature [14].

Biomimetics 2024, 9, 215 7 of 23

4. The Proposed DAO Algorithm

Two new features, DOL and DRW, are added to the original AO by the proposed DAO
(Dynamic Random Walk and Dynamic Opposition Learning for Improving Aquila Opti-
mizer) algorithm. The aim of DOL population generation is to provide diverse solutions to
escape from stagnation, and DOL generation jumping helps in the exploitation ability of
the algorithm and accelerates the speed of the algorithm. On the other hand, DRW will
help the algorithm to improve its exploration ability. This overall approach will provide
the perfect balance between exploration and exploitation and help the algorithm to escape
from local optima. Let us examine this improvement working in more detail.

1. Benefits of using DOL population initialization

Compared to random initialization, the use of a dynamic opposition population
initialization technique in Aquila Optimizer (AO) has various benefits that result in a more
diverse solution pool:

(a) Random initialization limitations: Particularly for complex problems, random ini-
tialization might produce a population localized in a particular area of the search
space, which restricts exploration and raises the possibility of becoming trapped in
local optima.

(b) Initialization Based on Dynamic Opposition: For every randomly selected initial
point, this method produces an “opposite” solution. With respect to a predetermined
reference point (often the centre or limits), the opposing solution is located on the
other side of the search area. This forces investigation in many places and produces
wider initial dispersion of solutions.

The starting population is more diversified when opposition-based generation and
random selection are combined. Because of this diversity, AO is able to investigate various
regions of the search field right away. To prevent becoming overly biased in favor of the
opposing alternatives, the strategy, nevertheless, maintains a healthy balance by retaining
some randomly generated solutions. Overall, we can say that introducing DOL population
initialization can help AO in the following ways:

(a) Increased exploration: AO can find promising regions throughout the whole search
space by distributing the first solutions more widely.

(b) Decreased chance of local optima: AO is less likely to become stuck in solutions that
are only effective in a small area because it starts from a variety of sites.

(c) Faster convergence: When multiple regions are investigated concurrently, a well-
distributed population can converge more quickly to the global optimum.

2. Benefits of using DOL generation jumping:

(a) Improved Exploration: Reintroducing exploration in later phases may result
in the identification of more effective solutions.

(b) Escape from Local Optima: AO is nudged away from regions that would not
lead to the global optimum by jumping in opposition to underperforming
individuals.

(c) Fine-tuning: By investigating neighboring regions in the opposite direction,
the leaps may discover somewhat better choices even if AO converges to a
suitable solution.

3. Benefits of using DRW in place of Aquila’s expanded exploration phase:

(a) Reduced Complexity: By doing away with the necessity to plan and carry out a
specific extended exploration phase, DRW simplifies the algorithm as a whole.

(b) Effective Exploration: Because of its intrinsic unpredictability, DRW can ef-
ficiently explore the search space and perhaps produce outcomes that are
comparable to those of Aquila’s exploration stage.

In Algorithm 1, DOL Population Initialization and DOL Generation Jumping are used
and DRW is used to swap out the expanded exploration of AO. Algorithm 1 illustrates the

Biomimetics 2024, 9, 215 8 of 23

phases of this algorithm. In this, the parameter values are taken at their best regarding α, β
of AO; weight wd, jumping rate Jr of DOL; and weight w of DRW for the rest of the paper.

Figure 1 also displays the algorithm DAO flowchart visualization.

Biomimetics 2024, 9, 215 9 of 27

大大大大大大大大大大大大大大大 Apply Narrowed Exploitation by
Equation (9)
 大大大大大大大大大大大大大大大 End If
 大大大大大大大大大大 End If
大大大大大 Conduct the DOL population jumping process using Equation (17)
 大大大大大 Assess the fitness function.
 大大大大大 Verify boundaries
 大大大 End for
t = t + 1
End while
Record best solution ()bestx

Figure 1. Flowchart of the proposed DAO algorithm.

This section also displays DAO’s overall computational complexity. The initialization
of the solutions, the computing of the fitness functions, and the updating of the solutions
are the three steps that are often taken to ascertain the computational complexity of DAO.
Let N represent the total number of solutions, and let ()o N represent the computa-
tional complexity of the solutions’ initialization processes. The computational complexity
of the updating processes for the solutions is () ()() o N D G N D N Do × + × × + × ,
where G is the total number of iterations and D is the size of the problem’s dimen-
sions. These procedures entail updating the placements of each solution and looking for
the best ones. Consequently, the overall computing complexity of the proposed DAO (Dy-
namic Opposition Learning and Dynamic Random Walk for Improving Aquila Opti-
mizer) is () ()() ()()1 2o N D o G N D N D o ND G× + × × + × = + .

5. Experimental Settings

Figure 1. Flowchart of the proposed DAO algorithm.

This section also displays DAO’s overall computational complexity. The initialization
of the solutions, the computing of the fitness functions, and the updating of the solu-
tions are the three steps that are often taken to ascertain the computational complexity of
DAO. Let N represent the total number of solutions, and let o(N) represent the computa-
tional complexity of the solutions’ initialization processes. The computational complex-
ity of the updating processes for the solutions is o(N × D) + o(G × (N × D + N × D)),
where G is the total number of iterations and D is the size of the problem’s dimensions.
These procedures entail updating the placements of each solution and looking for the best
ones. Consequently, the overall computing complexity of the proposed DAO (Dynamic
Opposition Learning and Dynamic Random Walk for Improving Aquila Optimizer) is
o(N × D) + o(G × (N × D + N × D)) = o(ND(1 + 2G)).

Biomimetics 2024, 9, 215 9 of 23

Algorithm 1 DAO Algorithm

Initialize the values of parameters (nPop, nVar, α, β, w, wd, Jr , Max_iter, etc.)
Establish a random starting position.
Take the counter t = 1
While (t < Max_iter), do

Conduct DOL population initialization using Equation (16)
Assess the early positions’ fitness.

Verify Boundaries
For (i = 1: nPop) do

Update of the existing solution’s mean value
Updated variables include u, v, P1, P2, and Levy(D)

If h ≤
(

2
3

)
× Max_iter

If rand ≤ 0.5
Apply DRW using Equation (18)

Else
Apply Narrowed Exploration by Equation (3)

End If
Else

If rand ≤ 0.5
Apply Expanded Exploitation by Equation (8)

Else
Apply Narrowed Exploitation by Equation (9)

End If
End If

Conduct the DOL population jumping process using Equation (17)
Assess the fitness function.
Verify boundaries

End for
t = t + 1
End while
Record best solution (xbest)

5. Experimental Settings

The algorithms used in the numerical trials include Aquila Optimizer (AO), Modified
Aquila Optimizer (MAO) [38], Whale Optimization Algorithm (WOA) [6], Grasshopper
Optimization Algorithm (GOA) [39], Reptile Search Algorithm (RSA) [5], and Brain Storm
Optimization (BSO) [7]. On a computer with an Intel(R) Core (TM) i7-9750H processor run-
ning at 2.60 GHz and 16 GB of RAM, all algorithms were implemented in MATLAB R2021b.

The following five factors are used to assess DAO’s (Dynamic Opposition Learning
and Dynamic Random Walk for Improving Aquila Optimizer) performance:

1. The optimization errors between the obtained and known real optimal values, average,
and standard deviation. Since all objective functions include minimization, the best
values—that is, the lowest mean values—are indicated in bold.

2. Non-parametric statistical tests to compare the p-value and the significance level = 0.05
between the compared technique and the suggested algorithm, such as the Wilcoxon
rank sum test [40]. For both techniques, there is a significant difference when the
p-value is less than 0.05. W/T/L indicates how many wins, ties, and losses the
algorithm in question has suffered in contrast to its opponent.

3. The Friedman test is another non-parametric statistical test that is used [41,42]. The
average optimization error values are used as test data. The method operates more
efficiently with lower Friedman rank values. To make the minimal value stand out, it
is bolded.

4. Bonferroni–Dunn’s diagram shows the differences in the rankings obtained for each al-
gorithm at dimension 10 by showing the pairwise variances in ranks for each approach
at each dimension. Pairwise disparities in rankings are calculated by subtracting the

Biomimetics 2024, 9, 215 10 of 23

rank of one algorithm from the rank of another algorithm. In the graphic created by
Bonferroni and Dunn, each bar denotes the average pairwise difference in ranks for a
certain algorithm at a given dimension. Typically, different algorithms are represented
by color-coded bars.

5. A clear visual depiction of the algorithm’s accuracy and convergence rate is offered
via convergence graphs. If the improved algorithm deviates from the local answer, it
explains why.

5.1. Competitive Algorithms Comparison on CEC2017 Benchmark Functions

Five competing algorithms are compared to gauge DAO’s efficiency and search perfor-
mance: MAO (Modified Aquila Optimizer), AO (Aquila Optimizer), RSA (Reptile Search
Algorithm), WOA (Whale Optimization Algorithm), and BSO (Brain Storm Optimization).
The comparison is made on 29 benchmark functions from IEEE CEC2017 from the litera-
ture [43]. The population size (N) was fixed at 50 in each experiment. Maximum iteration
is 500 and dimension is 10. The [−100, 100] range was chosen for the search. On each
function, each algorithm was executed 30 times.

Parameter Settings: The algorithm’s performance depends on the parameter settings,
particularly for DAO. In that instance, this part implements the sensitivity analysis of the
parameters of DOL. Table 1 contains a detailed explanation of each parameter setting; the
mean values are used to compare the results.

The weighting factor w and the jumping rate Jr are set to 1–10 and 0.1–1 in the DAO
algorithm, respectively. Here, in Table 1, only Jr = 0.3, and 1 is taken because, at other
points, the values are not favorable.

Test functions have been chosen for analysis from the literature [43], where F3 and F6
are multimodal functions, F18 is a hybrid function, F23 is a composition function, and, in
order to assess performance, the means of the outcomes obtained by DAO are also shown
in Table 1. In F3, F6, and F23, respectively, DAO performs better than other settings when
w = 3 and Jr = 1. w = 3 and Jr = 1 are hence the best parameter settings, and DRW weight
w = 0.5 is taken from the literature [16]. Table 2 contains the parameter settings of the
optimization algorithms used for comparison.

Table 2. Parameter settings of optimization algorithms.

Algorithm Parameters

DAO U = 0.00565, r = 10, ω = 0.05, α = 0.1, β = 0.1, P1 ∈ [−1, 1],
P2 = [2, 0], w = 0.5, wd = 3, Jr = 1

AO [9] U = 0.00565, r = 10, ω = 0.05, α = 0.1, β = 0.1, P1 ∈ [−1, 1],
P2 = [2, 0]

MAO [38] U = 0.00565, r = 10, ω = 0.05, α = 0.1, β = 0.1, P1 ∈ [−1, 1],
P2 = [2, 0]

SSA [44] v = 0

WOA [6] w1 = [2, 0], w2 = [−1,−2], v = 1

RSA [5] a = [2, 0]

GOA [39] l = 1.5, f = 0.5

BSO [7] m = 5, pa = 0.2, pb = 0.8, pb1
= 0.4, pc = 0.5

Analysis of IEEE CEC’17 Test Functions

• Analysis of Unimodal and Multimodal Test Functions

The mean and standard deviation of algorithms on twenty-nine unimodal, multimodal,
and composition functions are displayed in Table 3. The function F1 is unimodal. The
results show that, on one unimodal function, DAO outperforms the other algorithms.
Moreover, it may be said that the DOL approach, which expands search spaces, has a
higher chance of reaching the global optimum for its capacity for exploitation.

Biomimetics 2024, 9, 215 11 of 23

Table 3. Mean and standard deviation (STD) obtained from objective function by standard AO,
the proposed algorithm DAO, and other metaheuristic algorithms for 10-dimensional CEC 2017
benchmark functions.

Function DAO AO MAO RSA WOA BSO

F1 Mean
STD

8.388 × 108

4.709 × 108
9.239 × 108

6.512 × 106
2.159 × 1010

4.981 × 109
5.38 × 1010

9.29 × 109
9.784 × 108

7.462 × 106
9.410 × 109

2.501 × 103

F3 Mean
STD

4.291 × 103

1.381 × 103
8.809 × 102

5.485 × 102
2.363 × 105

4.971 × 104
7.42 × 104

5.50 × 103
3.663 × 103

3.232 × 103
3.001 × 101

1.710 × 102

F4 Mean
STD

7.619 × 101

4.001 × 101
2.085 × 102

2.512 × 102
2.527 × 103

1.304 × 103
1.45 × 104

4.56 × 103
9.451 × 101

1.923 × 101
9.495 × 102

2.001 × 101

F5 Mean
STD

6.359 × 101

1.584 × 101
7.125 × 101

1.066 × 101
1.508 × 102

2.758 × 101
3.89 × 102

3.30 × 101
8.408 × 101

2.096 × 101
2.038 × 102

4.101 × 101

F6 Mean
STD

3.523 × 101

8.702 × 100
7.745 × 101

6.053 × 100
9.271 × 101

1.745 × 101
8.63 × 101

7.46 × 100
3.627 × 101

1.012 × 101
5.316 × 101

6.414 × 100

F7 Mean
STD

8.615 × 101

2.031 × 101
5.545 × 101

1.931 × 101
4.585 × 102

9.379 × 101
6.72 × 102

6.73 × 101
7.470 × 101

2.151 × 101
5.110 × 102

1.011 × 102

F8 Mean
STD

3.211 × 101

6.033 × 100
2.408 × 101

6.884 × 100
1.369 × 102

1.922 × 101
3.11 × 102

2.80 × 101
4.291 × 101

1.767 × 101
1.451 × 102

3.211 × 101

F9 Mean
STD

2.773 × 102

1.571 × 102
3.135 × 102

6.321 × 101
4.114 × 103

1.082 × 103
8.53 × 103

1.19 × 103
5.919 × 102

3.820 × 102
3.411 × 103

6.754 × 102

F10Mean
STD

1.451 × 103

3.124 × 102
9.451 × 102

2.686 × 102
2.726 × 103

2.296 × 102
7.02 × 103

3.59 × 102
1.181 × 103

2.751 × 102
4.211 × 103

6.081 × 102

F11Mean
STD

4.201 × 102

4.743 × 102
1.078 × 102

5.818 × 101
2.604 × 104

2.681 × 104
7.77 × 103

2.80 × 103
1.417 × 102

8.465 × 101
1.378 × 102

4.511 × 101

F12Mean
STD

5.697 × 106

5.285 × 106
7.862 × 106

3.363 × 106
2.784 × 109

1.640 × 109
1.70 × 1010

4.36 × 109
7.279 × 106

5.117 × 106
9.614 × 107

8.094 × 105

F13Mean
STD

2.549 × 105

6.824 × 105
2.465 × 105

1.528 × 104
3.020 × 108

3.011 × 108
1.18 × 1010

4.90 × 109
1.437 × 106

1.177 × 104
5.216 × 107

2.340 × 104

F14Mean
STD

5.424 × 103

8.248 × 103
6.334 × 104

8.016 × 102
7.503 × 106

1.063 × 107
3.07 × 106

3.58 × 106
7.307 × 103

1.500 × 103
4.170 × 105

3.152 × 103

F15Mean
STD

6.293 × 103

3.375 × 103
9.332 × 103

2.839 × 103
2.148 × 107

2.908 × 107
6.73 × 108

5.74 × 108
6.416 × 103

5.063 × 103
3.112 × 104

2.122 × 104

F16Mean
STD

3.248 × 102

1.027 × 102
9.535 × 102

1.114 × 102
1.178 × 103

2.349 × 102
3.89 × 103

6.86 × 102
3.329 × 102

1.440 × 102
1.504 × 103

3.314 × 102

F17Mean
STD

8.911 × 101

2.286 × 101
9.589 × 101

1.871 × 101
6.631 × 102

1.916 × 102
5.30 × 103

6.86 × 103
1.033 × 102

5.087 × 101
8.120 × 102

2.401 × 102

F18Mean
STD

2.407 × 105

3.197 × 105
2.153 × 104

1.184 × 104
6.274 × 108

6.430 × 108
3.27 × 107

3.07 × 107
1.946 × 104

1.111 × 104
1.120 × 105

1.001 × 105

F19Mean
STD

3.203 × 104

4.889 × 104
1.436 × 104

2.225 × 104
6.471 × 107

8.754 × 107
1.32 × 104

1.69 × 109
6.597 × 104

9.665 × 104
1.301 × 105

5.361 × 104

F20Mean
STD

1.701 × 102

5.579 × 101
2.153 × 102

4.716 × 101
5.419 × 102

1.330 × 102
8.63 × 102

1.42 × 102
1.854 × 102

7.896 × 101
7.219 × 102

2.015 × 102

F21Mean
STD

2.299 × 102

5.293 × 101
2.967 × 102

4.681 × 101
3.375 × 102

3.148 × 101
6.43 × 102

4.26 × 101
2.310 × 102

5.171 × 101
4.004 × 102

4.051 × 101

F22Mean
STD

1.758 × 102

5.337 × 101
2.091 × 102

1.524 × 101
1.798 × 103

5.866 × 102
5.25 × 103

1.01 × 103
1.831 × 102

2.703 × 102
4.001 × 103

1.701 × 103

F23Mean
STD

3.843 × 102

2.354 × 101
5.412 × 102

1.313 × 101
5.423 × 102

6.781 × 101
1.04 × 103

1.08 × 102
3.976 × 102

2.060 × 101
9.991 × 102

1.013 × 102

Biomimetics 2024, 9, 215 12 of 23

Table 3. Cont.

Function DAO AO MAO RSA WOA BSO

F24Mean
STD

3.145 × 102

1.416 × 101
3.437 × 102

8.266 × 101
5.939 × 102

7.436 × 101
1.17 × 103

2.45 × 102
3.870 × 102

2.521 × 101
1.004 × 103

9.711 × 101

F25Mean
STD

4.776 × 102

4.645 × 101
7.949 × 102

3.036 × 101
1.988 × 103

7.365 × 102
2.22 × 103

8.61 × 102
5.651 × 102

3.538 × 101
4.101 × 102

9.110 × 100

F26Mean
STD

6.408 × 102

3.023 × 102
9.175 × 102

1.623 × 102
2.348 × 103

3.639 × 102
7.93 × 103

1.12 × 103
9.465 × 102

6.068 × 102
5.832 × 103

1.112 × 103

F27Mean
STD

4.467 × 102

4.845 × 101
6.041 × 102

8.332 × 100
7.303 × 102

1.222 × 102
9.41 × 102

2.31 × 102
5.379 × 102

3.300 × 101
1.204 × 103

2.510 × 102

F28Mean
STD

4.913 × 102

6.521 × 100
5.965 × 102

9.938 × 101
1.323 × 103

2.043 × 102
3.98 × 103

8.85 × 102
6.153 × 102

1.794 × 102
5.854 × 102

5.120 × 101

F29Mean
STD

4.026 × 102

6.510 × 101
3.429 × 102

5.123 × 101
1.070 × 103

2.163 × 102
4.14 × 103

1.61 × 103
4.614 × 102

8.636 × 101
1.520 × 103

3.701 × 102

F30Mean
STD

3.891 × 104

8.456 × 104
6.647 × 105

7.482 × 104
1.451 × 108

1.052 × 108
2.24 × 108

9.25 × 107
7.597 × 106

9.042 × 105
5.371 × 105

3.104 × 105

(W/L/T)
Rank

CPU Runtime

20/9/0
1.62

3.25 × 104

5/24/0
2.41

2.10 × 104

0/29/0
4.72

1.29 × 104

1/28/0
5.62

5.11 × 104

1/28/0
2.55

4.10 × 103

2/27/0
4.07

1.29 × 104

Note: bold is used to indicate the best result.

Multimodal functions like F3–F9 are used to confirm DAO’s exploring capabilities. The
results in Table 3 demonstrate how well DAO performs in comparison to other algorithms,
particularly on the F4, F5, F6, and F9 test functions.

• Analysis of Hybrid and Composition Test Functions

Hybrid functions are used to evaluate the algorithms by combining unimodal and
multimodal functions in order to mimic real-world challenges. It may lead to subpar
performance; however, balancing exploitation and exploration capability is important to
deal with mixed tasks. Table 3 clearly illustrates the benefits of DAO on F12–F17, F20–F24,
F26–F28, and F30, and the composition function indicates that DAO is still able to solve the
problem to the same degree as other algorithms. Then, in many real-world scenarios, DAO
may effectively balance the rate of convergence and the optimization solution.

The last line of Table 3 shows W/L/T (Win/Loss/Tie), Friedman rank, and CPU
runtime. The W/L/T metric shows that DAO performs well on functions with 10 dimen-
sions, outperforming AO, MAO, RSA, WOA, and BSO on 24, 29, 28, 28, and 27 functions,
respectively. The Friedman rank of DAO is comparatively less than other MAs, and the
CPU runtime of DAO, AO, MAO, RSA, WOA, and BSO is shown in the third-last line of
Table 3. The results show that WOA takes much less time than other MAs.

Analysis of Convergence Graph

Figure 2 displays the convergence graphs of the four functions, F4, F9, F13, and F20,
where the mean optimizations generated by six algorithms on the IEEE CEC2017 functions
with 10 dimensions are displayed. The vertical axis represents the log value of the mean
optimizations, while the horizontal axis represents the number of iterations. Figure 2 makes
it clear that the convergence speed is fast and that the DAO curves are the lowest. When
compared to the original AO in the convergence graphs, DAO can find a better solution,
exit local optimization, avoid premature convergence, improve the quality of the solution,
and have high optimization efficiency.

Biomimetics 2024, 9, 215 13 of 23

Biomimetics 2024, 9, 215 14 of 27

mean optimizations, while the horizontal axis represents the number of iterations. Figure
2 makes it clear that the convergence speed is fast and that the DAO curves are the lowest.
When compared to the original AO in the convergence graphs, DAO can find a better
solution, exit local optimization, avoid premature convergence, improve the quality of the
solution, and have high optimization efficiency.

Figure 2. Convergence graphs of F4, F9, F13, and F20 CEC 2017 benchmark function.

Table 4 represents the Wilcoxon rank sum test results. The totals of ranks for positive

and negative differences are represented by R+ and R− , respectively. When com-
pared to other algorithms, DAO has a greater positive rank sum. Additionally, in the table,
the corresponding z and p values are provided. The significant threshold of difference is

0.05α = . This table shows that the performance of DAO is better than other original AO
and other metaheuristic algorithms.

The Bonferroni–Dunn’s test [45] is used for the DAO algorithm to identify significant
differences, and the results are shown in the last line of Table 4. Among all the other algo-
rithms, DAO was found to have the lowest mean rank. The Bonferroni–Dunn graphic in
Figure 3 shows the variation in ranks for each method at D = 10. In this figure, a horizontal
cut line is drawn, which represents the threshold for the best-performing algorithm, the
one with the lowest ranking bar. The height of this cut line is determined by adding the
algorithm’s ranking. The Bonferroni–Dunn technique computed the equivalent CD for
each α = 0.05 and α = 0.1. Algorithms with a rank bar higher than this line are deemed to
perform worse than the control algorithm. As a result, it is evident from the use of the
Bonferroni–Dunn technique that AO and WOA are substantially acceptable when com-
pared with DAO.

Table 4. Summary of non-parametric statistical results by Wilcoxon test and Bonferroni–Dunn test.

Algorithms R+ R− z-Value p-Value Sign

DAO vs.
AO 21 8 2.022 0.043 =

MAO 29 0 4.703 0.000 +

Figure 2. Convergence graphs of F4, F9, F13, and F20 CEC 2017 benchmark function.

Table 4 represents the Wilcoxon rank sum test results. The totals of ranks for positive
and negative differences are represented by ∑ R+ and ∑ R−, respectively. When compared
to other algorithms, DAO has a greater positive rank sum. Additionally, in the table,
the corresponding z and p values are provided. The significant threshold of difference is
α = 0.05. This table shows that the performance of DAO is better than other original AO
and other metaheuristic algorithms.

Table 4. Summary of non-parametric statistical results by Wilcoxon test and Bonferroni–Dunn test.

Algorithms ∑R+ ∑R− z-Value p-Value Sign

DAO vs.

AO 21 8 2.022 0.043 =
MAO 29 0 4.703 0.000 +
RSA 28 1 4.249 0.000 +

WOA 24 5 2.757 0.006 =
BSO 25 4 3.557 0.000 +

CD value at
α = 0.1 1.1428 CD value at

α = 0.05 1.2656

The Bonferroni–Dunn’s test [45] is used for the DAO algorithm to identify significant
differences, and the results are shown in the last line of Table 4. Among all the other
algorithms, DAO was found to have the lowest mean rank. The Bonferroni–Dunn graphic
in Figure 3 shows the variation in ranks for each method at D = 10. In this figure, a horizontal
cut line is drawn, which represents the threshold for the best-performing algorithm, the
one with the lowest ranking bar. The height of this cut line is determined by adding the
algorithm’s ranking. The Bonferroni–Dunn technique computed the equivalent CD for
each α = 0.05 and α = 0.1. Algorithms with a rank bar higher than this line are deemed
to perform worse than the control algorithm. As a result, it is evident from the use of
the Bonferroni–Dunn technique that AO and WOA are substantially acceptable when
compared with DAO.

Biomimetics 2024, 9, 215 14 of 23

Biomimetics 2024, 9, 215 15 of 27

RSA 28 1 4.249 0.000 +
WOA 24 5 2.757 0.006 =
BSO 25 4 3.557 0.000 +

CD value at 0.1α = 1.1428
CD value at

0.05α = 1.2656

Figure 3. Bonferroni–Dunn bar chart for D = 10. The bar represents the rank of the correspondence
algorithm, and horizontal cut lines show the significance level (here, ----- shows sig level at 0.1, and
shows significance level at 0.05).

5.2. Competitive Algorithms Comparison on CEC2019 Benchmark Functions
In Table 5, the list of the ten CEC2019 benchmark functions with their dimensions

and search ranges is taken from the literature [46].

Table 5. List of 10 benchmark functions of CEC2019 with dimensions and search range.

Func. No. Functions Dim Search Range
F1 Storn’s Chebyshev Polynomial Fitting Problem 9 [−8192, 8192]
F2 Inverse Hilbert Matrix Problem 16 [−16,384, 16,384]
F3 Lennard-Jones Minimum Energy Cluster 18 [−4, 4]
F4 Rastrigin’s Function 10 [−100, 100]
F5 Griewangk’s Function 10 [−100, 100]
F6 Weierstrass Function 10 [−100, 100]
F7 Modified Schwefel’s Function 10 [−100, 100]
F8 Expanded Schaffer’s F6 Function 10 [−100, 100]
F9 Happy Cat Function 10 [−100, 100]

F10 Ackley Function 10 [−100, 100]

Analysis of IEEE CEC’19 Test Functions
DAO has been implemented on 10 CEC 2019 benchmark functions with 500 iterations

and 50 population sizes for 30 independent runs. Its results are compared with AO, MAO,
WOA, SSA, and GOA. The comparison has been performed through the mean and STD
(standard deviation) values by the considered algorithms across the course of the func-
tions, as reported in Table 6. Moreover, the Friedman mean rank values and W/L/T are
involved in the table’s last lines (see Table 6). The results confirm the proposed DAO’s

Figure 3. Bonferroni–Dunn bar chart for D = 10. The bar represents the rank of the correspondence
algorithm, and horizontal cut lines show the significance level (here, ----- shows sig level at 0.1, and
shows significance level at 0.05).

5.2. Competitive Algorithms Comparison on CEC2019 Benchmark Functions

In Table 5, the list of the ten CEC2019 benchmark functions with their dimensions and
search ranges is taken from the literature [46].

Table 5. List of 10 benchmark functions of CEC2019 with dimensions and search range.

Func. No. Functions Dim Search Range

F1 Storn’s Chebyshev Polynomial Fitting Problem 9 [−8192, 8192]
F2 Inverse Hilbert Matrix Problem 16 [−16,384, 16,384]
F3 Lennard-Jones Minimum Energy Cluster 18 [−4, 4]
F4 Rastrigin’s Function 10 [−100, 100]
F5 Griewangk’s Function 10 [−100, 100]
F6 Weierstrass Function 10 [−100, 100]
F7 Modified Schwefel’s Function 10 [−100, 100]
F8 Expanded Schaffer’s F6 Function 10 [−100, 100]
F9 Happy Cat Function 10 [−100, 100]

F10 Ackley Function 10 [−100, 100]

Analysis of IEEE CEC’19 Test Functions

DAO has been implemented on 10 CEC 2019 benchmark functions with 500 iterations
and 50 population sizes for 30 independent runs. Its results are compared with AO, MAO,
WOA, SSA, and GOA. The comparison has been performed through the mean and STD
(standard deviation) values by the considered algorithms across the course of the functions,
as reported in Table 6. Moreover, the Friedman mean rank values and W/L/T are involved
in the table’s last lines (see Table 6). The results confirm the proposed DAO’s superiority in
dealing with these challenging testbed functions as it is classified as the best algorithm for
half of these functions.

Meanwhile, AO succeeded for three functions, and MAO, WOA, SSA, and GOA
for only one function out of this set. When it comes to the chain counterparts, DAO
is positioned first in terms of sequence. The CPU runtime is mentioned in the last line
of Table 6, which shows WOA taking much less time than the other algorithms. The
convergence curves of Figure 4 show the efficiency of DAO in converging for high qualified
solutions with significant convergence speed, as exhibited in F2, F6, F7, and F9.

Biomimetics 2024, 9, 215 15 of 23

Table 6. Mean and standard deviation (STD) obtained from objective function by standard AO,
the proposed algorithm DAO, and other metaheuristic algorithms for 10-dimensional CEC 2019
benchmark functions.

Function DAO AO MAO WOA SSA GOA

F1 Mean
STD

9.900 × 101

0.000 × 100
9.900 × 101

2.053 × 10−8
1.235 × 109

7.355 × 108
6.784 × 106

7.462 × 106
7.324 × 109

3.483 × 109
1.320 × 1010

1.541 × 1010

F2 Mean
STD

1.950 × 102

0.000 × 100
1.950 × 102

0.000 × 100
2.825 × 104

7.301 × 103
7.663 × 102

8.7317 × 102
2.001 × 102

2.079 × 10−2
1.739 × 103

4.084 × 102

F3 Mean
STD

2.948 × 102

1.321 × 100
2.937 × 102

1.863 × 100
2.862 × 102

4.426 × 10−1
2.951 × 102

1.923 × 100
2.970 × 102

1.776 × 10−15
2.270 × 102

8.188 × 10−12

F4 Mean
STD

3.441 × 102

1.376 × 101
3.683 × 102

9.697 × 100
2.445 × 102

2.501 × 101
3.498 × 102

2.496 × 101
3.423 × 101

1.077 × 101
3.286 × 102

1.971 × 101

F5 Mean
STD

4.929 × 102

4.413 × 100
4.981 × 102

1.826 × 10−1
3.059 × 102

4.894 × 101
4.977 × 102

4.591 × 10−1
5.486 × 102

8.533 × 10−1
8.484 × 102

8.763 × 10−1

F6 Mean
STD

5.918 × 102

1.787 × 100
5.944 × 102

1.440 × 100
5.999 × 102

9.224 × 10−1
5.919 × 102

1.751 × 100
5.986 × 102

8.533 × 10−1
8.484 × 102

8.763 × 101

F7 Mean
STD

7.152 × 102

2.553 × 102
3.011 × 102

2.936 × 102
2.217 × 103

2.924 × 102
7.640 × 102

3.001 × 102
4.728 × 102

9.776 × 10−1
5.007 × 102

2.191 × 102

F8 Mean
STD

7.953 × 102

1.998 × 10−1
8.957 × 102

3.015 × 10−1
7.644 × 102

2.387 × 10−1
5.953 × 102

3.216 × 10−1
9.088 × 102

6.135 × 10−1
8.587 × 102

4.300 × 10−1

F9 Mean
STD

8.985 × 102

1.639 × 10−1
9.365 × 102

1.427 × 10−1
8.993 × 103

8.679 × 10−1
8.985 × 103

2.006 × 10−1
2.416 × 103

5.956 × 10−1
9.664 × 102

1.827 × 10−1

F10 Mean
STD

9.785 × 102

7.688 × 10−1
9.996 × 102

4.637 × 100
9.852 × 102

1.350 × 10−1
9.953 × 102

1.330 × 10−1
2.101 × 103

3.562 × 101
9.923 × 102

3.718 × 10−4

(W/L/T)
Rank

CPU Runtime

5/5/2
2.65

3.11 × 104

3/7/2
3.25

3.02 × 104

1/9/0
3.15

2.16 × 104

1/9/0
3.65

5.02 × 104

1/9/0
4.30

4.22 × 103

1/9/0
4.00

1.26 × 104

Note: bold is used to indicate the best result.

Figure 4 shows the convergence capacity of six algorithms on test functions. The
average fitness value is displayed as the “Mean”. Because of its exceptional exploration
capabilities, DAO converges quickly with iterative computation, as illustrated in the figures.
Regarding the trend that is gradually convergent, this is because the DOL technique is
capable of being exploited.

Table 7 represents the Wilcoxon rank sum test results. The totals of ranks for positive
and negative differences are represented by ∑ R+ and ∑ R−, respectively. When compared
to other algorithms, DAO has a greater positive rank sum in most of the cases. Additionally,
in the table, the corresponding z and p values are provided. The significant threshold
of difference is α = 0.05. This table shows that the performance of DAO is equivalently
acceptable when compared to other metaheuristic algorithms.

Bonferroni–Dunn’s test is used for the DAO algorithm to identify significant differ-
ences, and the results are shown in the last line of Table 7. Among all the other algorithms,
DAO was found to have the lowest mean rank. The Bonferroni–Dunn graphic in Figure 5
shows the variation in ranks for each method at D = 10. In this figure, the smallest bar will
show the best-performing algorithm, or the one with the lowest ranking bar. Algorithms
with a higher rank bar are deemed to perform worse than the control algorithm. As a result,
it is evident from the use of the Bonferroni–Dunn technique that DAO is also performing
well when compared with other metaheuristic algorithms, and the worst performance is
from the SSA algorithm.

Biomimetics 2024, 9, 215 16 of 23

Figure 4. Cont.

Biomimetics 2024, 9, 215 17 of 23

Figure 4. Convergence graphs of F1, F2, F4, F6, F9, and F10 CEC 2019 benchmark functions.

Biomimetics 2024, 9, 215 18 of 23

Table 7. Summary of non-parametric statistical results obtained from Wilcoxon test and Bonferroni–
Dunn test.

Algorithms ΣR+ ΣR− z-Value p-Value Sign

DAO vs.

AO 6 2 1.260 0.208 =
MAO 5 5 0.866 0.386 =
WOA 6 3 1.599 0.110 =
MPA 8 2 1.478 0.139 =
GOA 7 3 1.478 0.139 =

Biomimetics 2024, 9, 215 19 of 27

threshold of difference is 0.05α = . This table shows that the performance of DAO is
equivalently acceptable when compared to other metaheuristic algorithms.

Bonferroni–Dunn’s test is used for the DAO algorithm to identify significant differ-
ences, and the results are shown in the last line of Table 7. Among all the other algorithms,
DAO was found to have the lowest mean rank. The Bonferroni–Dunn graphic in Figure 5
shows the variation in ranks for each method at D = 10. In this figure, the smallest bar will
show the best-performing algorithm, or the one with the lowest ranking bar. Algorithms
with a higher rank bar are deemed to perform worse than the control algorithm. As a
result, it is evident from the use of the Bonferroni–Dunn technique that DAO is also per-
forming well when compared with other metaheuristic algorithms, and the worst perfor-
mance is from the SSA algorithm.

Table 7. Summary of non-parametric statistical results obtained from Wilcoxon test and Bonferroni–
Dunn test.

Algorithms ΣR+ ΣR− z-Value p-Value Sign

DAO vs.

AO 6 2 1.260 0.208 =
MAO 5 5 0.866 0.386 =
WOA 6 3 1.599 0.110 =
MPA 8 2 1.478 0.139 =
GOA 7 3 1.478 0.139 =

Figure 5. Bonferroni–Dunn bar chart for D = 10. The bar represents the rank of the correspondence
algorithm.

6. DAO for Engineering Design Problems
Three relevant engineering benchmarks are used in this section to confirm that DAO

improves when tackling real-world problems: problem of cantilever beam design (CBD),
welded beam design problem (WBD), and pressure vessel design (PVD) problem and work.
Thirty independent runs of each problem were carried out in order to examine the statis-
tical features of the outcomes, and all the parameters are taken at their best.

6.1. CBD Problem
The goal of the CBD problem is to minimize a cantilever beam’s weight while ac-

counting for the vertical displacement constraint. There are five hollow square blocks, and
each of the five side length values 1 2 3 4 5, , , , z z z z z needs to be optimized [47]. The
following is an explanation of the mathematical model:

Consider

Figure 5. Bonferroni–Dunn bar chart for D = 10. The bar represents the rank of the correspondence
algorithm.

6. DAO for Engineering Design Problems

Three relevant engineering benchmarks are used in this section to confirm that DAO
improves when tackling real-world problems: problem of cantilever beam design (CBD),
welded beam design problem (WBD), and pressure vessel design (PVD) problem and work.
Thirty independent runs of each problem were carried out in order to examine the statistical
features of the outcomes, and all the parameters are taken at their best.

6.1. CBD Problem

The goal of the CBD problem is to minimize a cantilever beam’s weight while account-
ing for the vertical displacement constraint. There are five hollow square blocks, and each
of the five side length values z1, z2, z3, z4, z5 needs to be optimized [47]. The following is
an explanation of the mathematical model:

Consider
z = [z1 z2 z3 z4 z5]

Minimize
f (z) = 0.6224(z1 + z2 + z3 + z4 + z5),

Subject to

p(z) =
60
z3

1
+

27
z3

2
+

19
z3

3
+

7
z3

4
+

1
z3

5
− 1 ≤ 0

Variable range is
0.01 ≤ z1, z2, z3, z4, z5 ≤ 100

Table 8 displays the results of the CBD problem compared with six different MAs,
such as COA, AO, GWO, ROA, WOA, and SCA. The results indicate that the proposed
algorithm DAO is able to provide better results than other state-of-the-art algorithms. Thus,
DAO is the optimal method for addressing the CBD problem. CPU runtime of the given

Biomimetics 2024, 9, 215 19 of 23

set of algorithms is calculated, which shows that WOA takes very little time to compute
the CBD problem.

Table 8. Comparison of DAO and other algorithms for CBD problem.

Optimum Attributes

Algorithms z1 z2 z3 z4 z5 Optimum Weight CPU Runtime (s)

DAO 6.0112 5.1211 4.8221 3.2114 2.1510 1.3302 1.986
COA [48] 6.0172 5.3071 4.4912 3.5081 2.1499 1.3999 2.001

AO [9] 5.8492 5.5413 4.3778 3.5978 2.1026 1.3596 1.926
ROA [49] 6.0156 5.1001 4.303 3.7365 2.3183 1.3456 1.256
GWO [50] 5.9956 5.4121 4.5986 3.5689 2.3548 1.3586 1.112
WOA [6] 5.8393 5.1582 4.9917 3.693 2.2275 1.3467 0.606
SCA [51] 5.9264 5.9285 4.5223 3.3267 1.9923 1.3581 1.111

Note: bold is used to indicate better result.

6.2. WBD Problem

The goal of the WBD challenge is to reduce the cost of manufacturing a welded
beam [9]. The optimization parameters include thickness (H), height (TT), length of the
clamping bar (L), and thickness (BB). It is important to take into account seven limitations.
The optimization model can be stated as follows:

Consider
z = [z1 z2 z3 z4] = [H L TT BB]

Minimize
f (z) = 1.10471z2

1zz + 0.04811z3z4(14.0 + z2)

Subject to the constraint,

p1(z) = τ(z)− τmax ≤ 0,
p2(z) = σ(z)− σmax ≤ 0,
p3(z) = δ(z)− δmax ≤ 0,
p4(z) = z1 − z4 ≤ 0,
p5(z) = P − Pc(z) ≤ 0,
p6(z) = 0.125 − z1 ≤ 0,
p7(z) = 1.10471z2

1 + 0.04811z3z4(14 + z2)− 5 ≤ 0

Variable range
0.1 ≤ z1 ≤ 2,
0.1 ≤ z2 ≤ 10,
0.1 ≤ z3 ≤ 10,
0.1 ≤ z4 ≤ 2

where
τ(z) =

√
(τ′)2 + 2τ′τ′′ z2

2R + (τ′′)2,

τ′ = p√
2z1z2

, τ′′ = MR
J

M = P
(

L + z2
2
)
,

R =

√
z2

2
4 +

(
z1+z3

2

)2
,

J = 2
{
√

z1z2

[
z2

2
4 +

(
z1+z3

2

)2
]}

,

σ(z) = 6PL
z4z2

3
, δ(z) = 6PL3

Ez2
3z4

Pc(z) =
4.013E

√
z2
3z6

4
36

L2

(
1 − z3

2L

√
E

4G

)
,

Biomimetics 2024, 9, 215 20 of 23

P = 6000 lb, L = 14 in., δmax = 0.25 in.,

E = 30 × 16 psi, G = 12 × 106 psi,

τmax = 13600 psi, σmax = 30000 psi

Table 9 reports the outcomes of the WBD problem. It is clear that DAO is not able to
provide a better solution than other algorithms. However, with the exception of AO, DAO
also has a very close value to provide an optimal result. This suggests that DAO is a stable
and effective solution to the WBD problem. CPU runtime of the given set of algorithms is
calculated, which shows that WOA takes very little time to compute the WBD problem.

Table 9. Comparison of DAO and other algorithms for WBD problem.

Optimum Attributes

Algorithms H L TT BB
Optimum

Cost CPU Runtime (s)

DAO 0.2138 3.2154 9.0275 0.2052 1.6960 2.410
COA [48] 0.2456 3.2563 9.0403 0.2057 1.6963 2.031

AO [9] 0.1631 3.3652 9.0202 0.2067 1.6566 2.399
SSA [44] 0.2057 3.4714 9.0366 0.2057 1.7249 2.121
WOA [6] 0.2054 3.4843 9.0374 0.2062 1.7305 1.037

Note: bold is used to indicate better result.

6.3. PVD Problem

The PVD problem, a classical and representative optimization issue in engineering, is
typically employed to verify the efficacy of optimization techniques. Its goal is to reduce a
tension/compression spring’s cost [41]. The design parameters are thickness of the shell
TS, thickness of the head TH , inner radius r, and the length of the cylindrical shell LCS. The
following is the expression for the mathematical formulation [47]:

Consider
z = [z1 z2 z3 z4] = [TS TH r LCS]

Minimize

f (z) = 0.6224z1z3z4 + 1.7781z2z2
3 + 3.1661z2

1z4 + 19.84z2
1z3,

Subject to
p1(z) = −z1 + 0.0193z3 ≤ 0,
p2(z) = −z3 + 0.00954z3 ≤ 0,

p3(z) = −πz2
3z4 −

4
3

πz3
3 + 1296000 ≤ 0,

p4(z) = z4 − 240 ≤ 0

Variable range is
0 ≤ z1 ≤ 99,
0 ≤ z2 ≤ 99,

10 ≤ z3 ≤ 200,
10 ≤ z4 ≤ 200

Table 10′s results for the TSD problem demonstrate that ROA is the optimal method
for solving it, followed by COA and DAO, but we can say that DAO is a competitive and
stable solution. CPU runtime of the given set of algorithms is calculated, which shows that
WOA takes very little time to compute the PVD problem.

Biomimetics 2024, 9, 215 21 of 23

Table 10. Comparison of DAO and other algorithms for PVD problem.

Optimum Attributes

Algorithms TS TH r LCS
Optimum

Cost CPU Runtime (s)

DAO 0.7885 0.3254 42.3275 189.892 5877.1000 2.432
COA [48] 0.7437 0.3705 40.3238 199.9414 5735.2488 2.356
AO [9] 1.0540 0.1828 59.6219 38.8050 5949.2258 2.222
GWO [50] 0.8125 0.4345 42.0891 176.7587 6051.5639 1.345
ROA [49] 0.7295 0.2226 40.4323 198.5537 5311.9175 2.252
RSA [5] 0.8071 0.4426 43.6335 142.5359 6213.8317 1.125
WOA [6] 0.8125 0.4375 42.0982 76.6389 6059.7410 0.872

Note: bold is used to indicate better result.

The outcomes of three classic engineering challenges are shown in this section, demon-
strating how well and consistently DAO performs when handling real-world issues. In
particular, DAO performs noticeably better than the AO algorithm.

7. Conclusions

In order to replace the expanded exploration regarding AO, this study has proposed
a low-complexity DRW method that strikes a fair balance between exploitation and ex-
ploration. The aim of this technique is to increase computational efficiency and to avoid
stagnation. Moreover, to achieve a balance between exploration and exploitation, the DOL
technique is introduced. The CPU runtime clearly shows Aquila Optimizer’s computing
efficiency. Then, the results obtained from the benchmark functions of CEC 2017 and CEC
2019 demonstrate its superiority. Furthermore, the convergence graphs, the Wilcoxon rank
sum tests, the Friedman test, and the Bonferroni test show its accessibility. Then, it is also
applied to real-world structural engineering design problems, which provides better results
than AO. All these results show that the DRW and DOL approaches provide great additions
to AO. DAO performs far better than AO as well as compared to most of the other MAs.

8. Future Scope

DAO could be applied in additional real-world applications given its great perfor-
mance. Additionally, other optimization jobs including image processing, cloud and fog
computing, and others could use the DAO optimization method.

Author Contributions: Conceptualization, M.V. and P.K.; methodology, M.V. and P.K.; software, M.V.
and P.K.; validation, M.A. and Y.G.; formal analysis, M.V. and P.K.; investigation, M.A. and Y.G.;
resources, P.K., M.A. and Y.G.; data curation, M.V. and P.K.; writing—original draft preparation, M.V.
and P.K.; writing—review and editing, M.A. and Y.G.; visualization, M.V. and P.K.; supervision, M.A.,
P.K. and Y.G.; project administration, M.A. and P.K.; funding acquisition, M.A. and Y.G. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Deanship of Scientific Research, the Vice Presidency for
Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (GrantA016).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Since no datasets were created or examined in the current investigation,
data sharing is not relevant to this topic.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Abdel-Basset, M.; Abdel-Fatah, L.; Sangaiah, A. Metaheuristic Algorithms: A Comprehensive Review. In Computational Intelligence

for Multimedia Big Data on the Cloud with Engineering Applications; Academic Press: Cambridge, MA, USA, 2018; pp. 185–231.
2. Goldberg, D.E. Genetic Algorithms; Pearson Education: Bangalore, India, 2006.
3. Storn, R.; Price, K. Differential Evolution- A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J.

Glob. Optim. 1997, 11, 341–359. [CrossRef]

https://doi.org/10.1023/A:1008202821328

Biomimetics 2024, 9, 215 22 of 23

4. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. Proc. IEEE Int. Conf. Neural Netw. 1995, 4, 1942–1948.
5. Abualigah, L.; Elaziz, M.A.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A Nature-Inspired

Meta-Heuristic Optimizer. Expert Syst. Appl. 2022, 191, 116158. [CrossRef]
6. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
7. Shi, Y. Brain Storm Optimization Algorithm. In International Conference in Swarm Intelligence; Springer: Berlin/Heidelberg,

Germany, 2011; pp. 303–309.
8. Rao, R.; Savsani, V.; Vakharia, D. Teaching-learning based optimization: A novel method for constrained mechanical design

optimization problems. Comput. Aided Des. 2011, 43, 303–315. [CrossRef]
9. Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-qaness, M.A.A.; Gandomi, A.H. Aquila Optimizer: A Novel

MetaHeuristic Optimization Algorithm. Comput. Ind. Eng. 2021, 157, 107250. [CrossRef]
10. Li, L.; Pan, J.; Zhuang, Z.; Chu, S. A Novel Feature Selection Algorithm Based on Aquila Optimizer for COVID-19 Classification. In

International Conference on Intelligent Information Processing; Springer International Publishing: Cham, Switzerland, 2022; pp. 30–41.
11. Chaudhari, S.V.; Dhipa, M.; Ayoub, S.; Gayathri, B.; Siva, M.; Banupriya, V. Modified Aquila Optimization based Route Planning

Model for Unmanned Aerial Vehicles Networks. In Proceedings of the 2022 International Conference on Automation, Computing
and Renewable Systems (ICACRS), Pudukkottai, India, 13–15 December 2022; pp. 370–375.

12. Abualigah, L.; Elaziz, M.A.; Khodadadi, N.; Forestiero, A.; Jia, H.; Gandomi, A.H. Aquila Optimizer Based PSO Swarm Intelligence
for IoT Task Scheduling Application in Cloud Computing. In Part of the Studies in Computational Intelligence Book Series; Springer
International Publishing: Cham, Switzerland, 2022; Volume 1038, pp. 481–497.

13. Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
14. Sasmal, B.; Hussien, A.G.; Das, A.; Dhal, K.G. A Comprehensive Survey on Aquila Optimizer. Arch. Comput. Methods Eng. 2023,

30, 4449–4476. [CrossRef]
15. Xu, Y.; Yang, Z.; Li, X.; Kang, H.; Yang, X. Dynamic opposite learning enhanced teaching–learning-based optimization. Knowl.

Based Syst. 2020, 104966, 188. [CrossRef]
16. Dong, H.; Xu, Y.; Li, X.; Yang, Z.; Zou, C. An improved antlion optimizer with dynamic random walk and dynamic opposite

learning. Knowl. Based Syst. 2021, 106752, 216. [CrossRef]
17. Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M.A. Quasi-oppositional differential evolution. In Proceedings of the 2007 IEEE

Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 2229–2236. [CrossRef]
18. Ergezer, M.; Simon, D.; Du, D. Oppositional biogeography-based optimization. In Proceedings of the 2009 IEEE International

Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009; IEEE: Piscataway, NJ, USA, 2009;
pp. 1009–1014. [CrossRef]

19. Zhou, J.; Zhang, Y.; Guo, Y.; Feng, W.; Menhas, M.; Zhang, Y. Parameters Identification of Battery Model Using a Novel Differential
Evolution Algorithm Variant. Front. Energy Res. 2022, 10, 794732. [CrossRef]

20. Liu, Z.H.; Wei, H.L.; Li, X.H.; Liu, K.; Zhong, Q.C. Global identification of electrical and mechanical parameters in PMSM drive
based on dynamic self-learning PSO. IEEE Trans. Power Electron. 2018, 33, 10858–10871. [CrossRef]

21. Tizhoosh, H.R. Opposition-based learning: A new scheme for machine intelligence. In International Conference on Computational
Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet
Commerce (CIMCA-IAWTIC 06), Vienna, Austria, 22 May 2006; IEEE: Piscataway, NJ, USA, 2005; Volume 1, pp. 695–701.

22. Mohamed, A.; Abualigah, L.; Alburaikan, A.; Khalifa, H.A.E.-W. AOEHO: A New Hybrid Data Replication Method in Fog
Computing for IoT Application. Sensors 2023, 23, 2189. [CrossRef]

23. Nirmalapriya, G.; Agalya, V.; Regunathan, R.; Belsam Jeba Ananth, M. Fractional Aquila Spider Monkey Optimization Based
Deep Learning Network for Classification of Brain Tumor. Biomed. Signal Process. Control. 2023, 79, 104017. [CrossRef]

24. Perumalla, S.; Chatterjee, S.; Kumar, A.P.S. Modelling of Oppositional Aquila Optimizer with Machine Learning Enabled Secure
Access Control in Internet of Drones Environment. Theor. Comput. Sci. 2023, 941, 39–54. [CrossRef]

25. Duan, J.; Zuo, H.; Bai, Y.; Chang, M.; Chen, X.; Wang, W.; Ma, L.; Chen, B. A Multistep Short-Term Solar Radiation Forecasting
Model Using Fully Convolutional Neural Networks and Chaotic Aquila Optimization Combining WRF-Solar Model Results.
Energy 2023, 271, 126980. [CrossRef]

26. Ramamoorthy, R.; Ranganathan, R.; Ramu, S. An Improved Aquila Optimization with Fuzzy Model Based Energy Efficient
Cluster Routing Protocol for Wireless Sensor Networks. Yanbu J. Eng. Sci. 2022, 19, 51–61. [CrossRef]

27. Huang, C.; Huang, J.; Jia, Y.; Xu, J. A Hybrid Aquila Optimizer and Its K-Means Clustering Optimization. Trans. Inst. Meas.
Control 2023, 45, 557–572. [CrossRef]

28. Zhang, Y.; Xu, X.; Zhang, N.; Zhang, K.; Dong, W.; Li, X. Adaptive Aquila Optimizer combining niche thought with dispersed
chaotic swarm. Sensors 2023, 23, 755. [CrossRef] [PubMed]

29. Ekinci, S.; Izci, D.; Abualigah, L. A Novel Balanced Aquila Optimizer Using Random Learning and Nelder–Mead Simplex Search
Mechanisms for Air–Fuel Ratio System Control. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 68. [CrossRef]

30. Alangari, S.; Obayya, M.; Gaddah, A.; Yafoz, A.; Alsini, R.; Alghushairy, O.; Ashour, A.; Motwakel, A. Wavelet Mutation with
Aquila Optimization-Based Routing Protocol for Energy-Aware Wireless Communication. Sensors 2022, 22, 8508. [CrossRef]
[PubMed]

31. Das, T.; Roy, R.; Mandal, K.K. A Novel Weighted Adaptive Aquila Optimizer Technique for Solving the Optimal Reactive Power
Dispatch Problem. Researchsquare, 2022; preprint.

https://doi.org/10.1016/j.eswa.2021.116158
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.cad.2010.12.015
https://doi.org/10.1016/j.cie.2021.107250
https://doi.org/10.1109/4235.585893
https://doi.org/10.1007/s11831-023-09945-6
https://doi.org/10.1016/j.knosys.2019.104966
https://doi.org/10.1016/j.knosys.2021.106752
https://doi.org/10.1109/CEC.2007.4424748
https://doi.org/10.1109/ICSMC.2009.5346043
https://doi.org/10.3389/fenrg.2022.794732
https://doi.org/10.1109/TPEL.2018.2801331
https://doi.org/10.3390/s23042189
https://doi.org/10.1016/j.bspc.2022.104017
https://doi.org/10.1016/j.tcs.2022.08.019
https://doi.org/10.1016/j.energy.2023.126980
https://doi.org/10.53370/001c.34273
https://doi.org/10.1177/01423312221111607
https://doi.org/10.3390/s23020755
https://www.ncbi.nlm.nih.gov/pubmed/36679554
https://doi.org/10.1007/s40430-022-04008-6
https://doi.org/10.3390/s22218508
https://www.ncbi.nlm.nih.gov/pubmed/36366205

Biomimetics 2024, 9, 215 23 of 23

32. Bas, E. Binary Aquila Optimizer for 0–1 Knapsack Problems. Eng. Appl. Artif. Intell. 2023, 118, 105592. [CrossRef]
33. Long, H.; Liu, S.; Chen, T.; Tan, H.; Wei, J.; Zhang, C.; Chen, W. Optimal reactive power dispatch based on multi-strategy

improved Aquila optimization algorithm. IAENG Int. J. Comput. Sci. 2022, 49, 4.
34. Wang, Y.; Jin, C.; Li, Q.; Hu, T.; Xu, Y.; Chen, C.; Zhang, Y.; Yang, Z. A Dynamic Opposite Learning-Assisted Grey Wolf Optimizer.

Symmetry 2022, 14, 1871. [CrossRef]
35. Cao, D.; Xu, Y.; Yang, Z.; Dong, H.; Li, X. An enhanced whale optimization algorithm with improved dynamic opposite learning

and adaptive inertia weight strategy. Complex Intell. Syst. 2023, 9, 767–795. [CrossRef]
36. Sharma, S.; Kaur, M.; Sing, B. A Self-adaptive Bald Eagle Search optimization algorithm with dynamic opposition-based learning

for global optimization problems. Expert Syst. 2023, 40, e13170. [CrossRef]
37. Wang, Y.; Xiao, Y.; Guo, Y.; Li, J. Dynamic Chaotic Opposition-Based Learning-Driven Hybrid Aquila Optimizer and Artificial

Rabbits Optimization Algorithm: Framework and Applications. Processes 2022, 10, 2703. [CrossRef]
38. Ali, M.H.; Salawudeen, A.T.; Kamel, S.; Salau, H.B.; Habil, M.; Shouran, M. Single- and Multi-Objective Modified Aquila

Optimizer for Optimal Multiple Renewable Energy Resources in Distribution Network. Mathematics 2022, 10, 2129. [CrossRef]
39. Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper Optimisation Algorithm: Theory and Application. Adv. Eng. Softw. 2017, 105,

30–47. [CrossRef]
40. García, S.; Molina, D.; Lozano, M.; Herrera, F. A Study on the Use of Non-Parametric Tests for Analyzing the Evolutionary

Algorithms’ Behaviour: A Case Study on the CEC’2005 Special Session on Real Parameter Optimization. J. Heuristics 2009, 15,
617–644. [CrossRef]

41. García, S.; Fernández, A.; Luengo, J.; Herrera, F. Advanced Nonparametric Tests for Multiple Comparisons in the Design of
Experiments in Computational Intelligence and Data Mining: Experimental Analysis of Power. Inf. Sci. 2010, 180, 2044–2064.
[CrossRef]

42. Luengo, J.; García, S.; Herrera, F. A Study on the Use of Statistical Tests for Experimentation with Neural Networks: Analysis of
Parametric Test Conditions and Non-Parametric Tests. Expert Syst. Appl. 2009, 36, 7798–7808. [CrossRef]

43. Wu, G.; Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition and Special Session on
Constrained Single Objective Real-Parameter Optimization; National University of Defense Technology: Changsha, China; Kyungpook
National University: Daegu, Republic of Korea; Nanyang Technological University: Singapore, 2016.

44. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A Bio-Inspired Optimizer
for Engineering Design Problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]

45. Ahmadianfar, I.; Asghar Heidari, A.; Noshadian, S.; Chen, H.; Gandomi, A.H. INFO: An efficient optimization algorithm based
on weighted mean of vectors. Expert Syst. Appl. 2022, 116516, 195. [CrossRef]

46. Jing-Chang, L.; Qu, B.; Suganthan, P. Problem Definitions and evaluation criteria for the CEC 2014 special session and competition
on single objective real-parameter numerical optimization, Computer science. Mathematics 2014, 635, 2014.

47. Varshney, M.; Kumar, P.; Ali, M.; Gulzar, Y. Using the Grey Wolf Aquila Synergistic Algorithm for Design Problems in structural
Engineering. Biomimetics 2024, 9, 54. [CrossRef]

48. Jia, H.; Rao, H.; Wen, C.; Mirjalili, S. Crayfish Optimization Algorithm. Artif. Intell. 2023, 56, 1919–1979. [CrossRef]
49. Jia, H.; Peng, X.; Lang, C. Remora Optimization Algorithm. Expert Syst. Appl. 2021, 185, 115665. [CrossRef]
50. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
51. Mirjalili, S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems. Knowl. Based Syst. 2016, 96, 120–133. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.engappai.2022.105592
https://doi.org/10.3390/sym14091871
https://doi.org/10.1007/s40747-022-00827-1
https://doi.org/10.1111/exsy.13170
https://doi.org/10.3390/pr10122703
https://doi.org/10.3390/math10122129
https://doi.org/10.1016/j.advengsoft.2017.01.004
https://doi.org/10.1007/s10732-008-9080-4
https://doi.org/10.1016/j.ins.2009.12.010
https://doi.org/10.1016/j.eswa.2008.11.041
https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.1016/j.eswa.2022.116516
https://doi.org/10.3390/biomimetics9010054
https://doi.org/10.1007/s10462-023-10567-4
https://doi.org/10.1016/j.eswa.2021.115665
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.knosys.2015.12.022

	Introduction
	Algorithm Preliminaries
	Aquila Optimizer
	Expanded Exploration
	Narrowed Exploration
	Expanded Exploitation
	Narrowed Exploitation

	Concept of Dynamic Oppositional Learning (DOL)
	Dynamic Population Initialization
	Dynamic Population Jumping Process

	Concept of Dynamic Random Walk (DRW)

	Previous Work on AO and DOL
	The Proposed DAO Algorithm
	Experimental Settings
	Competitive Algorithms Comparison on CEC2017 Benchmark Functions
	Competitive Algorithms Comparison on CEC2019 Benchmark Functions

	DAO for Engineering Design Problems
	CBD Problem
	WBD Problem
	PVD Problem

	Conclusions
	Future Scope
	References

