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Abstract: In recent decades, the requirements for implantable medical devices have increased, but the
risks of implant rejection still exist. These issues are primarily associated with poor osseointegration,
leading to biofilm formation on the implant surface. This study focuses on addressing these issues
by developing a biomaterial for implant coatings. 45S5 bioglass® has been widely used in tissue
engineering due to its ability to form a hydroxyapatite layer, ensuring a strong bond between the
hard tissue and the bioglass. In this context, 45S5 bioglasses®, modified by the incorporation of
different amounts of copper oxide, from 0 to 8 mol%, were synthesized by the melt–quenching
technique. The incorporation of Cu ions did not show a significant change in the glass structure.
Since the bioglass exhibited the capacity for being polarized, thereby promoting the osseointegration
effectiveness, the electrical properties of the prepared samples were studied using the impedance
spectroscopy method, in the frequency range of 102–106 Hz and temperature range of 200–400 K.
The effects of CuO on charge transport mobility were investigated. Additionally, the bioactivity of
the modified bioglasses was evaluated through immersion tests in simulated body fluid. The results
revealed the initiation of a Ca–P-rich layer formation on the surface within 24 h, indicating the
potential of the bioglasses to enhance the bone regeneration process.

Keywords: bioglass®; biomaterial; implant coatings; osseointegration; electrical properties

1. Introduction

Nowadays, the scientific field of biomaterials has gained great attention. Researchers
are focused on the development of biomaterials compatible with the human body to pre-
serve the physical integrity and comfort of people with functional impairments or victims
of injuries [1–3]. Historically, several materials, such as metallic components, ceramics,
polymers, and composite materials were widely used to assist in therapy [4,5]. In recent
decades, metallic materials have gained remarkable success due to their excellent mechanical
properties [6–8]. Stainless steel was the first metal to be used in orthopedics. The addition
of chromium, nickel, and molybdenum improved corrosion resistance by forming a tough
passive film. Cobalt–chromium alloys have been used in dental applications and recently, in
the manufacture of artificial joints [9]. Titanium and its alloys, such as Ti6Al4V, have been
widely used as implant materials in orthopedic surgeries, and have shown excellent per-
formance in electrochemical corrosion properties and a favorable biological response [9,10].
Despite all the advantages of using these materials, there were also some dramatic fail-
ures. Placement implants (orthopedic, dental, etc.) can be excellent growth supports for
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pathogens, which eventually cause the appearance of biofilms. These biofilms can cause
major complications once the antibiotic treatments become ineffective due to the difficulty
for the antibiotic to reach the biofilm [11–15]. The therapeutic responses currently used are
therefore solutions for curative purposes and are generally quite heavy, most often involving
a second surgical operation [16,17]. In this context, it is essential to develop preventive
rather than curative solutions, to avoid bacterial colonization at the end of the surgical act.
The choice of the material and antibacterial agent is crucial to guarantee both an effective
action against microorganisms and harmlessness to the human body, and in the best case,
favorable biological activity (osteoconduction, osteointegration, etc.) [18–20].

It has been reported that the use of bioactive glass can stimulate good functioning of the
implant due to its ability to increase tissue integration and enhance its regeneration [21–23].
Based on the inorganic composition of natural bone, Hench stipulated that a biomaterial
capable of forming hydroxyapatite in an in vivo environment would be able to replace
damaged bone tissue without being rejected by the human body [21,22]. Thus, the 45S5
bioglass®, composed of 45% SiO2, 24.5% Na2O, 24.5% CaO, and 6% P2O5 (wt%), was
produced. It represents one of the first examples of a bioactive glass capable of intimately
and firmly bonding chemically to surrounding bone tissue without being rejected by
the living environment and is considered to be the ancestor of the latest generation of
bioactive materials. Indeed, when subjected to an in vivo environment, the bioglass starts
to release ions (Na+, P5+, Ca2+), which leads to the formation of a silanol dioxide layer on
the surface [24,25]. This layer attracts ions, such as calcium and phosphate, which at a high
concentration entails the formation of a phosphocalcic layer on the surface of the glass,
similar in composition to the mineral phase of bone [26–28]. This apatite layer then allows
for the absorption of proteins and the adhesion of cells that proliferate, differentiate, and
secrete collagen [29]. The incorporation of collagen fibrils into the growing apatite layer
results in a microstructure similar to that of the ligament–bone interface, which explains
the important integration of bioglass within host bone tissue [30].

Recently, many efforts have been made to promote angiogenesis, regeneration, and the
antibacterial potential of bioglass by the insertion of metal ions in the glass network [31–37].
Copper is one of the necessary elements for the human body, playing a critical role in
angiogenesis and the regeneration of hard and soft tissue [38,39]. Several studies performed
on bioactive glass (BG) have shown that the incorporation of Cu significantly enhances
angiogenesis by stabilizing the expression of the hypoxia-inducible factor (HIF-1α) in
human bone marrow stromal cells (hBMSC) [40,41]. From the bioactivity point of view, the
incorporation of copper into the BG network does not provoke any adverse effect, i.e., the
formation of hydroxyapatite precipitation on the bioglass surface is preserved after contact
with the biological body [40,42]. Beyond being useful in stimulating tissue regeneration,
copper is used for its potential antimicrobial effect against several pathogenic bacteria,
such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus
epidermis [43–47]. All these promising properties make copper a promising ion to be inserted
into bioglass to fabricate a multifunctional material for implant coating that combines
osteoconduction and osteogenesis with novel therapeutic functionalities.

This work aims to develop 45S5 bioglass® modified by copper oxide insertion to be
applied as a coating material for implants. The effect of copper doping on the structure and
the morphology of the bioglasses prepared by melt–quenching was investigated in this
study. Despite extensive research on bioglasses, few studies have thoroughly explored the
relationship between the structure of the 45S5 bioglass® modified with copper oxide and
its electrical and bioactive properties. Moreover, the examination of the electrical properties
of copper oxide-modified bioglass is notably innovative and has not been explored in
prior studies. Changes in the electrical properties were verified due to the ability of
these materials to electrically polarize thus optimizing the osseointegration responses.
The bioactivity of these glasses was also evaluated in vitro through an immersion test in
simulated body fluid (SBF).
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2. Materials and Methods
2.1. Glass Synthesis

Both base and modified bioglasses had been synthesized based on the composition
of 45S5 (45% SiO2, 24.5% Na2O, 24.5% CaO, and 6% P2O5 (wt%)) proposed by Larry L.
Hench [8]. The bioactive glass composition of 45S5 was studied by the introduction of
various concentrations of copper, CuO, from 0 to 8 mol% (designed by BG0, BG0.5, . . .,
BG8). In the synthesis of bioglasses, high-purity grade (>99%) SiO2, P2O5, CaCO3, Na2CO3,
and CuO, supplied by Sigma-Aldrich, Darmstadt, Germany, were used as the starting
compositions. These materials were mixed and homogenized in an agate vessel with milling
agate balls for 1 h at 300 rpm, using a high-energy planetary ball milling system [48].
The mixture was then calcinated for 8 h at 800 ◦C and, afterward, was melted in platinum
crucibles that were placed in an electric furnace at 1300 ◦C for 1 h. The homogeneity was
ensured by repeated hand mixing of the melt. Effective cooling was achieved by quenching
the molten glasses after removal from the furnace in between casting plates to obtain
bulk samples.

2.2. Thermal Analysis

Differential Thermal Analysis (DTA) measurements were simultaneously used to
examine the thermal characteristics of the glasses. A Hitachi STA 7300 system was used
for those measurements, which were performed under Nitrogen N50 (99.999%) flowing at
200 mL/min with a heating rate of 10 ◦C/min.

2.3. Structural and Morphological Characterization

The X-ray diffraction, XRD, patterns were acquired at room temperature using a
Malvern Panalytical Aeris powder diffractometer adopting CuKα radiation (λ = 1.54056 Å).
The measurement parameters had a scan step of 0.02◦ in 1 s, in a 2θ angle range of 10–60◦.

The Raman spectroscopy of the bulk glasses was performed on a Jobin Yvon HR
800 spectrometer with an Ar+ laser (λ = 532 nm), and the spectra were acquired in a
back-scattering geometry between 200 and 1500 cm−1 using a 50X lens to focus the sample.

The morphologies of the samples were analyzed by TESCAN Vega 3 scanning electron
microscopy (SEM). The bulk samples were coated with carbon before microscopic observa-
tion. A Bruker EDS system was used in conjunction with the TESCAN Vega 3 microscope
to perform a semiquantitative evaluation of the chemical elements on the surface of the
samples. The measurements were taken at several surface sites using a 5 µm diameter
electron beam spot.

2.4. Electrical Characterization

For the electrical analysis, the bulk glass samples were polished to obtain parallel
surfaces with a thickness of around 1 mm. Silver conducting paste was applied to the
opposite parallel sides of the samples. AC electrical conductivity (σac) was measured by an
Agilent 4294A precision impedance meter, in the Cp–Rp configuration, at the temperature
range of between 200 and 400 K with 5 K steps, and in a broad frequency window from
100 Hz to 1 MHz. The dielectric behavior was investigated with the complex permittivity
ε* and the complex electric modulus M* formalisms, as expressed by [49–52]:

ε* = ε′ − j ε′′ = Cp (d/ε0 A) − j d/(ω Rp ε0 A), (1)

M* = 1/ε* = M′+ iM′′ = ε′/(ε′2+ ε′′2) + i ε′′/(ε′2+ ε′′2), (2)

where Cp and Rp are the measured capacitance and resistance, d is the sample thickness, A
is the electrode area, ω is the angular frequency, and ε0 is the permittivity of the free space
(8.8542 × 10−12 F/m).

The complex AC conductivity (σac*) was determined using the following relation [53,54]:

σac* = ε0 ω ε′′+ j ε0 ω ε′, (3)
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The direct current (DC) conductivity measurements were carried out using a 617 Keith-
ley electrometer. The measurement was performed at the temperature range of between
200 and 400 K, where a DC voltage of 100 V was applied across the bulk glass.

The activation energy (EA) for the high temperature range was determined in both
AC and DC by fitting the data to the Arrhenius equation [50,53,55]:

σ = σ0 exp (−EA/(kB T)), (4)

where σ0 is a pre-exponential factor, EA is the activation energy, kB is the Boltzmann
constant, and T is the temperature.

2.5. In Vitro Bioactivity Evaluation

The bioactivity test was performed on 7 mm diameter pressed pellets. The assessment
of bioactivity was conducted following the “ISO 23317—Implants for surgery—In vitro
evaluation for the apatite-forming ability of implant materials” standard [56]. After inter-
vals of 24, 96, and 336 h of immersion in simulated bodily fluid (SBF) with stirring, the
samples were withdrawn from the medium and rinsed with deionized water. To create an
environment close to the biological one, the medium was changed every 48 h.

3. Results and Discussion
3.1. Thermal Analysis

The thermal response of the bioglasses is illustrated in Figure 1. The thermogram of
BG2 and BG8 shows the existence of a glass transition temperature, Tg, followed by an
exothermic peak, Tc, attributed to the structural modifications related to the formation of
crystalline phases. At higher temperatures, an endothermic peak, Tm, is assigned to the
melting point of bioglass [57,58].
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Figure 1. DTA spectra of (a) BG2 and (b) BG8 samples.

In a previous study [59], a thermal analysis of the 45S5 bioglass® was conducted,
revealing a thermal response similar to that of the modified bioglasses. The characteristic
temperature values of modified glasses in comparison with the 45S5 bioglass® are shown
in Table 1. It can be noted that the characteristic temperatures decrease as the content of
CuO introduced into the glass network increases. These results align with those reported
in the literature [60]. The changes in the glass temperature might be explained by the
type of chemical bonds in the bioglass structure. Due to the stronger affinity of copper to
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phosphate than to silica groups, the P–O–P bonds were more easily broken compared to
Si–O–Si chemical bonds [61]. Thus, Cu–O ionic bonds were created. These bonds have a
more covalent character (the ionicity iG of Cu–O bonds is equal to 0.617) and replace the
more ionic bonds such as Ca–O (iG = 0.707) [62]. As a result, the thermal resistance of the
glasses is reduced, which could explain the decrease in Tg, Tc, and Tm.

Table 1. The characteristic temperatures of BG0, BG2, and BG8.

Samples Tg (K) Tc (K) Tm (K)

BG0 [59] 825 1001 1448
BG2 782 965 1412
BG8 777 913 1371

3.2. Structural Characterization

The XRD patterns of the prepared bioglasses, indicated in Figure 2, show an amor-
phous hump arising from the glasses having no long-range atomic order in their molecular
arrangement. The similarity in the XRD patterns of all the samples demonstrates that the
structure of the glass was not affected by the applied exchange conditions.
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Figure 3a displays the Raman spectral measurement, which clearly shows that the
different bioglasses exhibit a very similar spectrum. However, at a high CuO content, two
bands assigned to Ag and Bg modes of CuO appear at 292 and 568 cm−1, respectively [14,63].
A Gaussian fitting was used to deconvolve the Raman spectra of the bioglass base for a
more thorough investigation (Figure 3b). In silicate glasses, the vibrational modes at high
wavenumbers (>800 cm−1) are considered relevant. Six vibrational modes located at around
855 cm−1, 903 cm−1, 938 cm−1, 967 cm−1, 1018 cm−1, and 1067 cm−1 can be observed,
which are attributed to the symmetric stretching of Q0 Si, Q1 Si, Q2 Si, Q0 P, Q1 P and Q3 Si
units, respectively [64–67].

Figure 4 depicts the sum of the area of the Raman vibration bands associated with
non-bridging oxygen (NBO) ions, i.e., the sum of Q0, Q1, Q2, and Q3 units, as a function
of CuO content. It can be seen that as compared to the bioglass base, the concentration of
NBO ions increases with the increasing CuO concentration of up to 0.5%, then it decreases
with further increases in CuO content.
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3.3. Morphological Characterization

The SEM micrographs, represented in Figure 5, reveal spherical inclusions in the
amorphous matrix in both the free and fracture surfaces. The morphology confirms its
glassy structure.

3.4. Electrical Properties

Figure 6a,b depict the frequency dependence of the dielectric permittivity ε′ and the
loss factor ε′′, respectively, for the BG2 glass. In this representation, the presence of dielectric
relaxation behavior was not observed. In the high temperature and low frequency region,
those variations show a linear increase with a slope of ε′′ close to −1 (m = −0.95 at 400 K—
Figure 5b) thus indicating the existence of the DC conductivity effect [68]. The frequency
dependency of AC conductivity may be used to detect this effect. The appearance of a
horizontal plateau at low frequencies correlates to the DC conductivity effect, as seen in
Figure 6c.
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To minimize the electrode polarization and conductivity effects, the electric modulus
(M* = 1/ε*) was used [69]. The presence of a dielectric relaxation was observed, whose
maximum shifts to higher frequencies with the increasing temperature (Figure 7a). Thus,
the relaxation behavior should be associated with the electrical dipole formed between
the network modifier and NBO ions. Figure 7b shows a comparison of the normalized
imaginary parts of the electric modulus M′′/M′′

max as a function of frequency for the
different CuO contents introduced into the bioglass network.
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The results presented in Figure 7b reveal that increasing the CuO concentration to
0.25 mol% causes a shift in the peak of the electrical modulus to a higher frequency,
implying a reduction in the relaxation time. With a further increase in CuO concentration,
the dielectric relaxation peak shifts towards a lower frequency range, indicating an increase
in the relaxation time. The increase in the relaxation time with the insertion of more CuO
suggests a decrease in the freedom for dipoles in the glass network to orient with the
direction of the applied electric field. These findings indicate that the network of the
glass containing a concentration of CuO above 0.25 mol% is more “polymerized” [70].
This change in the glass structure is mainly due to a change in NBO ion content as depicted
in Figure 4.

Figure 8a,b display the AC and DC conductivity, in logarithmic scale, versus 1000/T,
respectively. For all the samples, an increase in temperature is related to the increase in
the charge carriers’ mobility, and at the high temperature range, this variation becomes
linear. This behavior shows that the conductivity is a thermal-activated process and can
be analyzed using the Arrhenius formalism (Equation (4)). Thus, the calculated activation
energies for both AC and DC conductivity are presented in Table 2.
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Table 2. The dielectric constant (ε′), dielectric loss (tan δ), AC conductivity (σac), AC activation energy
Ea (AC), DC conductivity (σdc), and DC activation energy Ea (DC) for all bioglass samples.

Sample
ε’ tan δ (10−2) σac (10−6)

[S/m]
Ea (AC)
[kJ/mol]

σdc (10−9)
[S/m]

Ea (DC)
[kJ/mol]

(300 K; 10 kHz) (10 kHz) (300 K)

BG0 13.59 ± 0.72 1.58 ± 0.02 11.92 ± 0.01 37.95 ± 0.98 0.91 ± 0.08 75.82 ± 0.79

BG0.25 13.75 ± 1.42 2.21 ± 0.01 17.12 ± 0.03 38.89 ± 0.73 1.27 ± 0.11 74.27 ± 0.77

BG0.5 11.12 ± 1.24 1.81 ± 0.06 11.37 ± 0.04 38.05 ± 0.79 1.02 ± 0.13 77.24 ± 0.11

BG1 10.14 ± 0.98 2.01 ± 0.03 11.23 ± 0.02 37.37 ± 0.70 1.07 ± 0.15 77.12 ± 0.38

BG2 12.66 ± 1.32 1.32 ± 0.05 9.46 ± 0.08 37.32 ± 0.85 0.23 ± 0.05 83.51 ± 0.12

BG4 12.26 ± 0.83 1.14 ± 0.07 7.66 ± 0.05 37.81 ± 0.86 0.28 ± 0.09 84.00 ± 0.19

BG8 12.34 ± 1.12 0.64 ± 0.02 4.61 ± 0.09 34.53 ± 0.88 0.06 ± 0.001 87.47 ±0.26

The activation energy for DC conductivity is higher compared to AC conductivity.
This difference arises from the fact that AC conduction is attributed to ion motion over
limited distances, while DC conduction entails motion across longer distances. Conse-
quently, AC conduction involves lower barriers compared to DC conduction and therefore,
it requires less energy [54]. The results illustrated in Table 2 show an increase in the AC
and DC conductivity for the sample modified with 0.25% CuO compared to the bioglass
base, then it decreases with the insertion of a higher concentration of CuO. It is known that
conductivity within the bioglass system is mostly correlated with the energy carried by the
network modifiers, NaO and CaO, whose mobility increases with the rising amount of NBO
ions present in the glass network [58,71]. As depicted in Figure 4, the NBO ion amount
increases with the introduction of 0.25% CuO into the bioglass, therefore contributing
to elevated AC and DC conductivity. However, as the concentration of CuO is further
increased beyond 0.25%, the NBO ion amount decreases, leading to a decrease in the AC
and DC conductivities.

3.5. In Vitro Bioactivity Evaluation

An in vitro experiment was conducted to evaluate the capacity of the bioactive glasses
to facilitate the integration with the host bone and stimulate new bone formation. The test
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involved observing the development of an apatite layer on the material’s surface after
immersion in simulated body fluid (SBF). This technique offers valuable information
regarding the physicochemical processes taking place at the interface of the bioactive glass
within a biological medium, a crucial factor influencing the adhesion and proliferation of
osteoblast cells [72]. It is worth noting that the biocompatibility of these bioglasses was
evaluated in our previous work [39]. The SEM micrographs, illustrated in Figure 9, show
the surface of the samples after 24 h, 96 h, and 336 h of SBF immersion. It is visible for
all samples that there is a formation of spherical particles on the surface, with their size
increasing with immersion time. The surface of the pellet becomes fully covered by the
precipitated apatite layer and results in a cauliflower shape. The results suggest that the
bioglass modified with copper shows promise as an osteoconductive material. Table 3
shows the variation in particle size observed on the surface of the bioglass with immersion
time. Compared to the base bioglass, the bioglasses modified with low concentrations of
CuO (0.25 and 0.5 mol%) exhibit larger particle sizes even after 24 h of SBF immersion.
This suggests that the incorporation of CuO at these concentrations enhances the bioactivity
of the bioglass. However, the insertion of a high content of CuO decreases the bioactivity
of the glass.
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Table 3. The mean sizes of the apatite particles (µm) on the bioglass surface after SBF immersion.

Samples 24 h 96 h 336 h

BG0 0.19 ± 0.06 2.18 ± 0.27 6.58 ± 0.74
BG0.25 0.24 ± 0.07 2.29 ± 0.38 6.63 ± 0.97
BG0.5 0.26 ± 0.05 2.76 ± 0.53 6.97 ± 1.07
BG1 0.18 ± 0.03 2.12 ± 0.29 6.15 ± 0.86
BG2 0.16 ± 0.03 2.22 ± 0.61 4.53 ± 0.52
BG4 0.11 ± 0.04 1.82 ± 0.48 3.98 ± 0.69
BG8 0.05 ± 0.01 1.39 ± 0.31 3.03 ± 0.39

The atomic elements presented on the surface of the prepared glasses were examined
using SEM–EDS. The obtained results, illustrated in Table 4, show a decrease in the Si
and Na concentrations with increasing immersion time, associated with the dissolution of
these elements into the medium. Within the first days of SBF immersion, the Ca/P ratio
approaches a value close to the Ca/P ratio of hydroxyapatite in normal bone (Ca/P ≈ 1.67),
confirming the formation of the apatite layer [73,74]. The bioglass modified with 0.5 mol%
CuO exhibits a Ca/P ratio of 1.71 after 96 h of immersion in SBF, whereas the bioglass base
reaches a ratio of 2.05. This suggests that copper oxide has a beneficial impact on the glass’
bioactivity, enhancing the bioactivity within the initial days.

Table 4. The atomic percentage of Si and Na elements and the Ca/P ratio measured using SEM–EDS,
on the surface of the samples before and after immersion in SBF for 96 h and 336 h.

Samples
Si (at. %) Na (at. %) Ca/P

0 h 96 h 336 h 0 h 96 h 336 h 0 h 96 h 336 h
BG0 11.62 ± 1.1 1.12 ± 0.5 0.11 ± 0.01 15.43 ± 1.1 3.53 ± 0.8 1.31 ± 0.1 7.02 ± 0.9 2.05 ± 0.3 1.78 ± 0.7

BG0.25 11.60 ± 0.9 1.43 ± 0.3 0.52 ± 0.08 15.17 ± 1.3 3.73 ± 0.7 1.27 ± 0.5 5.94 ± 0.7 1.77 ± 0.5 1.71 ± 0.8
BG0.5 11.58 ± 0.7 1.14 ± 0.7 0.14 ± 0.03 15.14 ± 0.9 3.13 ± 0.4 1.26 ± 0.7 5.84 ± 0.7 1.71 ± 0.8 1.70 ± 0.3
BG1 10.23 ± 1.3 1.29 ± 0.1 0.06 ± 0.01 14.91 ± 1.5 4.07 ± 0.3 1.49 ± 0.3 6.66 ± 0.5 1.80 ± 0.7 1.75 ± 0.4
BG2 9.25 ± 0.8 1.47 ± 0.2 0.1 ± 0.04 15.42 ± 1.7 3.76 ± 0.1 1.22 ± 0.2 6.87 ± 0.3 1.74 ± 0.4 1.73 ± 0.5
BG4 10.27 ± 0.6 1.03 ± 0.7 0.08 ± 0.01 13.97 ± 1.2 3.97 ± 0.9 1.18 ± 0.8 6.81 ± 0.9 1.81 ± 0.6 1.78 ± 0.9
BG8 9.34 ± 1.2 1.09 ± 0.3 0.07 ± 0.02 14.84 ± 1.3 4.32 ± 0.2 1.68 ± 0.9 6.71 ± 0.4 1.83 ± 0.5 1.79 ± 0.2

The pH level of the SBF at different times after soaking the bioglass samples is illus-
trated in Figure 10.
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It is noted that from the first few hours, the pH level increases compared to the initial
pH of the SBF medium, which was 7.4. This increase in pH continues up to 48 h, then it
decreases with increasing immersion time. It is worth noting that the SBF medium was
changed every 48 h to simulate the physiological condition. The decrease in pH level can
be ascribed to the development of the apatite layer on the bioglasses’ surface [75].

4. Conclusions

The present investigation discloses the synthesis of 45S5 bioactive glasses modified by
the insertion of CuO using the melt–quenching technique. The structural characterization
shows that the glass matrix was not altered by the addition of copper. The deconvolution
of the Raman spectra showed an increase in the NBO ion amount with the insertion of CuO.
Nevertheless, increasing the concentration of this oxide inserted into the glass network
decreases the NBO ion levels. This change in NBO ion amount impacts network modifier
mobility, resulting in an increased conductivity for the sample with 0.25% CuO. Bioactivity
assessment confirms the glasses’ ability to form an apatite layer on the surface, ensuring a
strong connection with bone when applied in regenerative medicine.
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