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Abstract: This paper introduces a novel approach to bipedal robot gait generation by proposing a
higher-order form through the parameter equation of first-order Bessel interpolation. The trajectory
planning for the bipedal robot, specifically for stepping up or down stairs, is established based
on a three-dimensional interpolation equation. The experimental prototype, Roban, is utilized for
the study, and the structural sketch of a single leg is presented. The inverse kinematics expression
for the leg is derived using kinematic methods. Employing a position control method, the angle
information is transmitted to the robot’s joints, enabling the completion of both downstairs simulation
experiments and physical experiments with the Roban prototype. The analysis of the experimental
process reveals a noticeable phenomenon of hip and ankle joint tilting in the robot. This observation
suggests that low-cost bipedal robots driven by servo motors exhibit low stiffness characteristics in
their joints.

Keywords: Bessel interpolation; inverse kinematics; positioning control; bipedal robot; low stiffness

1. Introduction

Bipedal robots, designed to emulate human walking, possess distinctive features, such
as a high center of gravity and a discrete distribution of landing points. This makes them a
focal point of research in the robotics field. In China, the current robot industry is expe-
riencing rapid growth, and biped robots are increasingly integral to the human-machine
society, owing to their humanoid motion capabilities. Particularly, at the consumer level,
bipedal robots often utilize servo motors due to their cost-effectiveness and ease of integra-
tion. However, the prevalent use of servo motors in bipedal robots introduces challenges
associated with low joint stiffness. This results in significant joint errors when executing
simple task actions through open-loop control. This paper addresses these challenges by
employing the Bessel interpolation method to generate gait trajectories for robots stepping
up or down stairs. This approach enhances the robot’s motion performance, enabling it to
navigate uneven ground and execute tasks with improved precision and stability.

The evolution of bipedal robots has spurred heightened interest in the research of
their gait and footprint planning. Currently, two predominant methods are employed for
generating gait trajectories in bipedal robots. One approach involves mimicking human
neural reflexes to derive the robot’s gait trajectories. The other mainstream method relies on
classical dynamics, wherein gait trajectories are generated by constructing dynamic models
or utilizing mathematical interpolation methods. This section focuses on introducing the
research content pertaining to the generation of gait trajectories in bipedal robots using
the latter, i.e., the classical dynamics-based method. For example, Kajita proposed a linear
inverted pendulum (LIPM) model for complex road surfaces in 1991, and its simulation
experiments showed that the walking performance of the control method on specific rough
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terrain is comparable to that of the robot walking on horizontal ground [1]. Subsequently,
Kajita combined the linear inverted pendulum model with the ZMP method to apply to
a bipedal robot. This method requires the robot to maintain a constant center of mass
(COM), and therefore the ASIMO robot bends its knees to move forward [2]. Subsequently,
some scholars have improved the algorithm and proposed algorithms such as the Di-
vergent Component of Motion (DCM) algorithm [3], Spatial Quantized Dynamics (SQD)
algorithm [4–6], the Virtual Mass Ellipsoid Inverted Pendulum (VIP) algorithm [7], etc.
Nishiwaki introduced an online method in 2002 that achieves a smooth connection between
the subsequent centroid trajectory and the current trajectory by solving the difference
equation [8]. Harada used analytical methods in 2004 to smoothly connect COG trajectories
to existing trajectories, allowing the robot’s footsteps to change quickly and smoothly [9].
Morisawa improved this method in 2007, allowing robots to adjust their footsteps at any
time [10]. In 2014, Samadi also explored the use of the gravity compensated inverted
pendulum mode (GCIPM) pattern generation method to generate walking trajectories
while ensuring the robot supported the foot movement’s ZMP during stepping [11]. In
2014, Garton detailed the use of a linear inverted pendulum (LIPM) to plan walking tra-
jectories, enabling robots to steadily move forward, stop and restore their direction of
motion. He pointed out that the use of a fixed step cycle duration reduces the complexity
of mathematics and the amount of computation, thus completing the simplified process of
motion planning for the bipedal robot [12]. Imanishi proposed a new bipedal gait control
in 2018, which does not rely on time-defined trajectories. The motion rate of the center of
mass relative to ZMP is expressed as the gradient of potential. In each step, the potential
monotonically decreases from positive to negative, while the positive potential encourages
lifting and the negative potential reminds the robot to touch the ground, making the robot’s
feet stable and alternating [13]. There are also some other methods for generating gait
models, such as using the Hybrid Zero Dynamics (HZD) model [14–16]. In addition to
model-based methods, spline interpolation can also be used for gait generation, including
methods such as cubic and quintic splines [17–22]. After gait generation, the Whole Body
Control (WBC) and the Model Predictive Control (MPC) methods can be used for robot
control [23–31].

This paper utilizes the Bessel interpolation method for planning the Roban robot’s gait
trajectory. The joint angles are determined through the inverse solution of robot kinematics,
and motion execution employs a position control method. The study encompasses both
simulation and prototype experiments, with the Roban robot navigating stairs in the V-REP
simulation software and a physical prototype experiment simultaneously. The Roban
robot, with 12 degrees of freedom in its legs, was provided by China Leju Company. The
second section details the establishment of Bessel interpolation, the third section outlines
the inverse kinematics solution for the Roban robot, and the fourth section describes the
experimental process of the bipedal robot stepping downstairs using Bessel interpola-
tion. The fifth section concludes, a summary of the findings and suggestions for future
research studies.

2. Inverse Kinematics of Roban Robots

Solving the inverse kinematics of a robot involves calculating the angles or movements
of each joint based on the robot’s base posture and end configuration. Given that the upper
body of the Roban robot functions as a floating base, inverse kinematics calculations are
applied to its lower limbs. During low-speed operations, open-loop control is utilized
for task execution, and the robot’s joint angle information is derived from its kinematic
model. Subsequently, the bipedal robot transmits this angle information to the servo driver
through position control, facilitating the execution of the specified task. To obtain the joint
angle information for the Roban robot, its legs are modeled using inverse kinematics, as
illustrated in Figure 1, depicting the distribution of joint degrees of freedom in a single leg
of the Roban robot.
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The Roban robot has six degrees of freedom in a single leg, and each joint is equipped 
with a steering gear. The hip joint is composed of hip yaw, hip roll and hip pitch. The knee 
joint consists of knee pitch, and the ankle joint consists of an ankle roll and ankle pitch. 
From top to bottom, the label and angle information of the joint servo are 1q  to 6q . The 

1q  joint servo rotates with the vertical line of the ground as its axis; 2q  and 3q  are ro-

tated in the forward direction of the robot; 4q , 5q , 6q  are rotated with the lateral axis of 
the robot. The base coordinate system of the robot is placed on the hip joint. From the 
perspective of the robot in the forward direction, the forward direction is the X-axis, left-
ward is the Y-axis, and vertical upward is the z-axis. Therefore, the roll angle is rotated 
around the X-axis, the pitch angle rotates around the Y-axis, and the yaw angle is rotated 
around the z-axis. This roll-pitch-yaw way of describing the robot pose is known as the 
Euler angle method. 

When solving the inverse kinematics of the Roban robot, it is first simplified to the 
triangle shown in Figure 2. A  is the thigh length of the Roban robot; B  is the leg length 
of the robot; r is the vector from hip to ankle, and its length is represented by the modulo 
length C . 
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from the torso to the hip joint denoted by , where  is the position vector and  is 
the rotation matrix of each joint’s coordinate system, set to  and parallel to the world 

Figure 1. Schematic diagram of the single leg joint of the Roban robot.

The Roban robot has six degrees of freedom in a single leg, and each joint is equipped
with a steering gear. The hip joint is composed of hip yaw, hip roll and hip pitch. The
knee joint consists of knee pitch, and the ankle joint consists of an ankle roll and ankle
pitch. From top to bottom, the label and angle information of the joint servo are q1 to q6.
The q1 joint servo rotates with the vertical line of the ground as its axis; q2 and q3 are rotated
in the forward direction of the robot; q4, q5, q6 are rotated with the lateral axis of the robot.
The base coordinate system of the robot is placed on the hip joint. From the perspective of
the robot in the forward direction, the forward direction is the X-axis, leftward is the Y-axis,
and vertical upward is the z-axis. Therefore, the roll angle is rotated around the X-axis, the
pitch angle rotates around the Y-axis, and the yaw angle is rotated around the z-axis. This
roll-pitch-yaw way of describing the robot pose is known as the Euler angle method.

When solving the inverse kinematics of the Roban robot, it is first simplified to the
triangle shown in Figure 2. A is the thigh length of the Roban robot; B is the leg length of
the robot; r is the vector from hip to ankle, and its length is represented by the modulo
length C.
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Figure 2. Inverse kinematics of Roban robot knee joint.

The poses of the robot’s torso and feet are (p0, R0) and (p6, R6), with the distance from
the torso to the hip joint denoted by D, where pi is the position vector and Ri is the rotation
matrix of each joint’s coordinate system, set to E and parallel to the world coordinate
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system, which is defined on the joint cross axis. According to the forward kinematics of the
robot, the hip joint position is calculated as follows:

p1 = p0 + R0

 0
D
0

 (1)

The r is defined as follows:

r = RT
6 (p1 − p6) ≡

[
rx ry rz

]T (2)

Then the length of C is as follows:

C =
√

r2
x + r2

y + r2
z (3)

Given the length of A, B and C, q4 can be written as

q4 = −arccos
(

A2 + B2 − C2

2AB

)
+ π (4)

From the law of cosine, the angle α is

α = arccos
(

B2 + C2 − A2

2BC

)
(5)

Figure 3 shows the coordinate system of the Roban robot’s single leg ankle joint. The
angles of the ankle joint, denoted by q5 and q6, can be represented as follows:

q5 = −arctan2
(

rx,
√

r2
y + r2

z

)
− α (6)

q6 = −arctan2
(
ry, rz

)
(7)

where atan2 is the inverse tangent function.
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Figure 3. Inverse kinematics of Roban robot ankle joint.

According to q4, q5, q6 of the robot, q1, q2, q3 are solved. According to the forward
kinematics of the robot, the posture of the foot sole can be obtained as follows:

R f = R1(q1)R2(q2)R3(q3)R4(q4)R5(q5)R6(q6) (8)

The rotation matrix R of the robot is an orthogonal matrix, and its property is

RRT = E (9)
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From Equation (9), Equation (8) can be rewritten as

R1(q1)R2(q2)R3(q3) = R f RT
6 (q6)RT

5 (q5)RT
4 (q4) (10)

The joint of the Roban robot rotates around roll, pitch and yaw, and the corresponding
rotation matrix is the following:

Rx(ϕ) =

1 0 0
0 cos ϕ − sin ϕ
0 sin ϕ cos ϕ

 (11)

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (12)

Rz(ψ) =

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 (13)

Given the angle and rotation axis of the joint steering gear of the Roban robot, denoted
by q4, q5 and q6, the right side of Equation (10) is a definite matrix, expressed as

R =

R11 R12 R13
R21 R22 R23
R31 R32 R33

 (14)

From Equation (11) to Equation (13), the expression of q1, q2 and q3 can be obtained as
follows: c1c3 − s1s2s3 −s1c2 c1s3 + s1s2c3

s1c3 + c1s2s3 c1c2 s1s3 − c1s2c3
−c2s3 s2 c2c3

 (15)

Thus, c1c3 − s1s2s3 −s1c2 c1s3 + s1s2c3
s1c3 + c1s2s3 c1c2 s1s3 − c1s2c3

−c2s3 s2 c2c3

 =

R11 R12 R13
R21 R22 R23
R31 R32 R33

 (16)

Among them, by analogy with c2 ≡ cos q2 and s2 ≡ sin q2, the remaining identity
meanings can be obtained. Finally, the expressions of q1, q2 and q3 can be obtained as
follows:

q1 = arctan2(−R12, R22) (17)

q2 = arctan2(R32,−R12s1 + R22c1) (18)

q3 = arctan2(−R31, R33) (19)

At this point, the inverse kinematics expression of the Roban robot is solved.

3. Bessel Interpolation Method

Discontinuous gait trajectories in robots can lead to infinite acceleration and rigid im-
pacts, posing a risk of damage due to the resulting torque on joint actuators. To avoid such
issues, bipedal robots must adhere to smooth trajectories during walking tasks. Currently,
gait modeling based on 3D linear inverted pendulum or Zero Moment Point (ZMP) meth-
ods is prevalent. These methods are mutually inverse in terms of input and output. When
navigating designated slope step ground, Z-direction trajectory interpolation is necessary
for bipedal robots using these approaches. Alternatively, bipedal robots can employ the
Virtual Mass Ellipsoid Inverted Pendulum (VIP) method to handle non-planar problems,
typically requiring computer-based solutions. However, for low-cost robot prototypes
engaged in low-speed motion, the reliance on computer performance is minimized. Thus,
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this section adopts the Bessel interpolation method for generating the gait trajectory of the
bipedal robot, focusing on the generation process in detail.

3.1. Use and Characteristics of Bezier Curve

Bezier curve was originally an application curve of two-dimensional figure. Its mathe-
matical expression was originally derived from Bernstein polynomials, which proved that
continuous function within the [a, b] interval can be approximated by polynomials, and the
approximated functions have strong convergence. For a continuous function, multiple Bern-
stein polynomials can be selected. When the order of Bernstein polynomials approaches
infinity, the polynomial will converge to the original function. Later, French mathematician
Casteljau graphically processed the polynomial and proposed a corresponding numerical
solution algorithm to generate a fitted two-dimensional graphical curve. Pierre Bezier, a
French engineer, used this method to complete the industrial design of the auxiliary car
body and spread it widely. Therefore, this method is called the Bessel interpolation method.
At present, this method can not only fit two-dimensional curves but also complete curve
fitting in space. It includes three types of sampling points, namely: the starting point,
the control point and the ending point. The Bezier curve can be changed by adjusting
the control points, and the curvature of the Bezier curve can be adjusted. The method of
changing the curvature of the Bezier curve by adjusting the control points is very important
for the gait adjustment of subsequent robots. The Bessel interpolation method is now used
to complete the design of robots’ downstairs gait trajectory.

The Bezier curve can be constructed by setting sampling points, which include the
starting point, the ending point and the control point. By adjusting the number of control
points, the degree of the Bezier curve can be adjusted. For example, a first-order Bezier
curve is composed of two points, 0 control points, and the fitted Bezier curve is a first-order
straight line. Its expression is as follows:

B(t) = (1 − t)P0 + tP1, t ∈ [0, 1] (20)

where P0 and P1 are the start and end points of the Bezier curve, and t is the parameter,
whose curves are shown in Figure 4.
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When the control point is 1, the fitted Bezier curve is a second-order curve, and its
expression is as follows:

B(t) = (1 − t)2P0 + 2t(1 − t)P1 + t2P2, t ∈ [0, 1] (21)

The P0 and P2 are the starting and ending points of the Bezier curve, and P1 is the
control point. The final expression is a conic, as shown in Figure 5. The Bezier curves for
the remaining orders are followed in the same way.

The Bezier curve exhibits three key characteristics: it passes through both the starting
and ending points and is tangent to the feature line at both ends. The control point
influences the curvature of the Bezier curve by pulling the fitted curve toward the current
control point, providing convenient adjustment of the curve’s radian. Planar control points
play a crucial role in shaping the curve, as altering their coordinates directly impacts the
fitted Bezier curve’s form. The Bezier curve lies within the convex hull of the feature
polygon, offering a smoother representation compared to the polygon.
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Widely employed in computer graphics, the Bezier curve is created and edited with
simple starting points, ending points and control points. Adjusting the starting and ending
points alters the position of the Bezier curve in the world coordinate system, while changing
the control points influences the curvature to meet the requirements of bipedal robots. For
instance, when modifying the Bezier curve trajectory of a bipedal robot’s swing leg, it
allows for the adjustment of the swing leg’s stability during the swinging process. Due
to their capacity for easy adjustment of sample points, Bezier curves serve as an ideal
tool for graphic editing and creation, being utilized by engineers, academics and other
professionals.

3.2. Higher Order Bezier Curve Fitting Method

The order of the Bezier curve varies with the number of control points. As mentioned
in the previous section, when the Bezier curve has zero control points, the Bezier curve is
a first-order line segment. When the Bezier curve has one control point, the Bezier curve
is a second-order quadratic curve and so on. The mathematical formulas of the first and
second order curves are given in the above subsections. In the following, the expression of
the second order and the formula of the higher order Bezier curve are derived from the
first order formula.

The first-order Bezier curve has two points, namely the points P0 and P1, and its
parametric equation can be expressed as Equation (20).

The quadratic Bezier curve has three points, respectively, P0, P1 and P2, where P′
0 and P′

1,
respectively, are fixed points on a line P0P1 and P1P2. According to the first-order Bezier
curve, the parametric equations of P′

0 and P′
1 are as follows:

P′
0 = (1 − t)P0 + tP1 (22)

P′
1 = (1 − t)P1 + tP2 (23)

By fitting the parametric equations of P′
0 and P′

1 according to the first-order equation,
we can get the following:

B2(t) = (1 − t)P′
0 + tP′

1
= (1 − t)((1 − t)P0 + tP1) + t((1 − t)P1 + tP2)

= (1 − t)2P0 + 2t(1 − t)P1 + t2P2

(24)

For the expression of the Bezier curve of higher order, suppose that pn
k is the coefficient

of the kth point of the Bezier curve of order. In the Bn−1(t), by utilizing the second order
Bessel method based on Pk in (1 − t)P′

k + tP′
k+1, will Pk−1 transition to (1 − t)P′

k−1 + tP′
k. In

the function Bn(t), in the presence of a new parameter, P′
k, it can be expressed as Pprime

k =
(1 − t)Pk + tPk−1.

The following condition needs to exist:{
pi n = 1
pn

k = (1 − t)pn−1
k + tpn−1

k−1 , n = 1, 2, . . . , m, k = 0, 1 . . . , n − 1
(25)



Biomimetics 2024, 9, 201 8 of 13

to prove the following equation:

pn
k =

(
n
k

)
tk(1 − t)n−k (26)

pm+1
k = (1 − t)pm

k + tpm
k−1

=

(
m
k

)
tk(1 − t)m+1−k +

(
m
k − 1

)
tk(1 − t)m+1−k

=

(
m + 1
k

)
tk(1 − t)m+1−k

(27)

When n = m + 1, Equation (27) conforms to the law of Equation (26), and the result
still holds. Thus, the induction hypothesis holds and the Equation (28) for Bezier curves
of any order n is obtained. Using this formula, the gait trajectory of a robot based on the
Bezier method can be generated.

Bn(t) =
n−1

∑
k=0

p
n
k

Pk =
n−1

∑
k=0

(
n
k

)
tk(1 − t)n−kPk (28)

According to this method and based on specific parameters, such as the robot’s
centroid position, step height, step length, foot length and so on, the Bezier curve of the
robot centroid is planned and generated, as shown in Figure 6.
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4. Experiments

The Roban robot underwent stair simulation experiments using Virtual Robot Ex-
perimentation Platform (V-REP) software, alongside completing a physical prototype
experiment of stepping downstairs. The experimental results validate the efficacy of the
Bessel interpolation-based gait generation method and shed light on the specific motion
characteristics of low-cost bipedal robots under open-loop control. These findings enhance
our understanding of the practicality of the proposed approach in real-world scenarios.

4.1. The Bipedal Roban Robot

This experimental platform utilizes the bipedal robot prototype, Roban, provided by
Leju (Shenzhen) Robot Technology Co., Ltd., Shenzhen, China. The prototype serves as
an AI display and application platform, based on ROS, for higher education institutions,
research institutes and other scientific research organizations. It boasts characteristics such
as open-source architecture and scalability. Equipped with a depth camera, a built-in
V-SLAM vision algorithm and compatibility with platforms such as UCF and Microsoft, it
excels in intelligent operations such as speech recognition, SLAM-based indoor navigation
mapping, walking along curves and executing movements on slopes and stairs. Leju offers a
comprehensive set of educational programs for artificial intelligence talents, covering topics
ranging from programming and robot motion control to computer vision. These programs
are suitable for independent learning by students majoring in mechanical, computer,
automation and related disciplines. Figure 7 illustrates the Roban robot, providing details
on the distribution of its degrees of freedom and the zero offset for each joint.
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The remaining content is shown in Table 1.

Table 1. Specific parameters of Roban robot.

DOF 22

Single leg DOF 6
Mass/kg 6.6

Height/cm 70

4.2. Simulation Experiment

The Bessel interpolation method falls under the category of static gait trajectory
generation. When the robot employs position control, the Bessel interpolation method is
effective in generating the low-speed gait required for descending stairs. Considering the
hardware parameters of the Roban robot, the chosen steps for the experiment are 50 cm in
length, 15 cm in width and 4 cm in height.

The stair-stepping simulation experiment is conducted in V-REP after establishing
the step simulation environment. Initialization tasks, including ROS and joint variable
initialization, are undertaken. ROS-based publisher and subscriber are defined to facilitate
information exchange. The robot executes motion actions based on Bezier curves using
position control. Starting from the initial standing position, the robot smoothly navigates
the stair descent process, employing Bezier interpolation to generate its trajectory in each
phase of the experiment. The phases include the following: phase = 0, phase = odd,
phase = even, phase = 2 × Target (the number of Target stairs)-2, phase = 2 × Target-1. The
complete process of going down the stairs can be summarized by the flow chart shown in
Figure 8.

Phase = 0 is the initial descent phase of the robot on the stairs. During this phase, the
robot completes the left swing of the hip joint, so that its center of mass is closer to the left,
and initiates the swing of its right leg.

Phase = odd is the swing phase of the robot’s center of mass during the process of
stepping downstairs; for example, when phase = 1, the robot has just completed the descent
of one step, and its center of mass is on the left. If the robot lifts its left foot at this time, the
robot will fall down. Therefore, the center of mass of the robot is set to move to the right,
and this stage is the center of mass translation stage.

In even phases (phase = even), the center of mass of the robot descends the stairs
during the process of going down the stairs. For example, when phase = 2, the robot
completes the change of the center of mass. The robot lifts its left leg and completes the
descent process of two steps; this phase is the centroid dropping phase of the robot.
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Phase = 2 × Target-2 is the phase when the robot is ready to return to the positive
direction; for example, the robot’s target falls to the third step, that is, Target = 3. When
the phase = 4, the swing leg of the robot completes the descent of one step. Both of its
feet should finally land on the same step, marking this phase as the foot recovery phase of
the robot.

Phase = 2 × Target-1 is the phase when the robot returns to the upright position; for
example, at phase = 5, the robot’s feet return to the upright position because the mass is
centered on the left. To make the robot stand completely straight, the center of mass of
the robot is translated to the right. This stage is the center of mass of the robot back to the
positive stage.

According to the above design process and step parameters, the descent trajectory of a
bipedal robot based on the Bezier curve is designed. The Roban robot generates the position
information transmitted to the joint servo through its inverse kinematics expression, and it
can successfully perform the downstairs task on the V-REP simulation platform, based on
ROS, as shown in Figure 9.
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4.3. Prototype Experiment

When the simulation code is fully utilized in the prototype’s downstairs experiment,
the results prove less than ideal. Through adjustments to the Bezier curve’s curvature
and the time period for the servo to accept position commands, the Roban prototype
achieves successful stair-stepping. Influential input parameters for Bezier curvature include
the robot’s centroid position, step height, step length and foot length. Despite these
parameters being determined in the physical world, the robot’s inherent errors necessitate
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further adjustments to execute the stair-stepping task based on Bezier curves. Several
considerations are essential during this adjustment phase:

(1) Parameters for adjusting the robot’s position:

Adapting the robot’s center of mass prevents forward or backward falls during leg swings.
Altering the trajectory of the robot’s legs addresses issues with the foot falling prema-

turely before lifting off the steps.
Adjusting the control point of the trajectory affects the position and swing inertia of

the robot’s swing foot.
Continuous trajectory adjustments are crucial to prevent robot shaking or instability

during stair descent.

(2) Adjustment of the robot’s time cycle parameters:

Given that this static gait method suits slow descents, an overly fast overall speed
introduces significant inertia during leg swings and center of mass translation.

Increasing the running time of the overall robot reduces inertia, preventing forward or
backward falls.

(3) Parameters for adjusting the robot’s step height:

Similar to adapting the trajectory of the robot’s legs, this parameter prevents the
robot’s feet from falling prematurely before lifting off the step plane.

(4) Parameters for adjusting the robot’s step length and foot length:

To address the accumulated errors observed during the stair descent process, adjusting
these parameters helps maintain the intended distance for each step.

Following the meticulous adjustment of these parameters, the Roban robot successfully
executes the stair-stepping process in the real world, as illustrated in Figure 10.
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Figure 10. Roban stepping downstairs (from right to left).

Examining the Roban robot’s stair descent process in the figure above reveals signifi-
cant errors, including jitter, hip joint tilt, backward tilt and misalignment of the ankle joint
with the step surface. These issues stem not only from limitations in the static gait method
but also from various errors within the Roban prototype itself, such as servo installation
discrepancies, manufacturing inaccuracies, and the inherent low-bending stiffness of gears.
These factors collectively contribute to insufficient joint stiffness in both the hip and ankle
joints of the bipedal robot. Addressing these challenges requires ongoing refinement in
both gait generation methods and mechanical components to enhance overall performance
and stability during complex tasks like stair descent.

5. Conclusions

This paper introduces the Bezier interpolation method for generating the gait trajectory
of the Roban robot during stair descent. The inverse kinematics expression of the robot is
solved, and the Bezier gait curve is successfully applied to both the staircase simulation
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and prototype experiments using position control. The analysis of the experiment video
reveals that the Roban robot exhibits jitter, hip joint tilt, backward tilt and an ankle joint
misalignment with the step surface. These observations are attributed to the low joint
stiffness of the Roban robot. Despite these challenges, this research lays the groundwork for
improving the motion performance of low-cost bipedal robots, offering valuable insights
for future development.
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