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Abstract: Bio-inspired thin-wall structures with excellent mechanical properties, high-energy absorp-
tion capabilities, and a desirable lightweight level have been extensively applied to the passive safety
protection of transportation and aerospace. Collaboration matching and the selection of optional
structures with different bionic principles considering the multiple attribute evaluation index and en-
gineering preference information have become an urgent problem. This paper proposes a parameter
reduction-based indifference threshold-based attribute ratio analysis method under an interval-
valued neutrosophic soft set (IVNS-SOFT) to obtain the weight vector of an evaluation indicator
system for the selection of bionic thin-wall structures, which can avoid the problem of an inadequate
subjective evaluation and reduce redundant parameters. An IVNS-SOFT-based multi-attributive bor-
der approximation area comparison (MABAC) method is proposed to obtain an optimal alternative,
which can quantify uncertainty explicitly and handle the uncertain and inconsistent information
prevalent in the expert system. Subsequently, an application of five bio-inspired thin-wall structures
is applied to demonstrate that this proposed method is valid and practical. Comparative analysis,
sensitivity analysis, and discussion are conducted in this research. The results show that this study
provides an effective tool for the selection of bionic thin-wall structures.

Keywords: bio-inspired structures; interval-valued neutrosophic soft sets; parameter reduction;
multi-criteria decision making; energy absorbing devices

1. Introduction

Inspired by biological structures in nature, with excellent characteristics of organisms
in absorbing and dissipating energy, bio-inspired thin-walled structures have been proven
to provide significant improvements in energy absorption capacity over conventional struc-
tures, e.g., pomelo fruits have a unique spongy mesocarp layer that can dissipate up to 80 J
of energy from a free-fall test without causing significant external damage to the rind. Nuts
also have excellent impact and puncture resistance, such as coconut shell and macadamia
nut shell. Similarly, durian shells with special spines absorb impact energy well when
the durian fruit falls and hits the ground. Lessons in high energy absorption can also be
learned from animals. A beetle’s forewing can withstand a puncture force of up to 23 N,
which is much higher than the beetle’s fighting strength, as shown in Figure 1. At present,
a variety of structures have been widely considered and applied, including honeycomb
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structures, column structures, foam, porous materials, and hierarchical structures. Hierar-
chical structures have attracted extensive interest in engineering applications because of
their excellent mechanical properties [1].
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Figure 1. Bio-inspired thin-walled structures for energy absorption in the literature.

Organisms can form hierarchical structural materials with functional gradients, pos-
sessing load-bearing and supportive capabilities, providing design inspiration for bionic
thin-walled structures that can realize unprecedented structural properties and functions [2].
Engineers have designed some lightweight bionic thin-walled structures inspired by na-
ture [3–5], e.g., a Morpho wing-inspired thin-walled structure was proposed, which had
greater specific energy absorption (SEA) and crush force efficiency (CFE) [6]. A new hexag-
onal honeycomb structure was inspired by the thickness gradient structure and the concept
of hierarchy, which made the deformation mode more regular and stable [7]. A second
hierarchical circular tube that possessed significant energy absorption properties by adding
self-similar sub-circles at the junctions of the primary ribs was found [8]. A new hierarchical
square thin-walled structure was constructed by replacing each vertex with a miniature
cell to form a strict self-similarity [9]. Li et al. [10] replaced each node of the thin-walled
hexagon with a small hexagon to obtain a fractal-like hexagonal tube with a self-similar
cellular structure. Other kinds of self-similar structures have also been investigated, e.g.,
the improvement of the hexagonal honeycomb structure using a spider web topology, with
the spider web hierarchy slowing down the onset of instability with high strength and
toughness [11,12]. In summary, bionic structures are currently widely applied in auto-
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mobiles, ships, airplanes, trains, and other industrial applications and, therefore, require
different bionic design philosophies to meet specific application requirements.

However, different design philosophies mean that each bionic design functions dif-
ferently [13]. The selection and determination of an optimal alternative usually need to
consider multi-attributes, e.g., total energy absorption (EA), initial peak force (PCF), and
the engineering requirements for specific application conditions, which can be regarded as
a multi-criteria decision-making (MCDM) problem.

At present, many MCDM methods have been designed and applied to solve the
problem of the selection of thin-walled structures, e.g., the DEMATEL (Decision-Making
Trial and Evaluation Laboratory)–TODIM(Tomada de Decisao Interativa Multicriterio)
method [8], the GRA (Grey Relational Analysis) method [14], the COPRAS (Combination
of Weighted Scores Method Based on Ratio Analysis) method [15,16], and the TOPSIS
(Technique for Order Preference by Similarity to an Ideal Solution) method [17–19]. In addi-
tion, some effective MCDM methods are also used to solve similar selection problems, e.g.,
the indifference threshold-based attribute ratio analysis (ITARA) method [20,21], MABAC
method [22] and the interval-value neutrosophic set (IVNS)–MABAC method [23,24]. Since
the advent of the fuzzy set theory [25], researchers have started to use it to solve uncertainty
problems, e.g., based on the fuzzy set theory, interval fuzzy sets [26], spherical-Z fuzzy
sets [27], interval 2-tuple q-rung orthopair fuzzy sets [28] and soft sets [29] proposed. Nowa-
days, soft sets are increasingly studied and widely used in various fields, e.g., soft sets with
neutrosophic sets [30,31], single-valued neutrosophic soft sets [32], and interval-valued
neutrosophic soft sets [33].

As mentioned above, current research mainly focuses on the design and performance
analysis of bionic thin-wall structures but rarely carries out structural selection research.
Thus, this paper focuses on a parameter reduction-based decision-making method with
interval-valued neutrosophic soft sets for the selection of bionic thin-wall structures. Com-
pared with previous studies, the novelty and contributions of this study are summarized
as follows: (1) a distance-based IVNS-SOFT parameter reduction method is proposed
to reduce redundant parameters while retaining decision-making capability; (2) a hy-
brid MCDM method that combines IVNS-SOFT-based ITARA and MABAC is proposed,
which takes into account the greater hesitancy of decision makers and the uncertainty of
the decision environment, resulting in more accurate and effective decisions and results;
and (3) empirical application and analysis, which are conducted to demonstrate that this
proposed method is valid and practical.

The rest of this paper is organized as follows. Section 2 introduces the relevant concepts
and definitions of IVNS-SOFT. Section 3 describes the interval-valued neutrosophic soft
set-based MABAC decision-making method proposed in this paper and its main steps.
Section 4 presents a case study of bio-inspired thin-walled tubes. Sensitivity analysis and
comparative analysis of other methods are used to validate the scientific validity of the
IVNS-SOFT-MABAC method. Section 5 summarizes the results and findings of the study
and presents future perspectives.

2. Preliminary

In this section, the definitions and operations of IVNS-SOFT are shown, which com-
bines IVNS and the soft set.

Definition 1 [34]. Let U be an initial set, with a type of element in U denoted by x. An IVNS A in
U is concluded by a true affiliation function TA(x), an uncertainty affiliation function IA(x), and a
false affiliation function FA(x). Then, IVNS A can be expressed by Equation (S1).

Definition 2 [29]. P(U) is the power set of U; E is a set of all parameters and X ⊆ E, as shown in
Equation (S2). As a result, a soft set FX over U is a set defined by a function representing a mapping,
as shown in Equation (S3).
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Definition 3 [34]. IVNS(U) denotes the set of all IVNSs of U and E as a set of parameters that
describe the elements of U and A⊆E. The pair (F, A) is called an IVNS-SOFT over U.

F(e) = {(x, [T L
Fe
(x), TU

Fe
(x)], [I L

Fe
(x), IU

Fe
(x)], [F L

Fe
(x), FU

Fe
(x)]) : x ∈ U, e ∈ E} (1)

where TL
Fe(x), TU

Fe(x) are denoted as x with attribute e belonging to the lower and upper limit
boundaries of the F(U) truth affiliation function, respectively. IL

Fe(x), IU
Fe(x) and FL

Fe(x), FU
Fe(x)

are similar to the above.

Definition 4 [33]. The complement of (F, A), denoted by (F, A)c, is IVNS-SOFT over U and is
defined as (F, A)c = (Fc, A), where Fc: A → IVNS(U) is defined by Equation (S4).

Definition 5 [33]. Let (F, A), (G, B) ∈ IVNS-SOFT(U). If there are two IVNS-SOFTs, A and B,
respectively, for all u ∈ U and A ⊆̃ B, then (F, A) is an IVNS-SOFT subset of (G, B), denoted by (F,
A) ⊆̂ (G, B).

Definition 6 [35]. Let (F, A) and (G, B) be two IVNS-SOFTs over a common universe set U. The
union of (F, A) and (G, B) is denoted by (F, A)∪̃(G, B)= (H, C), where C = A ∪ B and the
true affiliation function, uncertainty affiliation function and false affiliation function of (H, C) are
shown in Equation (S5).

Definition 7 [35]. Let x11= ([T L
11, TU

11], [I
L
11, IU

11], [F
L
11, FU

11]) and x12= ([T L
12, TU

12], [I
L
12,

IU
12], [F

L
12, FU

12]) be two interval-value neutrosophic soft numbers (IVNSNs) and ω > 0; then, the
operations for the IVNSNs are defined as shown in Equations (S6)–(S9).

Definition 8 [36]. A score function S of an IVNSN can be represented as follows in Equation (S10).
The score function refers to a function that maps input values to a score and is used to combine the
values of attributes into an overall score.

Definition 9 [36]. An accuracy function H(x11) is defined as shown in Equation (S11). The
accuracy function is a function that accurately calculates or describes some mathematical object
or relationship.

Definition 10 [36]. Let x11= ([T L
11, TU

11], [I
L
11, IU

11], [F
L
11, FU

11]) and x12= ([T L
12, TU

12], [I
L
12,

IU
12], [F

L
12, FU

12]) be two IVNSNs, let S(x11) and S(x12) be the scores, and H(x 11) and H(x 12) be
the accuracy function.

If S(x 11) < S(x 12), then x11 < x12.
If S(x 11) = S(x 12), then, (1) if H(x 11) = H(x 12), then x11 = x12; (2) if H(x 11) < H(x 12),

then x11 < x12.

Definition 11 [35]. Let x1j (j = 1, 2, · · · , n) be a series of the IVNSNs, and ω = (ω1, ω2, · · · , ωn)
T

be the weight vector of x1j = (j = 1, 2, · · · , n), then an interval-value neutrosophic soft-weighted
geometric (INSWG) operator can be seen as a mapping INSWG, as shown in Equation (S12).

Definition 12 [37]. Let x11= ([T L
11, TU

11], [I
L
11, IU

11], [F
L
11, FU

11]) and x12= ([T L
12, TU

12], [I
L
12,

IU
12], [F

L
12, FU

12]) be two IVNSNs, then the Euclidean distance between x11 and x12 can be defined,
as shown in Equation (S13).

Definition 13 [37]. P = {
〈
[T L

P(x m), TU
P (x m)], [I

L
P(x m), IU

P (x m)], [F
L
P(x m), FU

P (x m)]
〉
}

and Q = {
〈
[T L

Q(x m), TU
Q(x m)], [I

L
Q(x m), IU

Q(x m)], [F
L
Q(x m), FU

Q(x m)]
〉
} are two IVNS-

SOFTs. Then, the standard Euclidean distance between P and Q can be calculated as shown
in Equation (S14).
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3. Methods Section

In this section, IVNS-SOFT is invoked to describe the expert’s opinion, which can
better represent the degree of uncertainty and ambiguity in the expert’s decision making.
The parameter reduction algorithm, ITARA method, and MABAC method based on the
IVNS-SOFT theory are proposed. Some definitions of IVNS-SOFT given in Section 2 are
used in the computation of all the above methods.

3.1. The Framework of the Proposed Solution Methodology

The framework of the MCDM method proposed in this paper for the optimal selection
of energy-absorbing device solutions can be divided into three stages, as shown in Figure 2.
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Stage 1: Establish a systematic evaluation index system for the selection of bionic
thin-wall structures.

The attributes are divided into several interval-value neutrosophic soft sets accord-
ing to the different aspects of the description of the alternative, which can be considered
as some approximate portrayal of the alternative, and these interval-value neutrosophic
soft sets are combined by Definition 7 to obtain a more complete description (F, E) of
the alternative.

Stage 2: Obtain the weight vector of performance indicators by the IVNS-SOFT-
ITARA method.

Subjective methods of extracting weights from DM could face many problems; for
example, the accuracy of the evaluation decreases as the number of attributes increases,
and these results are highly dependent on the method of assigning weights. This paper
introduces a semi-objective method proposed in recent years that involves the innovative
use of the IVNS-SOFT linguistic decision matrix to obtain the weights of attributes.

Stage 3: Reduce the parameters and rank the alternative.
When the characteristics of a system described by IVNS-SOFT (F, E) can be fully

represented by its core, C, then IVNS-SOFT (F, C) becomes the interval-valued neutrosophic



Biomimetics 2024, 9, 208 6 of 16

soft-core set of IVNS-SOFT (F, E). According to the basic characteristics of multi-attribute
decision problems and the parameter reduction algorithm, the interval-valued neutrosophic
soft-core set is constructed (F, C). Then, the Qi value calculated by our proposed method
determines the ranking of solutions, with higher Qi values indicating better solutions.

3.2. A Parameter Reduction Algorithm of Interval-Value Neutrosophic Soft Sets

Parameter reduction can remove unnecessarily existing parameters in the parameter
set so that the remaining indispensable parameters in the parameter set maintain the
same descriptive or decision-making ability as the original complete parameter set, e.g.,
normal parameter reduction [38], which is an adjustable parameter reduction approach
for fuzzy soft sets based on the three-way decision [39]. Han et al. [40] transformed
the soft-set parametric reduction problem into a 0–1 linear programming problem and
developed a model for the pseudo-parametric reduction problem of soft sets, which was
more efficient with a larger number of parameters. Ma and Qin [41] proposed a new
parameter reduction algorithm based on the Euclidean distance named distance-based
parameter reduction (DBPR). This method has higher applicability and less computational
effort than the conventional fuzzy soft set parameter reduction method.

This article presents the parameter reduction algorithm with interval-value neutro-
sophic soft sets as an extension of soft sets and fuzzy soft sets. The proposed Euclidean
distance-based parameter reduction algorithm with interval-valued neutrosophic soft set is
shown as follows in Algorithm 1:

Algorithm 1: Distance-based parameter reduction algorithm of interval-value neutrosophic
soft sets

Input: (F, E) (interval-valued neutrosophic soft set), E (parameter set), and threshold λ

Output: (E − A) (an optimal choice considered parameter reduction in IVNS-SOFT).
BEGIN
1. Compute the weighted matrix U = (uij)m×n, for 1 ≤ i ≤ n,1 ≤ j ≤ m.
2. Let j = 1.
3. For = 1 to (uij), perform the following.
4. Calculate distances for all pairs of j parameters. j = 1, 2, . . ., m.
5. Obtain the distance matrix D = (dkl)m×m, for 1 ≤ k ≤ m,1 ≤ l ≤ m.
6. If the distance between parameters k and l is less than the threshold λ, then perform
the following.
7. Consider parameters k and l to be similar, keep one parameter and place another set A of the
reduction parameters.
8. Obtain the new interval-valued neutrosophic soft set (E − A ) after parameter reduction.
9. Return (E − A ).
END

When calculating the distance between two parameters, if the distance between two
weighted parameters is less than the threshold λ, this paper considers that the similarity
between these two parameters is high, and the weights of the parameters and the reason-
ableness of the reduction are taken into account at this point. Assuming that a parameter ep
has high similarity with both the other two parameters, ea and eb, respectively, then we can
choose to reduce ep instead of ea or eb. This parameter reduction method needs to establish
a threshold value. Threshold λ is a measure of similarity for two attributes; threshold λ
depends on the users. If the value λ is small, this means that users require a high degree of
similarity in parameters.

If no such situation occurs, the one with the greater weight out of these two parameters
can be kept. Parameter reduction through the consideration of weights is to prevent
parameters with too large weights from having a large impact on the original criteria
system after reduction. Then, reduced parameters can be placed in the approximate
parameter set A while the other one is retained.
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3.3. The ITARA Method with Interval-Value Neutrosophic Soft Sets

Barron et al. [42] stated that there is no consensus on which the subjective techniques
method yields more accurate weights. In addition, decision makers may sometimes be
unable to provide useful information for decision making. Combining objective and semi-
objective methods to consider the determination of criteria allows the determination of
objective weights involving the attitudes of decision makers, ultimately yielding more
reliable results. The ITARA method does not require information from the decision makers
but obtains the weights directly from the decision matrix data. The specific steps of the
ITARA method are as follows.

Step 1: Construct the criteria system.
Step 2: Determine the normalized decision matrix R = [α ij

]
m×n

, where αij refers to the

normalized aggregation of alternative Ai under decision attributes. This paper proposed
normalized aggregation through Equation (2).

αij =
1
6 [(2 + TL

ij − IL
ij − FL

ij ) + (2 + TU
ij − IU

ij − FU
ij )]∑

m
i=1{

1
6 [(2 + TL

ij − IL
ij−

FL
ij ) + (2 + TU

ij − IU
ij − FU

ij )]}
(2)

Step 3: Rank normalized scores αij in ascending order, then name them as βij in such a
way that βij ≤ βi+1, j.

Step 4: Let γij= βi+1, j− βij(i = 1, 2, . . . , m − 1) be the ordered distances between
adjacent βij and βi+1, j.

Here, γij presents the ordered distance between adjacent normalized aggregated
assessments βi+1,j and βij under the decision attributes.

Step 5: As a matter of convenience, define the considerable difference between γij and
NITj as shown in Equaiton (S14), where NIT stands for the normalized indifference thresh-
old. Determine a normalized indifference threshold for each attribute.

Step 6: Determine the weight vector of the attributes deduced from the lp-metric
measurement by Equation (3).

ωj= vj /
n

∑
j=1

vj (3)

where vj= (∑m−1
i=1 ξ

p
ij

)1/p
, ∀j ∈ N. In this study, p = 2 is selected.

3.4. The MABAC Method with Interval-Value Neutrosophic Soft Sets

For the evaluation of EADs, assume that the alternatives are as follows: Ai = (A1, A2, . . .,
An); crashworthiness criteria: CC = {CC1, CC2, . . ., CCn}; and decision makers: DMk = {DM1,
DM2, . . ., DMl}. Let λ = {λ1, λ, . . ., λl} represent the weights of decision makers, meeting
the requirement that 0 ≤ λk ≤ 1 (k = 1, 2, . . ., l) and ∑l

k=1 λk= 1. Each decision maker uses
IVNS-SOFT to express the evaluation information. After that, expert decision matrices can

be obtained Ẽk= (C̃C
(k)
ij

)
m×n

= ([T L(k)
ij , TU(k)

ij ], [I L(k)
ij , IU(k)

ij ], [F L(k)
ij , FU(k)

ij ])m×n (k = 1, 2,

. . ., l). The detailed steps of the IVNS-SOFT-MABAC method are summarized as follows:
Step 1: Utilize the Ẽk and aggregate decision matrices using the INSWG in Equation

(S12): INSWG xij= INSWGλ

(
C̃C

(1)
ij , C̃C

(2)
ij , . . . , C̃C

(l)
ij ) to obtain X = (xij

)
m×n. Show the

alternatives in the form of vectors Ai = (xi1, xi2, . . ., xin) through Equation (S16), where xij is
the value of the i-th alternative according to the j-th criterion (i = 1, 2, . . ., m; j = 1, 2, . . ., n).

Step 2: Obtain all criteria weight vectors using the ITARA method. Assign weights to
the aggregation matrix X to obtain the weighted matrix U. The initial decision matrix H is
obtained after parameter reduction using the improved DBPR method.
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Step 3: Undertake the normalization of the elements from the initial matrix (H).
Standardize this initial decision matrix. ([T L

Fej
(h i), TU

Fej
(h i)], [I

L
Fej
(h i), IU

Fej
(h i)], [F

L
Fej
(h i),

FU
Fej
(h i)]) in ([ T̃L

ij , T̃U
ij ], [ Ĩ

L
ij , ĨU

ij ], [F̃
L
ij , F̃U

ij ])m×n
by Equation (S17).

Step 4: Calculate the relative weights of the remaining attributes Cj after parameter
reduction.

Step 5: Compute the weighted matrix Z = (z ij

)
m×n

=
([

TL
ij , TU

ij

]
,
[

IL
ij , IU

ij

]
,
[

FL
ij , FU

ij

]
)

using Equations (S8) and (S18).
Step 6: Compute the border approximation area (BAA) matrix G = (g j

)
1×n

. The BAA

for each attribute is obtained by Equation (4).

gj =
m
∏
i=1

(zij)
1/m= ([

m
∏
i=1

(TL
ij )

1/m,
m
∏
i=1

(TU
ij )

1/m], [1 −
m
∏
i=1

(1 − IL
ij)

1/m, 1 −
m
∏
i=1

(1 − IU
ij )

1/m],

[1 −
m
∏
i=1

(1 − FL
ij )

1/m, 1 −
m
∏
i=1

(1 − FU
ij )

1/m])
(4)

where zij represents the elements of the weighted matrix (Z).
After calculating the value gj for each criterion, a border approximation area matrix

(G) is formed with the format 1 × n.

G =
[
g1 g2 . . . gn

]
(5)

Step 7: Calculate the distance of the alternative from the border approximation area
for the matrix elements (D) using Equation (S19).

Reckon the distance matrix D = (d ij

)
m×n

using Equation (S20). Size by the score

function. If the scores of two IVNSNs are the same, the size is distinguished according to
Definition 10.

The alternative Ai could belong to the border approximation area (G), upper approx-
imation area (G+), or lower approximation area (G−), as shown in Figure 3. Especially,
the upper approximation area (G+) is the area which includes the ideal alternative
(A+) while the lower approximation area (G−) is the area which includes the anti-ideal
alternative (A−).

Ai ∈


G+ if dij > 0
G if dij = 0
G− if dij < 0
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Step 8: The calculation from Equation (7) of the values for the alternatives is obtained
as the sum of the distance of the alternatives from the border approximation areas (di).

Qi =
n

∑
j=1

dij, i = 1, 2, . . . , m; j = 1 , 2, . . . , n (7)

Rank the alternatives by Qi. The optimal alternative is the one with the biggest value
of Ci.

4. Results and Discussion

The applicability and scientific validity of the discussed MCDM framework for bionic
structure solutions are validated at different levels through a case study, comparative
analysis, and sensitivity analysis.

4.1. Background

Bionic structures for high-speed trains are an area of research aimed at improving
the safety and passenger comfort of high-speed trains by borrowing energy-absorbing
mechanisms from biology; these structures have been the focus of research in the field
of railroad passive safety [43]. At present, the research on structures can be divided into
two categories as follows: the first is single-cell structures, and the second is multi-cell
structures [44,45]. Compared with single-cell structures, multi-cell structures are important
in engineering applications due to their good energy absorption capacity. This is because
multi-cell structures produce more corner elements [46]. Among this type, thin-walled tubes
are commonly used for energy absorption due to their lightweight and low manufacturing
costs. In addition, high-speed trains have a dense arrangement of components, thus
requiring structures to be as space-efficient as possible without compromising their energy-
absorbing capacity. In nature, the most familiar and perfect example of a close arrangement
is honeycomb, as shown in Figure 4.
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In this section, the proposed decision method is validated against the engineering
background of the honeycomb’s bionic thin-walled structure.

4.2. Evaluation and Decision

In this case study, there were five honeycomb bionic thin-walled structures of the same
material but different configurations; these included both wall-to-wall (WTW) and corner-
to-corner (CTC) configurations, five structures were obtained for SEA by experiments, in
addition this case study includes seven criteria, as shown in Figure 5.

The height of the bionic thin-walled structure is 150 mm, the wall length of the
structural outline is 45 mm, and the wall thickness is 1 mm. Crashworthiness criteria are
necessary to evaluate crashworthiness performance. Usually, different criteria are used for
different engineering requirements [47,48]. From the perspective of energy-absorbing safety,
the structure should absorb more energy and have higher energy-absorbing efficiency, and
at the same time, reduce the level of peak force during a collision to prevent overload
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impacting the safety of passengers. From the perspective of energy-absorbing stability, a
force curve without significant fluctuation is an ideal structure. Therefore, in this study, SEA,
IPCF, and the undulation of load-carrying capacity (ULC) are specifically considered to
study the energy absorption of structure. Based on the current global concept of sustainable
development, the important sustainability properties of structures for high-speed trains
should also be considered. In this paper, the following criteria were used to evaluate the
crashworthiness of thin-walled tubes, i.e., SEA (CC1), ease of production (CC2), operational
life (CC3), production efficiency (CC4), IPCF (CC5), ULC (CC6), and their lightweight level
(CC7), where CC1-CC4 represent the benefit type indicators and CC5-CC7 represent the
cost type indicators. An evaluation of linguistic terms is shown in Table 1.
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Table 1. Linguistic terms for IVNS-SOFT.

Linguistic Variable Interval-Valued Neutrosophic Soft Number

Unimportant (UI) <[0.1, 0.2], [0.4, 0.5], [0.6, 0.7]>
Ordinary level of importance (OI) <[0.2, 0.4], [0.5, 0.6], [0.4, 0.5]>

Important (IM) <[0.4, 0.6], [0.4, 0.5], [0.3, 0.4]>
Very important (VI) <[0.6, 0.8], [0.3, 0.4], [0.2, 0.3]>

Absolutely important (AI) <[0.7, 0.9], [0.2, 0.3], [0.1, 0.2]>

The evaluation results obtained by three experts (namely E1, E2, and E3) from different
industries, e.g., university academics and engineering designers, found λ= (1/3, 1/3, 1/3)T

to be the weights vector. The expert decision matrices are shown in Tables S1–S3.
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Each expert evaluated each alternative against each criterion. There were five linguistic
variables for the language terms selected for this study. Each language level contained
the following elements: (1) the extent to which the expert considered the criteria to be
important; (2) the extent to which the expert considered the criteria unimportant; and
(3) the extent to which the expert was uncertain about the criteria. The IVNS-SOFT can
describe all three types of information.

Step 1: Aggregate expert decision matrix [Ẽk] (k = 1, 2, . . ., l). In this case study, the
scores of subjective criteria in the expert decision matrix were expressed through expert
evaluation. The scores of objective criteria were obtained from the numerical analysis
results of structures and expressed through the IVNS-SOFT. It is worth noting that in
IVNS-SOFT, the range of values is required to be 0–1, so it is necessary to normalize the
values of the objective indicators using Equation (8). The integrated decision matrix [X] is
obtained through Equation (S12) and shown in Table S4.

xij =


rmaxj − rij

rmaxj − rminj

rij − rminj

rmaxj − rminj

(8)

For the cost criteria, xij =
rmaxj − rij

rmaxj − rminj
, and for the benefit criteria, xij =

rij − rminj

rmaxj − rminj
.

Here, rmaxj represents the maximum value of the numerical analysis results and rminj
represents the minimum value of the numerical analysis results.

Step 2: The calculation process of the seven criteria weights and their corresponding
normalized weights using Equation (3) are shown in Table S5.

Step 3: The combined weighting matrix is obtained through Equation (S6) and shown
in Table S6.

Step 4: We calculated the Euclidean distance between each of the seven parameters
using Equation (S13), and the Euclidean distance is shown in Table S7.

Step 5: Here, λ = 0.1000, and when scanning the Euclidean distance matrix, it was
found that the Euclidean distance of CC3 and CC6 was smaller than the threshold value,
and according to the parameter reduction rule, CC3 was chosen to be removed in this paper.
In fact, in structures, CC6 is indeed similar to CC3. A smaller CC6 indicates a better energy
absorption efficiency; the load-carrying fluctuation is also small, and the operational life
is longer. In addition, the Euclidean distances of CC2 and CC4 are also smaller than the
threshold, and CC4 with smaller weights was selected for reduction in this paper.

Step 6: Obtain the IVNS-SOFT decision matrix after parameter reduction. The multi-
attribute decision problem is described in terms of this interval-valued neutrosophic
soft set.

Step 7: Normalize the initial matrix using Equation (S17), as shown in Table S8.
Step 8: The relative weights of the reduced parameters are calculated, as shown in

Table 2.

Table 2. The relative weights CCj.

CC1 CC2 CC5 CC6 CC7

Weight 0.2596 0.0960 0.2929 0.3336 0.0179

Step 9: Compute the weighted normalized matrix Z = (zij)m×n using Equation (S18),
as shown in Table S9.

Step 10: The border approximation area (BAA) matrix is calculated G = (gj)1×n using
Equation (4) as shown in Table S10.

Step 11: The distance matrix D = (dij)m×n using Equation (S20) is calculated, as shown
in Table 3.
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Table 3. The distance matrix.

Alt. CC1 CC2 CC5 CC6 CC7

A1 0.1523 0.0599 1.4142 0.1021 0.0006
A2 1.4142 0.0599 0.4472 0.0378 0.0003
A3 0.4931 −0.0275 0.1407 0.3904 −0.0005
A4 0.4227 −0.0050 0.4722 −0.2096 −0.0003
A5 0.0000 −0.0576 0.0000 −0.0761 −0.0005

Step 12: The Qi scores using Equation (7) for energy-absorbing devices are as follows:
Q1 = 1.7292, Q2 = 1.9593, Q3 = 0.9961, Q4 = 0.6806, Q5 = −0.1343. The final sorting of the
individual programs can then be obtained, i.e., A2 > A1 > A3 > A4 > A5, where A2 is the
best structure solution.

4.3. Comparative Studies with Other Traditional Methods

In this section, a comparative experiment of different MCDM methods is presented to
prove the scientific validity and rationality of the method proposed in this paper. Four tra-
ditional methods, including SVNS-VIKOR(VlseKriterijumska Optimizacija I Kompromisno
Resenje) [49], IVNS-VIKOR [50], SVNS-MABAC [51], and similarity measures between
IVNSs are included [37]. The sort results generated by these four methods are presented in
Table 4.

Table 4. The results of different methods.

Methods Results

SVNS-VIKOR A1 > A2 > A4 > A3 > A5
IVNS-VIKOR A1 > A2 > A3 > A4 > A5

SVNS-MABAC A2 > A1 > A3 > A4 > A5
Similarity measures between IVNSs A2 > A1 > A3 > A4 > A5

The proposed method A2 > A1 > A3 > A4 > A5

It can be found that the sort results of the IVNS-SOFT-MABAC method are completely
consistent with the SVNS-MABAC method, with similarity measures between the IVNSs
method. Therefore, the availability and effectiveness of the proposed IVNS-SOFT-MABAC
method can be validated. The SVNS-VIKOR method and the IVNS-VIKOR method are a
little different in the sorting of A3 and A4. It infers that the gap between these two schemes
is small. The IVNS-VIKOR and the SVNS-VIKOR cannot be distinguished any better. In
addition, the VIKOR method differs from the MABAC method in the selection of an optimal
solution, which indicates that the VIKOR method does not accurately distinguish between
optimal and suboptimal solutions.

SVNS uses a single exact value to represent each affiliation grade, but sometimes, the
affiliation grade is uncertain and difficult to define with a clear value. The IVNS-SOFT fuzzy
theory uses interval values to represent three affiliation grades of fuzzy sets, which consider
the fuzziness of the affiliation grade, and the uncertainty is explicitly quantified, which can
deal with the uncertain and inconsistent information that is prevalent in problems. Whereas
the VIKOR method usually provides a compromise and alternatives, the MABAC method
is more reliable for optimal choices. Compared to the existing literature, the MABAC
method is based on the distance of each alternative to the border approximation matrix for
each criterion, whose valuable advantage is that it takes into account the uncertainty of the
decision maker and the ambiguity of the decision environment, whose solution is stable,
and this leads to more accurate and effective decision-making, which stands out from the
crowd of evaluation methods. The above analysis can prove the significant advantages of
the method and provide a new decision-making method for decision makers.
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4.4. Sensitivity Analysis

In this section, a sensitivity analysis is conducted to explore the effect of changes in
weights on the ranking of SCT schemes. In the sensitivity analysis, 14 experiments were
designed to record the final rank, and the Qi values are shown in Table 5 and Figure 6. In
the first 10 experiments, the weights of each major criterion were set to the highest, and
the weights of the corresponding other indicators were set the same. In experiment 11,
the weights of each criterion were set to be the same. In experiment 12, the weights of
benefit indicators were set to 0.050, and the weights of cost indicators were set to 0.300. In
experiment 13, the weights of benefit indicators were set to 0.500, and the weights of cost
indicators were set to 0.000. In experiment 14, the weights of benefit indicators were set to
0.000, and the weights of cost indicators were set to 0.333.

Table 5. Results of sensitivity analysis.

No. Weights
Qi Value

Rank
A1 A2 A3 A4 A5

1 ωCC1 = 0.800, ωCC2, CC5–7 = 0.050 1.8864 1.5430 1.1276 0.9949 −0.0479 A1 > A2 > A3 > A4 > A5
2 ωCC2 = 0.800,ωCC1, CC5–7 = 0.050 1.6988 1.7435 0.1108 0.1395 −0.2756 A2 > A1 > A4 > A3 > A5
3 ωCC5 = 0.800, ωCC1–2, CC6–7 = 0.050 1.4983 2.3677 0.5298 1.0011 −0.0479 A2 > A1 > A4 > A3 > A5
4 ωCC6 = 0.800, ωCC1–2, CC5, CC7 = 0.050 1.6570 1.6122 0.6896 −0.1818 −0.1517 A1 > A2 > A3 > A5 > A4
5 ωCC7 = 0.800, ωCC1–2, CC5–6 = 0.050 1.5173 1.5521 0.1853 0.1567 −0.0654 A2 > A1 > A3 > A4 > A5
6 ωCC1 = 0.600, ωCC2, CC5–7 = 0.100 1.8433 1.6623 1.0620 0.8970 −0.0914 A1 > A2 > A3 > A4 > A5
7 ωCC2 = 0.600,ωCC1, CC5–7 = 0.100 1.7298 1.8155 0.3173 0.2791 −0.2617 A2 > A1 > A3 > A4 > A5
8 ωCC5 = 0.600, ωCC1–2, CC6–7 = 0.100 1.5766 2.2553 0.6117 0.9020 −0.0914 A2 > A1 > A4 > A3 > A5
9 ωCC6 = 0.600, ωCC1–2, CC5, CC7 = 0.100 1.6927 1.7112 0.7573 0.0459 −0.1694 A2 > A1 > A3 > A4 > A5

10 ωCC7 = 0.600, ωCC1–2, CC5–6 = 0.100 1.5899 1.6686 0.3759 0.2924 −0.1036 A2 > A1 > A3 > A4 > A5
11 ωCC1–2, CC5–7 = 0.200 1.7177 1.8752 0.7124 0.5373 −0.1668 A2 > A1 > A3 > A4 > A5
12 ωCC1–2 = 0.050, ωCC5–7 = 0.300 1.5810 1.9419 0.5976 0.3835 −0.1103 A2 > A1 > A3 > A4 > A5
13 ωCC1–2 = 0.500, ωCC5–7 = 0.000 0.4782 1.6137 0.7027 0.6882 −0.2090 A2 > A3 > A4 > A1 > A5
14 ωCC1–2 = 0.000, ωCC5–7 = 0.333 1.5262 0.5387 0.5397 0.3186 −0.0852 A1 > A3 > A2 > A4 > A5
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As seen in Table 5 and Figure 6, some conclusions can be summed up as follows: (1) the
final ranking of each structure alternative varies greatly with the change in each indicator’s
weight; therefore, the construction of a reasonable multi-criteria weighting system based
on the requirements of the engineering context has a great impact on the results. (2) When
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these criteria, i.e., CC1 and CC6, reach a large proportion, respectively, A1 has the highest
result score; similarly, when CC2, CC5, and CC7 reach a large proportion, A2 has the highest
score. With the change in the criteria system, the results change significantly. The variation
between the sort results shows that the standard weights play a vital role in the evaluation
of energy-absorbing devices. Determining accurate weights helps to provide better options
for selecting bionic thin-walled structures.

5. Conclusions

In this paper, a parameter reduction-based indifference threshold-based attribute
ratio analysis method under IVNS-SOFT is proposed to obtain the weight vector of the
evaluation indicator system for the selection of bionic thin-wall structures. An IVNS-SOFT-
based MABAC method is proposed to obtain the optimal alternative. Subsequently, an
application of five bio-inspired thin-wall structures was applied to demonstrate that this
proposed method is valid and practical. Comparative analysis, sensitivity analysis, and
discussion are conducted in this research. Based on the results obtained in this study,
several conclusions are summarized as follows:

(1) Different design philosophies of bionic thin-wall structures lead to different perfor-
mance and application scenarios.

(2) Indicators of SEA, ease of production, IPCF, ULC, and lightweight levels greatly affect
the process of bionic thin-wall structure selection, with weights of 0.2596, 0.0960,
0.2929, 0.3336 and 0.0179, respectively.

(3) By comparing this with the four existing methods, it was found that the proposed
method is reasonable and feasible to select optimal bionic thin-wall structures.

(4) Through sensitivity analysis, the results found that out of 14 experiments, alternative
A2 had the highest score in 10 experiments. Hence, the final result is reliable. In
addition, the rank of each alternative is relatively sensitive to the criteria weights.

In future studies, several directions may be investigated in this research as follows:
(1) constructing a different criteria system for the structure to demonstrate the applicability
of the method under different conditions; (2) investigating the hybrid decision-making
method combined with the weight model to solve the problem of objective and subjective
weight information.
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