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Abstract: With the rise and development of autonomy and intelligence technologies, UAVs will have
increasingly significant applications in the future. It is very important to solve the problem of low-
altitude penetration of UAVs to protect national territorial security. Based on an S-57 electronic chart
file, the land, island, and threat information for an actual combat environment is parsed, extracted,
and rasterized to construct a marine combat environment for UAV flight simulation. To address the
problem of path planning for low-altitude penetration in complex environments, a photosensitivity-
enhanced plant growth algorithm (PEPG) is proposed. Based on the plant growth path planning
algorithm (PGPP), the proposed algorithm improves upon the light intensity preprocessing and light
intensity calculation methods. Moreover, the kinematic constraints of the UAV, such as the turning
angle, are also considered. The planned path that meets the safety flight requirements of the UAV
is smoother than that of the original algorithm, and the length is reduced by at least 8.2%. Finally,
simulation tests are carried out with three common path planning algorithms, namely, A*, RRT, and
GA. The results show that the PEPG algorithm is superior to the other three algorithms in terms
of the path length and path quality, and the feasibility and safety of the path are verified via the
autonomous tracking flight of a UAV.

Keywords: unmanned aerial vehicle; path planning; plant growth; heuristic information; electronic chart

1. Introduction

With the continuous progress of science and technology and the development of
unmanned systems, unmanned aircraft combat is gradually becoming the mainstream
form of modern warfare. Low-altitude penetration [1], as a tactical means, is an important
feature of future UAV combat. In an increasingly complex combat environment, unmanned
aerial vehicles (UAVs) need to reduce flight altitudes; strategically avoid anti-aircraft fire
and radar monitoring with the help of mountain ranges, islands, and other bunkers; and
use low-altitude penetration to complete reconnaissance or strike missions, enhance the
survival ability of aircrafts, and improve the precision of strikes. The ocean is one of the
main battlefields for military disputes and operations because of its important position
in influencing national resources, economic trade, and territorial security. UAVs can
complete low-altitude penetration in marine combat environments and successfully execute
missions to guarantee the safety of sea territories. These missions can be conducted via two
approaches, namely, the construction of combat environments for electronic navigational
charts (ENCs) [2] and UAV path planning [3,4].
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ENCs are digitalized thematic maps that record geographic information about sea
areas. S-57 ENCs [5] are produced by the official departments of waterways in various coun-
tries in accordance with the “Digital Hydrographic Data Transmission Standard” issued
by the International Hydrographic Organization (IHO) in 1992 and contain the elements
of seafloor topography (bathymetry), navigational obstacles, port facilities, tides, currents,
and so on. They are object-oriented electronic maps in a vector format, which is convenient
for data exchange and transmission. S-57 ENCs are widely used on platforms such as
torpedoes [6], ships [7], and UAVs [8] to carry out tasks such as navigation, surveying and
mapping, and search and rescue (SAR) in marine environments.

Path planning refers to the rapid planning of a safe path under UAV kinematic constraints by
taking into account factors such as the terrain, weather, and threats in the search space. Common
path planning algorithms are generally classified into three categories [3,9]: (i) search-based
methods, such as the A* algorithm [10] and D* Lite algorithm [11]; (ii) sampling-based
methods, such as the RRT algorithm [12,13] and the probabilistic roadmap algorithm
(PRM) [14]; and (iii) bionic intelligent methods, such as particle swarm optimization
(PSO) [15], genetic algorithm (GA) [16], ant colony optimization (ACO) [17], and the
plant growth path planning algorithm (PGPP) [18]. Although search-based methods can
ensure the optimal solution, the quality of the solution is limited by the resolution of the
search space [19]. Sampling-based methods have advantages in high-dimensional space,
but the planning time is stochastic [20]. Bionic intelligent methods simulate biological
characteristics to optimize the solution, which has strong environmental adaptability and
high efficiency but also has randomness [21].

In recent years, many academics have been researching the problem of low altitude
penetration of UAVs and the bionic intelligent planning approach. Ref. [22] proposed an
improved A* algorithm with a bidirectional variable step strategy and minimal RCS tactics
to realize fast penetration path planning for stealth UAVs in dynamic radar threat scenarios.
Refs. [23,24] proposed an improved PSO algorithm to plan a better breakout flight path
by optimizing the adaptive function of the algorithm. The PGPP algorithm [18] utilizes
the characteristics of plant growth and draws on the basic physiological mechanisms of
plant phototropism, dorsotropism, apical dominance, and branching for algorithm design
to realize path planning from the starting point to the target point. The PGPP algorithm for
path planning has advantages in reducing the number of waypoints and memory overhead.
Zhou et al. [25] combined the flight performance of quadrotor UAVs, proposed a new bio-
inspired path planning algorithm and verified the effectiveness of the algorithm through
actual low-altitude obstacle avoidance flights. However, the majority of existing algorithms
consider only simple scenarios with regular obstacles (circles or rectangles) or do not really
consider the kinematic constraints of UAVs. In addition, many current path planning
algorithms for concave obstacles are solved by transforming the obstacles into regular
convex polygons [26,27]. Nevertheless, in actual nautical charts, the land and the islands
are a large number of complex concave obstacles. These methods are inefficient and unable
to address the path planning problem properly in complex nautical chart environments.

In this paper, we focus on UAV low-altitude penetration missions in a realistic and
complex marine combat simulation environment, which includes numerous irregular
obstacles. A new path planning algorithm, the photosensitive-enhanced plant growth
algorithm (PEPG), is proposed, which is based on the PGPP algorithm and incorporates
UAV turning angle constraints. The main contributions of this paper are summarized
as follows:

• Based on an S-57 electronic chart file and the Mercator projection, information on
obstacles such as land islands is extracted, rasterized, and combined with threat
information such as radar, and an accurate marine combat simulation environment is
constructed.

• Aiming at a low-altitude penetration mission in the above complex concave obstacle
combat environment, a PEPG algorithm based on the PGPP algorithm is proposed,
which improves the light intensity preprocessing and other parts, combines with the
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UAV’s turning angle constraints, enhances the algorithm’s heuristic information in
the path search, and the planned path is shorter and smoother.

• The three common path planning algorithms are compared and contrasted via simula-
tion tests, and the effectiveness of the algorithm proposed in this paper is verified.

2. Complex Marine Combat Environment Construction
2.1. Construction of the Gridded Nautical Chart Environment

Environmental modeling is the first prerequisite for realizing the whole planning task.
In the UAV low-altitude penetration path planning task, the obstacles affecting flight safety
are mainly land and islands in the marine environment.

The information in S-57 ENCs is saved and plotted hierarchically [28]. All the elements
belong to the corresponding layers according to the type of object, and the geometric
information of the objects needs to be extracted from the corresponding layers. The vector
data model adopted in S-57 ENCs describes real-world objects through feature objects and
spatial objects [29], and each object is a combination of feature objects and spatial objects.
The feature object label contains the description information of the object, and the spatial
object label contains the geometric information of the object, which contains the spatial
position of the object in terms of points, lines and surfaces.

To accurately obtain the land and island information of S-57 ENCs, it is necessary to
analyze and read the S-57 ENC file data on the basis of the theoretical model and the data
structure of the above nautical chart data. The process of land information extraction is
shown in Figure 1, which ultimately yields a set of latitudinal and longitudinal coordinates
of the land and islands characterized by polygonal boundaries.

Start

Open the electronic 

chart

Are layer elements 

empty ?

Elements are stored in land 

and island collections

Does the layer element 

end over?

Read the feature space 

geometry information

Yes

End

No

Locate the land/island layer 

LNDARE

No

Read the feature attribute types 

and attribute values

Save the land island layer 

information

Yes

Figure 1. Land information extraction flow chart and results.

To reflect the real shape of the land islands in the nautical charts and ensure the
accuracy of navigation, the Mercator projection [30] is adopted in this paper to convert the
latitudinal and longitudinal coordinates into plane Cartesian coordinates to ensure that the
shape of the region remains unchanged. The equator is selected as the reference latitude
line, the prime meridian is the central meridian, the intersection of the two is the coordinate
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origin, the east-to-north direction is the positive direction, the earth is regarded as a sphere,
and the chart is mapped in the plane with the following formula:

x = R0λ

y = R0 ln
(

tan
(

π

4
+

ϕ

2

)) (1)

where λ denotes the geographic longitude (radian system), ϕ denotes the geographic
latitude (radian system), and the equatorial radius is R0 = 6,378,137 m.

As shown in Figure 2a, an electronic chart of a sea area is selected as an example. The
latitudinal and longitudinal ranges of the sea area are 116.500° E to 123.450° E and 31.500° N
to 39.28° N, and the Mercator projection is carried out on the land islands represented by
the latitudinal and longitudinal coordinates (ϕ, λ) in the electronic chart to obtain the chart
information corresponding to the Mercator plane coordinates (x, y). As shown in Figure 2b,
the transformed land islands are complex planar polygons after the Mercator projection.

(a) Electronic chart of a sea area (b) Mercator projection chart

(c) Binary chart (d) Rasterized chart

Figure 2. Rasterization of the S-57 EC environment.

To accurately describe and effectively characterize the obstacle information in the
chart environment, the raster method is adopted in this paper to further model the chart
environment information. First, we perform binarization on the chart after Mercator
projection and set the obstacle-free area as white and the obstacle area as black, as shown
in Figure 2c. Then, the appropriate raster search space size is selected according to the
latitudinal and longitudinal boundary lengths of the nautical chart, and the land and island
information in the nautical chart is rasterized to obtain the raster coordinates of each region.
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In the case of a certain chart size, the smaller the size of the raster unit is, the greater the
degree of search space refinement, and the greater the amount of computation.

In this paper, a 100× 100 search space is selected for the construction of a complex
environment, and the simulation environment model effect is shown in Figure 2d.

2.2. Gridding of the Threat Information

When UAVs are used to perform combat missions, in addition to land and islands at
sea, there are threats such as adverse weather conditions and enemy radar and fire. The
radar threat is determined by the radar position and radar detection range; the fire threat
is determined by the fire point and fire kill radius. In this paper, the threats are modeled
uniformly with the following formulas:(

x− xj
)2

+
(
y− yj

)2 ≤ r2. (2)

where (xi, yi) and r are the center point location and threat radius, respectively, of each
type of threat.

Weather, radar, and fire threat information is combined with land island terrain
information in the chart, and finally, the complex marine environment is modeled. The
results are shown in Figure 3.

ThreatThreat

Figure 3. Scenario of complex ocean environments.

Finally, all the obstacles in the search space occupied by the raster unit are saved in
the form of a collection, which is labeled OBS = {O1, O2 . . . On}. The remaining raster unit
is the feasible area. Moreover, the grid environment information of the complex nautical
chart is obtained and is used as the known information for subsequent path planning.

3. Photosensitivity-Enhanced Plant Growth Algorithm

Based on the known information of the above environment and UAV turning angle
constraints, the photosensitivity-enhanced plant growth algorithm (PEPG) for UAV path
planning in complex concave obstacle environments based on the PGPP algorithm is
proposed in this paper, which enhances the algorithm’s accurate perception of light sources
during bud growth.

3.1. Fundamentals of the PGPP Algorithm

The basic principle of the PGPP algorithm [18] is shown in Figure 4, where the starting
point of the flight path planning is assumed to be a plant seed germ, the end point is
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assumed to be the light source required for plant growth, and the shaded and unshaded
areas of the search space are obtained by preprocessing the environment with regards to
the light intensity. The algorithm discretizes the growth process of the plant from the seed
germ to the light source in a growth cycle first according to the bud age of each bud to
determine whether to carry out random branching to produce new buds. Then, the current
buds grow in the direction of the growth vector. Once the current buds reach the light
source, the algorithm ends, and the growth path is obtained.

Y

X

Goal

Bud
GLast

GR

GN

Gravity

Ground

GL

Obstacles

GL     Light Intensity Growth Vector

GLast    Last Period Growth Vector 

GR     Gravity Growth Vector

GN     New Growth Vector

GL     Light Intensity Growth Vector

GLast    Last Period Growth Vector 

GR     Gravity Growth Vector

GN     New Growth Vector

Start

( ),x y

Figure 4. Schematic diagram of the PGPP.

3.2. Preprocessing of the Light Intensity Values in Complex Environments

Light intensity value preprocessing is used to provide heuristic information for bud
growth by simulating the natural environment and projecting light from a light source to
the entire search space. The search space can be divided into the following three states: the
obstacle area, unshaded area and shaded area. The light intensity value of each raster cell
is determined by a combination of its distance from the end point, whether it is an obstacle
and whether it is shaded by an obstacle. The calculation formula is as follows:

L[x][y] = K× Linit[x][y]√
l

l =

√(
x− xgoal

)2
+
(

y− ygoal

)2
. (3)

where the initial light intensity Linit[x][y] of all grid cells (x, y) in the search space is set to
150. Moreover, the light intensity coefficient K is 1 when the grid is represented as unob-
structed, 0.4 when it is obstructed, and 0 when it is represented as an obstacle. (xgoal , ygoal)
is the coordinate of the grid cell at the end point. Preprocessing of the light intensity values
in the simulation environment is the core step of the algorithm and provides key heuristic
information for the growth of buds out of the path toward the end point and timely obsta-
cle avoidance. The method of light intensity preprocessing in the PGPP algorithm [18] is
shown in Figure 5, and in previous studies, two convex obstacles, rectangular and circular,
were mainly considered. In particular, all obstacles were computed one by one throughout
the entire search space; the vertices of rectangular obstacles were connected sequentially to
confirm the two tangents with the largest tensor angles; and the geometrically symmetric
centers of circular obstacles were connected to the end points to determine the end point
and the tangent point of the obstacle. The area that satisfies the requirement of being within
the tangent line and not between the obstacle and the end point is considered to indicate
occlusion. This method of using the tangent point to determine the calculation of the
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shaded area in the search space can be applied only to an environment with a small num-
ber of regular geometric obstacles and is not applicable to an environment with complex
geometric grid obstacles, which restricts the application of the PGPP algorithm.

仿植物生长算法—应用改进（遮挡）

https://blog.csdn.net/qq_38751604/article/details/107394473

Goal

Start

RECT OBS
0

Shaded area

Unshaded area

1

A

D

B

C

r
o

Figure 5. Light intensity preprocessing method for PGPP.

To obtain important occlusion region information for light intensity preprocessing in a
complex concave obstacle rasterized navigation environment, we implement the Bresenham
straight-line algorithm [31] to determine the light intensity coefficients of the raster cells in
the search space.

The steps of the algorithm are as follows:
Step 1: Set the light intensity coefficient K of the obstacle grid in the search space to 0

and initialize all the remaining grids to be in the shaded state, which is set to 0.4.
Step 2: Calculate the rasters of the unobstructed region in the search space. Iterate

over the boundary rasters of the entire search space and note that the coordinates of the
current boundary raster cell are (xm, ym).

Step 3: Connect a line from the light source (that is, the end point (xg, yg)) to (xm, ym),
calculate the absolute value of the slope |k| of the straight line, and initialize the cumulative
error variable e to 0. Starting from the end point (xg, yg), the coordinate of the raster
cell (xi, yi) is iterated along the straight line to the coordinate of the boundary raster cell
(xm, ym), and the iteration directions are xdir = (xm − xg)/|xm − xg| and ydir = (ym −
yg)/|ym − yg|. If |k| ≥ 1, then proceed to Step 4; otherwise, skip to Step 5.

Step 4: Add 1 to e before each grid cell is checked during iteration. If e ≥ |k|/2, then
update the current grid cell coordinates to (xi + xdir, yi + ydir). At the same time, subtract
|s| from e. Otherwise, update the coordinates to (xi, yi + ydir). Determine whether the
coordinates of the obstacle grid are updated. If they are, then the current round of iteration
is completed, and Step 6 can be implemented. Otherwise, set the current grid cell light
intensity coefficient K to 1, and continue to update the grid cell coordinates until the current
boundary grid cell is (xm, ym).

Step 5: Add |k| to e before each grid cell is checked during the iteration. If e ≥ 1/2,
then update the current grid cell coordinates to (xi + xdir, yi + ydir). At the same time,
subtract 1 from e. Otherwise, update the coordinates to (xi + xdir, yi). Next, determine
whether the coordinates of the obstacle grid are updated. If they are, then, after the curret
round of iteration is completed, proceed to Step 6. Otherwise, set the current grid cell light
intensity coefficient K to 1 and continue to update the grid cell coordinates until the current
boundary grid cell is (xm, ym).

Step 6: Determine whether all boundary grid cells in the search space have been
traversed. If so, the calculation of the light intensity coefficient in the occlusion area is
completed. Otherwise, return to Step 2.

For the light intensity preprocessing of complex environment charts, the final calcu-
lation of the shaded area is shown in Figure 6. The light intensity preprocessing method
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of this paper’s algorithm can fully perceive environmental information and provide more
effective light intensity-inspired information for subsequent bud growth.

Goal

Unshaded Area

Shaded Area

Obstcale

Unshaded Area

Shaded Area

Obstcale

Goal

Unshaded Area

Shaded Area

Obstacle

Figure 6. Light intensity preprocessing method for PEPG.

3.3. Sector Light Intensity Vector Homogenization

The calculation of the light intensity vector is a key step in bud growth updating,
and the next light intensity vector GL relies on calculating the light intensity values in the
reference subregion. The light intensity vector is calculated by taking the line between the
current bud and the end point as the axis of symmetry, selecting the semicircle facing the
end point as the reference area, dividing the reference area into twelve sectors, summing
the light intensity values of the grid cells in the sub-areas, sorting the sub-areas according
to the size of the light intensity values, selecting the bisector of the sector with the largest
light intensity as the direction of the light intensity vector, and summing the light intensity
values of the grid nodes in the sector as the size of the light intensity vector. Since the raster
map is a discrete space, the number of raster cells contained in sectors of the same area may
be different, as shown in Figure 7. For example, with a radius of the reference area of 5, the
number of raster cells in different sectors is 2 ∼ 4, and the optimal direction of the current
bud growth cannot be truly reflected simply by the cumulative method.

Current Bud

Figure 7. Calculation of the sector light intensity.
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Therefore, the calculation method for the light intensity vector direction is improved,
the light intensity Lsector of each sector is averaged according to the number of raster cells,
the calculation formula is shown in Equation (4), and the sub-areas are sorted according to
the average value Lsector.

Lsector =
1
m

m

∑
i=1

Li (4)

Here, m is the number of grids in each sector, and Li is the corresponding light
intensity value of each grid. The selection of the radius of the reference area also affects
the exploration range of the current buds, and the size should be selected appropriately. If
the radius is too large, the end point will not be searched when the end point is located in
the sector that contains obstacles, which will lead to a failure in the path planning. If the
radius is too small, it will not be able to sense the obstacles in front of it in time, which will
increase the risk of failure of the planning. In this paper, the search space is set to 100× 100,
the range of the reference radius is reasonably adjusted according to the distance between
the current bud and the end point, and the formula is as follows:

r = max

(
min

(√(
xp − xgoal

)2
+
(

yp − ygoal

)2
, 8

)
, 5

)
(5)

where
(

xp, yp
)

is the grid cell coordinate of the current bud, and
(
xgoal, ygoal

)
is the grid

cell coordinate of the end point.

3.4. Growth Vector Calculations Considering Turning Angle Constraints

The growth vector of a plant is affected by the light intensity vector, the gravity vector,
and the growth vector of the previous cycle. The calculation formula is as follows:

GNew = Kn1 ·GL + Kn2 ·GR + Kn3 ·GLast
GL/∥GL∥ = Imax
∥GL∥ = Lmax

sector
GR = (x− xstart )i + (y− ystart )j

(6)

where GNew is the new growth vector; GL, GR, and GLast are the light intensity vector,
the gravity vector, and the last cycle growth vector, respectively; Kn1, Kn2, and Kn3 are the
corresponding weighting coefficients; Imax is the unit vector in the direction of the current
maximum light intensity of the bud; Lmax

sector is the light intensity value of the corresponding
sector; and (xstart, ystart) is the coordinates of the grid cell at the starting point.

For UAVs, the turning angle is limited by the maximum overload, and to ensure
the feasibility of the path, a turning angle constraint is added during the path point
planning process. When the turning angle does not satisfy the constraint, the next direction
with a larger light intensity value is selected in order of the light intensity value in the
reference area.

As shown in Figure 8, GLast is the growth vector of the current bud in the last cycle;
φmax is the maximum turning angle; and the numbers on the arcs represent the order of the
light intensity values of the sectors. Thus, the current bud growth will be carried out in the
feasible region within the range (−φmax, φmax) (green part in the figure). Since the growth
vectors G1 and G2 synthesized from the light intensity vectors corresponding to Sectors 1
and 2 with the largest light intensity values are discarded because they do not satisfy the
turning angle constraint, the current bud selects the light intensity vectors corresponding
to Sector 3 to synthesize the growth vectors G3, which satisfy the turning angle constraint
and are used for the growth of the bud in the current cycle.
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LastG

Bud
( , )max max 

1G 2G 3G

Figure 8. Selection of new bud.

The pseudocode of the PEPG algorithm is shown in Algorithm 1.

Algorithm 1: PEPG
Input: Map, start point, end point
Output: Path

1 Initialize();
2 Preprocess(Map);
3 while not ReachTarget(Path) do
4 GLList← Light Intensity Vector();
5 branch← Random Branch(GLList);
6 while GLList ̸= ∅ do
7 GL ← GLList.max();
8 GN ← Grow Vector(GL);
9 if φ ∈ (−φmax, φmax) then

10 break;

11 Remove GL from GLList;

12 Plant Grow(GN);

13 return Path;

The start and end points are set as the germ and the light source, respectively, and
the light intensity value of the grid node is calculated according to the blockage of the
light source by the grid obstacle. The light intensity vector of the current bud was selected
according to the light intensity value in the selected sector, and the current cycle growth
vector was calculated by combining the gravity vector and the previous cycle growth vector.
The bud grew along the direction of the growth vector that met the constraints of the
turning angle and was collision-free.

When the branches grow to a certain age, a random method is used to determine
whether they can be branched. During branching, a direction with greater light intensity
is randomly selected according to the light intensity distribution of the original bud for
calculation and storage of the side bud. When the main bud is withered, the side bud is
removed, and the plant is allowed to grow until the light source is found.

3.5. Planning Effect of the PEPG Algorithm

To verify the effectiveness of the algorithm proposed in this paper, it is compared
with the PGPP algorithm in terms of its effect on path planning, as shown in Figure 9. To
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reduce the influence of the search space and start and end point selection on the algorithm
planning results, 10 groups of different start and end points are selected, and the simulation
data are shown in Table 1, where the coordinates are the raster coordinates after latitude
and longitude transformations and the length of the path is the length of the search space.

Goal

(a) Preprocessing of PGPP

Goal

(b) Preprocessing of PEPG

0 20 40 60 80 100

0

20

40

60

80

100

PGPP PEPG Start Goal 

(c) Path planning results

Figure 9. Path planning results of the two algorithms

As shown in Figure 9, because the PGPP algorithm [18] treats obstacles as two kinds
of convex obstacles, circular and rectangular, and cannot handle the information of concave
obstacles well in the search space, part of the flyable area in the search space cannot be used
for path planning, and the light intensity illumination information is insufficient, resulting
in the planned path failing to cross the strait and increasing the path length. However, the
PEPG algorithm can make effective use of the obstacle information in the search space.
Because the PGPP algorithm does not consider turning angle constraints, there are large
turning angles in the channel, and the algorithm does not effectively utilize light intensity
values at the early stage of path growth due to the lack of sector light intensity value
homogenization, resulting in a zigzag path. The PEPG algorithm is planned in a grid
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obstacle environment with a clear growth direction and a smoother path, and the length of
the planned path is at least 8.2% shorter than that of the PGPP algorithm.

Table 1. Comparison of two algorithms simulation results

No. Start and Goal Node PGPP Path Length PEPG Path Length

1 (12, 36), (96, 42) 105.61 85.51
2 (5, 25), (94, 20) 121.01 102.33
3 (6, 41), (92, 14) 111.58 96.65
4 (5,10), (90, 53) 108.42 99.52
5 (10, 20), (85, 40) 99.34 84.04
6 (85, 40), (10, 20) 101.43 92.49
7 (90, 53), (5,10) 123.10 104.27
8 (92, 14), (6, 41) 114.38 99.78
9 (94, 20), (5, 25) 117.18 104.99
10 (96, 42), (12, 36) 106.32 85.77

4. Simulation Test
4.1. Algorithm Simulation and Comparison Verification

In this paper, Python is used to carry out simulation experiments which are run
on a computer with a 3.70 GHz CPU and 32 GB of RAM. In two scenarios, the most
representative algorithms of the three path planning algorithms, namely, the A* algorithm,
RRT algorithm, and GA, are selected for comparison with the PEPG algorithm, and the
performance of the algorithms is analyzed based on the algorithm’s three indices of the
planning time, number of planned waypoints, and path length. To reflect the differences in
the performances of different algorithms and reduce the impact of algorithmic randomness
in the single planning process, the index data are selected as the average of 30 runs of the
four algorithms.

4.1.1. Complex Scenarios without Threats

To test the planning ability of the four algorithms for environments with concave
obstacles, a non-threatening complex scenario (referred to as “Scenario 1”) was used to
select part of the sea area in the C110408A.000 chart as the search space, and the selected
sea area ranged from 106.266° E to 114.365° E and 17.010° N to 24.580° N. With (107.231° E,
20.116° N) as the starting point and (113.484° E, 18.250° N) as the end point, the planning
effect is shown in Figures 10 and 11, and the algorithm performance comparison data are
shown in Table 2.

Table 2. Comparison of simulation results in Scenario 1.

Algorithms Average Time/ms Average Path Length Average Path Nodes

RRT 1078 116.09 68.6
GA 1230 90.30 15
A* 19 89.11 81

PEPG 82 87.02 19.2

In terms of the path length, both the A* algorithm and the PEPG algorithm are able
to stabilize the path length at a small value, while the GA and RRT algorithms are longer
and have more ups and downs. The RRT algorithm can find feasible solutions and has
the longest path length, with an average path length of 116.09. The GA has a shorter
path length than the RRT algorithm. The GA has an evolutionary mechanism, and the
use of cross-mutations and other characteristics can optimize the path. In the case of
sufficient planning time, the path can approach the optimal solution, but easily fall into
the local extremes, preventing the optimal solution from being found. The average path
length planned by A* algorithm is 89.11, and the characteristic of optimal resolution makes
the path planned by the algorithm very short. However, because only the grid-by-grid
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operation can be planned, the path length is not the actual optimal value. The PEPG
algorithm is not restricted by neighboring rasters when planning waypoints and has a
shorter planned path length than the A* algorithm in Scenario 1, with an average path
length of 87.02.
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Figure 10. Path planning results of the four algorithms in Scenario 1.
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Figure 11. Simulation data of four algorithms in Scenario 1.
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In terms of planning time, the A* algorithm and the PEPG algorithm are faster than
the RRT algorithm and the GA in most cases, as shown in Figure 11b. The RRT algorithm
performs waypoint planning by random sampling, and the time needed to find the end
point is uncertain. Moreover, the GA generates the initial solution through the initial
population and then iteratively converges the waypoints through cross-variation on the
waypoints to find the waypoints. Additionally, randomness occurs, and both algorithms
have longer average planning times.

The PEPG algorithm has a slightly slower planning speed than does the A* algorithm.
However, the path length is shorter, the waypoints are smoother, and the number of
waypoints is much less than that of the A* algorithm. This is still because the A* algorithm
can only plan raster cell by raster cell and does not consider the turn cost and turning angle
constraints, which leads to many planned waypoints and zigzagging paths. These paths
may not necessarily be able to be used as feasible paths for UAVs during tracking flights
and must be further processed using path optimization methods. In contrast, the step size
of the PEPG algorithm can be used to calculate the growth of new shoots based on the
growth vector without the need to plan one by one raster cells, which can generate fewer
waypoints. Additionally, the turning angle constraints are taken into account during the
planning process, and the planned waypoints satisfy the turning angle constraints, which
can be used for direct flight tracking.

4.1.2. Complex Scenarios with Threats

To further test the planning ability of the algorithm in complex combat environments,
weather, enemy radar and fire threats are added on the basis of concave obstacles, and
part of the sea area in the C110408A.000 chart is selected as the simulation test area of the
complex scenario with threats (referred to as “Scenario 2”). The range of the selected sea
area is as follows: 116.500° E to 123.450° E and 31.500° N to 39.407° N. the threat information
is shown in Table 3. Taking (119.466° E, 39.154° N) as the starting point and (123.109° E,
33.386° N) as the end point, the planning effect of the four algorithms is shown in Figure 12,
and the results of the algorithm comparison data are shown in Table 4.

Table 3. Threat information.

Threat Location Radius/n Mile

Weather Threat (122.125° E, 33.914° N) 35
Radar Threat (122.460° E, 37.860° N) 30
Fire Threat (122.834° E, 35.495° N) 25

Table 4. Comparison of the simulation results of the four algorithms.

Algorithms Mean Time/ms Mean Path Length Mean Path Nodes

RRT 2085 162.68 111.43
GA 1853 116.97 15
A* 101 110.74 96

PEPG 341 110.21 37.8

The experimental results of Scenario 2 show that all four path planning algorithms can
guarantee finding the path. Compared with Scenario 1, the straight-line distance between
the start and end points in Scenario 2 is slightly longer, and the environment becomes
more dense and complex from empty to sparse. The RRT algorithm needs to sample more
times in the narrow space, which consumes more planning time, and the average planning
time of the RRT algorithm becomes the longest. The average planning time of the GA is
relatively stable compared with that of Scenario 1, indicating that the planning of the GA is
less affected by the complex environment. The average planning time of the A* algorithm
is increased because the planning time relies on the number of searching raster cells during
the expansion of waypoints. A longer distance between the start and the end increases the
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computational cost of the A* algorithm. Additionally, the calculation still cannot take into
account the cost of the turn, and there are more turning points for the planned waypoints.
In terms of the path length and planning effect, the PEPG algorithm still plans the shortest
and smoothest waypoints among the four algorithms.
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Figure 12. Path planning results of the four algorithms in Scenario 2.

4.2. Tracking Control Test

To further verify the feasibility of the waypoints, a PID method is adopted to control
the UAV to track the waypoints and realize a low-altitude penetration mission. The position
of the UAV is converted from Geodetic Coordinate System to North-East-Down Coordinate
System. The axial overload, normal overload and roll angle information obtained by
controller solving are jointly inputted into the UAV dynamics model, which solves the
position, attitude, and velocity information of the UAV, and the results are fed back to the
controller to track the UAV’s waypoints.

4.2.1. UAV Dynamics Model

When the UAV is tracked and controlled according to the planned waypoints, the
UAV dynamics model must determine the flight state at each instant. Assuming that there
is no sideslip in flight and that the thrust is along the velocity direction, the dynamics
model is divided into UAV kinematics equations and UAV dynamics equations. The UAV
kinematics equations used in this paper are as follows:

ẋm = Vm cos γm cos χm
ẏm = Vm cos γm sin χm
żm = −Vm sin γm

(7)

where (xm, ym, zm), Vm, χm and γm denote the position coordinates of the UAV, the rate, the
heading angle, and the climbing angle, respectively.
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The UAV dynamics equations are as follows:
V̇m = g(nmx − sin γm)
χ̇m = gnmn sin µm/Vm cos γm
γ̇m = g(nmn cos µm − cos γm)/Vm

(8)

where the axial overload nmx ∈ ⌈−2, 2⌉, normal overload nmn ∈ ⌈−2, 2⌉, roll angle µm ∈
⌈−2, 2⌉, and g is the gravitational acceleration.

4.2.2. Control Law Design

The UAV tracks the waypoints with control, and to solve the required control quantity
[nmx, nmn, µm], the control law is designed as follows:

nmx = KV
P (Vr −V) + KV

D
d(Vr−V)

dt
nmn = Kγ

P(γr − γ) + Kγ
D

d(γr−γ)
dt

µm = Kχ
P(χr − χ) + Kχ

D
d(χr−χ)

dt

(9)

where KV
P , Kγ

P, and Kχ
P are the coefficients of the proportional term; KV

D, Kγ
D, and Kχ

D are the
coefficients of the differential term; the desired speed Vr is a fixed value; and the desired
climbing angle γr and heading angle χr are determined by the difference between the next
waypoint and the current position. The overall block diagram of path control tracking is
shown in Figure 13.
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Figure 13. Diagram of the tracking control.

4.2.3. Tracking Control Effect

The planning results of the four algorithms in Scenario 1 are subjected to UAV way-
point tracking control simulation tests, and the results are shown in Figure 14.

As shown in the figure above, when the waypoints planned by the four algorithms
are utilized directly for UAV control tracking, the RRT algorithm fails to track at the 9th
waypoint due to unfulfilled turning angle constraints. The other three algorithms can
realize all the waypoints on the tracking, but the path planned by the GA and the A*
algorithm is tortuous. Furthermore, due to the A* algorithm’s large turning angle at the
corner, the UAV repeatedly appears to re-search and track the previous waypoint, resulting
in large maneuvers, which not only reduces flight efficiency but also increases the risk that
the UAV will be detected by the radar and other sensors. Compared with those of the other
three algorithms, the waypoints planned by the PEPG algorithm can enable the UAV to
accurately follow all the waypoints within a smaller maneuvering range.
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(a) RRT Algorithm (b) GA Algorithm

(c) A* Algorithm (d) PEPG Algorithm

Figure 14. Tracking control renderings of four algorithms.

The tracking control test verifies that the paths planned by the PEPG algorithm are
smooth and can be directly applied to control and tracking without postprocessing, which
is expected to reduce the detectability of UAVs in low-altitude penetration while improving
navigation efficiency and further improving the safety and stealth of UAV flight.

5. Conclusions

To solve the low-altitude penetration problem of UAVs in complex marine combat
environments, obstacle information from islands is first extracted in this paper based on
electronic chart information in the S-57 format. Moreover, atmospheric conditions, radar
monitoring and fire threats are comprehensively considered to construct a model for marine
combat simulation environment rasterization. Then, based on the PGPP algorithm, a PEPG
algorithm is proposed to enhance the algorithm’s accurate perception of light sources when
the bud grows. The following conclusions are obtained: 1⃝ The proposed algorithm is
combined with the Bresenham linear algorithm to calculate the light intensity coefficient
of the rasterized area so that the algorithm in this paper can be adapted to the rasterized
environment of complex concave obstacles and enhance the heuristic information of bud
growth when avoiding obstacles and growing toward the end point. 2⃝ By improving
the light intensity vector computation, the sector light intensity values are homogenized,
and turning angle constraints are added to ensure that the UAV maneuverability is met.
Finally, a simulation test is designed as an example of a low-altitude penetration mission in
real combat scenarios to verify the effectiveness of the proposed algorithm in low-altitude
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penetration combat scenarios in marine environments. The test results reveal that the path
length of the proposed algorithm in both scenarios is greater than that of the other three
comparative algorithms, and there are fewer waypoints and smoother paths, which meets
the maneuverability of the UAV. Moreover, tracking control via the three-degree-of-freedom
model verifies the validity and safety of the planned waypoints.

The research problem in this paper is the single UAV low-altitude penetration problem
when all the threats are known. Moreover, the PEPG algorithm adapts well to complex
environments, and its advantages are better reflected in local unknown environments. There
is still potential for the PEPG algorithm to accelerate the computing time. In the future, we
will further consider practical application scenarios and study the multi-aircraft low-altitude
cooperative penetration problem under the scenario of uncertain threat information.
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