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Abstract: The proposed strategy for the extrusion of printable composite filaments follows the
favourable association of biogenic hydroxyapatite (HA) and graphene nanoplatelets (GNP) as rein-
forcement materials for a poly(lactic acid) (PLA) matrix. HA particles were chosen in the <40 µm
range, while GNP were selected in the micrometric range. During the melt–mixing incorporation
into the PLA matrix, both reinforcement ratios were simultaneously modulated for the first time
at different increments. Cylindrical composite pellets/test samples were obtained only for the
mechanical and wettability behaviour evaluation. The Fourier-transformed infrared spectroscopy
depicted two levels of overlapping structures due to the solid molecular bond between all materials.
Scanning electron microscopy and surface wettability and mechanical evaluations vouched for the
(1) uniform/homogenous dispersion/embedding of HA particles up to the highest HA/GNP ratio,
(2) physical adhesion at the HA-PLA interface due to the HA particles’ porosity, (3) HA-GNP bonding,
and (4) PLA-GNP synergy based on GNP complete exfoliation and dispersion into the matrix.

Keywords: PLA/HA/GNP composite materials; printable filaments; improved mechanical
properties; HA/GNP ratio influence

1. Introduction

On the verge of ceaseless discoveries and development in the realm of the modern
manufacturing industry, additive manufacturing (AM), also known as 3D printing, has
remained in the spotlight of many important technological sectors and enables the reshap-
ing of crucial components while employing various basic and customized materials [1,2].
When addressing the biomedical field, the latter aspect was mainly challenged based on
the ability of AM techniques (e.g., fused deposition modelling, FDM) to break through
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geometric and aesthetic constraints, proper accuracy, and processing costs, features that
could beneficially reflect on the specific requirements for each application [3,4]. Currently,
the irreversible effects of congenital defects, chronic ailments, the rapid aging of the popula-
tion, or accidental traumas have technology spinning in a quest for new materials allowing
for more efficient use during medical interventions, less environmental harm, and less
depletion of some natural resources in the long run [5–9].

It is important to note the crucial task of choosing a suitable main biomaterial (e.g.,
metallic, polymeric, ceramic, or any combination) for the synthesis of high-performance
feedstock materials with tuning parameters required for the 3D-printing process of bone-like
structures [2,10,11]. In a sustainable manner, attention has shifted to biodegradable poly-
mers, among which poly(lactic acid) (PLA) of natural origin (derived from maize, beet, or
sugarcane) was nominated as an effective alternative with unique physico-chemical features
(e.g., thermal stability, mechanical strength, and overall non-cytotoxicity) [7,12–14] and val-
idated by the Food and Drug Administration (FDA) [15,16]. However, recent scientific
advances have stipulated that the intrinsic brittleness and hydrophobic and inert surface
features of PLA alone have to be mended properly for cells’ attachment and prolifera-
tion [6,15,17,18]. Several surface modification methods (processing with electron beams,
plasma, or lasers [17]) or the blending/incorporation of assorted filler/additive materials
(e.g., bioceramic, metallic, or carbon-based materials) [19] were tested in order to address
these drawbacks.

At this stage, the next frontier in the field of biomaterials is the development of
innovative composite biomaterials that can function with existing hardware equipment
while also meeting the needs of specialized applications. Thus, the optimum filler materials,
as well as their accuracy, dispersion degree, proper interfacial bonding, and ratios, are still
to be determined [19–21].

In order to replicate the natural composite architecture of human bone, ceramic ma-
terials, particularly the calcium phosphate (CaP) division, were designated for this pur-
pose [22–25]. The biogenic facet was also followed in this study based on the facile and
reproducible synthesis of hydroxyapatite (HA) from natural resources (e.g., bovine or fish
bones [26–29], marble, or seashells [23,30,31]) due to its physico-chemical and biological
affinity for and similarity to natural bone [6,27,30,32]. Nonetheless, structures composed
of HA alone revealed unsuitable mechanical resistance and a slow degradation rate with
minimum induced porosity over prolonged periods from implantation [1,33,34].

For creating advanced composite filaments, recent biomedical studies have exploited
the beneficial interplay between PLA and synthetic spherical HA particles, acquired mainly
through chemical surface modification (the addition of binders and/or impact modifiers),
but not always with the expected outcomes [18,34–37]. In addition to the limited incorpo-
ration ratios of ceramic material, ranging from 3 to a maximum of 40 wt.%, the reported
composites lacked a proper particle distribution in the polymeric matrix, which led to the
formation of agglomeration sites [6,38,39], as well as the ability to preserve the filaments’
surface uniformity and constant diameter size [18,38], both mandatory requirements for
printable materials [40–42]. As it is well known that the higher the admixed HA amount,
the higher the chances for the formation of new bone nucleation sites [36,38], attempts
were made to improve it [37], but they led to the emergence of undesired porosity at the
PLA–particle interface, as well as an implicit diminished mechanical resistance [18,33,37].

Other engineering strategies for the development of composite filaments target the
graphene family of materials due to their promising mechanical and biocompatible fea-
tures, which are transferable to graphene-reinforced mixtures [12,14,34,43]. Graphene
nanosheets/nanoplatelets (GNP) can be securely anchored and bonded to matrix particles
as nano-reinforcements, allowing for continuous stress transmission during the deforma-
tion process [3,19]. However, graphene exfoliation, filler–matrix adhesion, dispersion, and
orientation remain current problems given the predisposition of GNP to layer stacking
and agglomeration [12,34]. While some studies have shown that graphene-reinforced
PLA poses poor mechanical properties, others have reported that by changing the raster
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orientation or using larger nanoplatelets, its capabilities may be improved [2]. Similarly, re-
searchers have investigated the benefits of integrating essential oils or chemically prepared
agents for enhancing the dispersion degree for both PLA/GNP [12,44] and PLA/GNP/HA
mixtures [34]. These studies reported that even though the proportion of GNP was reduced
to 1–4 wt.% for PLA/GNP and to 0.01–0.1 wt.% for the PLA/GNP/HA samples, the im-
provements in the mechanical behaviour were signalled only at the lowest amounts of GNP,
in opposition to what was expected.

We propose here the incorporation of the highest ratios accounted for so far of bovine
bone-derived HA (in the 0–50 wt.% range) and micrometric GNP (in the 0–5 wt.% range)
materials into the PLA matrix (prepared without binders or surface modifiers). The strat-
egy comes in order to overcome, one by one, the abovementioned deficiencies and to
clarify the governing tuneable parameters for the development of printable composite
filaments. First of all, we established the optimum dimensional range (<40 µm) of the
HA particles in our previously reported study [45]. Following this perspective, a complex
in vitro cytocompatibility investigation was conducted for a range of precursor materials
in ref. [46], which retrieved the most adequate, non-cytotoxic type of GNP reinforcement
(grade M, nanoplatelets of micrometric dimensions). To the best of our knowledge, only
one published work has disclosed the addition of naturally derived fishbone HA into the
PLA matrix; however, the procedure, processing parameters, and conducted investigations
were inadequately defined [33].

Hence, we aimed here for the development of a functional, facile, and reproducible
method for the fabrication of PLA/HA/GNP filaments with direct applicability for the
manufacturing of 3D-printed bone-like products required in the fields of reconstructive
orthopaedics and dentistry. The novel vision depicted in this study targets for the first
time the clear definition of several endpoints corresponding to the tuning parameters
by which the extruded PLA/HA/GNP filaments developed through this method are
unique. The singularities of the HA particles derive from the isolation and extraction
technology of HA from bovine bones [26,28,32]. As such, the HA particles act here as a
double agent—as bone-like CaPs and reinforcement material: (i) the physical adhesion at
the HA/PLA interface is favoured by the highly porous facets of the HA particles, which
increases the surface tension without generating pores; (ii) the polyhedral shape of the
biogenic HA particles with sharp and rugged edges contributes to the air bubble burst (an
influence found nowhere in the literature): no entrapped bubbles originate during sample
preparation, as compared to the synthetic spherical HA particles effect, and thus no internal
porosity was generated. The chemical bonding at the HA/PLA interface is a consequence
of the polar groups interconnectivity from both materials [47]. The HA-GNP bonding is
assured based on the facile electrostatic interactions between the highly negatively charged
graphene sheets and positive Ca2+ ions [20]. More to the point, the PLA-GNP synergy is
based on the complete exfoliation of the GNP in the polymer matrix, which maximizes the
dispersion degree and the mechanical takeover between the two materials [2,12].

Herein, the programmed investigations testify in favour of the optimal and tuneable
parameters for the development of composite filaments with printable features. In a logical
flow, subsequent research studies designated for the complex in vitro evaluation of the
optimized 3D-printed composite products, based on the results provided in this study,
were recently published [48] and sustain the vision entailed here.

2. Materials and Methods
2.1. Precursor Materials

The initial PLA (natural coloured granules, Φ = 2 ± 0.05 mm; Merck KGaA, Darmstadt,
Germany) and xGNP® (grade M: nanoplatelets with thickness ~7 nm and Φ = 25 µm;
XG Sciences Inc., Lansing, MI, USA) materials were bought locally and used without
any pre-treatment (chemical or physical). Materials were fully investigated previously
in ref. [46]. The biogenic bone-like HA material was isolated through an established
conversion procedure of bovine bones based on three successive thermal treatments, as
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previously reported [27,28]. The resulted HA powder was further subjected to ball mill
grinding and granulometric sorting (standard sieves with meshes of 40 → 200 µm). Only
the most adequate size sort (i.e., <40 µm) was chosen here, as we already demonstrated it
to be a key parameter [45].

2.2. Preparation of PLA/HA/GNP Composite Filaments

The preparation of composite filaments (Figure 1) required the incorporation of mod-
ulated ratios of HA (0–50 wt.% range; increment of 10 wt.%) and GNP (0–5 wt.% range;
increment of 1 wt.%) into the PLA matrix. Hence, the sample codification was declared a
function of the HA (e.g., 50% HA) and GNP (e.g., 5% GNP) ratios. The 100% PLA samples
(0 wt.% HA, 0 wt.% GNP) were considered the control or reference materials. For each
modulated HA/GNP ratio, the process involved the following steps: (1) the mechanical
homogenization of the precursor materials for 1 h at 50 rpm in a tumbler mixer (Inversina,
Bioengineering AG, Zürich, Switzerland); and (2) the thermal homogenization, at a constant
temperature of 190 ◦C, of the resulting mixtures into the PLA matrix (remnant weight up
to 100%), using a magnetic stirrer hob.
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2.2.1. Cylindrical Composite Pellets Destined for Wettability and Mechanical
Investigations

From each sample type, ¼ of the obtained slurry was poured into casting moulds
and allowed to cure and harden into cylindrical composite pellets (Φ = 15 mm, h = 30
mm). The plane-parallel surfaces of the composite pellets were acquired by grinding on
abrasive paper (P400–2500). The pellets’ dimensions were set in compliance with the
standardized requirements for an adequate evaluation of the wettability (samples with
a diameter ≥ 10 mm according to ISO/TS 14778:2021 [49]) and the compressive strength
(samples with a dimensionless ratio of diameter/length ≥ 0.4 according to ISO 604:2002 [50])
properties (both intrinsic material-dependent features [51–53]).

2.2.2. Composite Filaments Extrusion

After curing and hardening, the remaining amount of each slurry was chopped and
used as feedstock material for the extrusion of composite filaments. One extrusion cycle at
200 ◦C/195 ◦C (barrel/nozzle temperature) and 10–15 rpm (Pro Filament Extruder; Noztek,
West Sussex, UK) for a uniform dispersion of both ceramic and GNP particles into the PLA
matrix, followed by air cooling after emerging from the extruder nozzle (Φ = 1.2 mm), was
performed. That is, the reported procedure here concerns only the already-determined
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optimum parameters for composite filament extrusion. A final estimation by weight
revealed that from an initial 100 g of homogenized composite materials (regardless of the
PLA/HA/GNP ratios), the total material loss varied between 3 and 5 wt.%, considering
the final filament extrusion. The cross-section view of the composite filaments was exposed
after cryogenic fracturing in liquid nitrogen.

2.3. Experimental Characterization Techniques

(a) FTIR-ATR Spectroscopy Measurements. The attenuated total reflectance (ATR)
mode for Fourier-transform infrared (FTIR) spectroscopy was used to examine the chemical
structure of all composite filaments. On a Bruker VERTEX 70 spectrometer (Bruker, Billerica,
MA, USA), the FTIR-ATR spectra were obtained using 32 scans per sample, each obtained
at a resolution of 4 cm−1 in the 4000–600 cm−1 area.

(b) Morpho-compositional Evaluation. The macro- and microstructure of the compos-
ite filaments, on both surface and cross-section view, were evaluated by scanning electron
microscopy (ESEM Quattro™ microscope; Thermo Fischer Scientific, Hillsboro, OR, USA).
The compositional features were determined with an auxiliary microanalysis EDS sys-
tem (Thermo Scientific Pathfinder™). The micrographs’ acquisition was conducted on the
extruded composite filaments in 5 randomly chosen areas (acceleration voltage = 15 kV,
working distance = 10 mm) [54]. The distribution of the constituent elements was outlined
through the EDS mapping technique.

(c) Wettability evaluation. The contact angle measurements were acquired on the
cylindrical composite pellets using a Krüss Drop Shape Analyzer—DSA100 (A. Krüss Op-
tronic GmbH, Hamburg, Germany). The experiments were performed with three different
wetting agents (water, diiodomethane (DIM), and ethylene glycol (EG)) at constant room
temperature (20 ± 1 ◦C) and humidity (45 ± 5%). The images were captured 1 s after the
deposition of the wetting agent droplet. The results (average of 5 determinations/sample)
were afterwards processed with the ImageJ 1.50 software (National Institutes of Health,
Bethesda, MD, USA). The surface free energy (SFE) was computed based on the contact an-
gle measurements through the OWRK (Owens, Wendt, Rabel, and Kaelble) method [55,56].

(d) Mechanical behaviour assessment. The compressive strength and elastic modulus
of all cylindrical composite pellets were determined using a universal test machine (type
LFV300; Walter + Bai AG, Loehningen, Schaffhausen, Switzerland) at a test speed of
1 mm/min and an acquisition rate of 0.01 s. The results represent the average of three sets
of measurements.

3. Results and Discussion
3.1. FT–IR Evaluation

The FTIR-ATR fingerprints of the extruded composite filaments are comparatively
displayed in Figure 2. The infrared spectral profiles revealed a favourable combination
of overlapping bands in accordance with the HA/GNP incorporated amounts. As such,
the FTIR identification recorded specific IR bands for GNP—only in the case of reinforced
samples—along with specific bands attesting the presence of HA at ratios ≥10 wt.%, and
as expected, bands with the highest intensity for the PLA matrix for all samples.

The molecular homogeneity was demonstrated for all sample sets by the identification
of both specific and particular IR bands. As such, the reference sample (100% PLA) in
Figure 2a reveals only the main characteristic bands of the PLA groups, namely: symmetric
stretching of C=O (~757, ~1756 cm−1), symmetric (1090 cm−1) and asymmetric (1190 cm−1)
stretching of C–O–C, symmetric stretching of CH3 (1453 cm−1), and symmetric (2855 cm−1)
and asymmetric (~2922 cm−1) stretching of –CH groups [17,18,21,33]. Given that both raw
PLA granules and PLA extruded filament outlined the deformation (bending modes) of
the C–H and C–COO groups in the 1367–1370 and ~870 cm−1 regions, respectively [46],
the hypothesis that the polymeric chain could suffer some modifications when subjected to
high temperatures [57] during extrusion is excluded.
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Moreover, for the PLA/GNP composite mixtures exposed in Figure 2a, the specific
IR bands of the polymeric matrix were preserved, and particular vibrations of intensities
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dependent on the GNP ratio appeared and were ascribed to the symmetric stretching
(double-split shoulder at 1044 cm−1) of C–O and the aromatic stretching (1645 cm−1) of
C=C groups. The other vibrations, corresponding to the aromatic deformation of the C–H
groups (870 cm−1), and of the bending mode of the hydroxyl (–OH) functionalities (slightly
shifted to 1455 cm−1), and the symmetric stretching of CH2 groups (~2922 cm−1) in pristine
GNP [58–60], were juxtaposed with some associated PLA functional bands. This behaviour
reflects directly on the grafting mechanism of the PLA chains onto the surface of GNP.
Some studies have reported in this regard that due to the shifting of the bonds, the peaks
with the higher intensity at 1753–1756 cm−1 (GNP ≥ 1%) could also be a consequence of
the grafting reaction between the two materials [58].

Similarly, in the case of the PLA/HA composites (Figure 2b–f with indicated 0% GNP),
the presence of the HA adsorption bands lay in the ranges for the corresponding (PO4)3−

group vibrations: the symmetric (~961 cm−1) and asymmetric (~1040–1044 cm−1) stretching.
In contrast to the crystalline commercial HA, the naturally derived one elicited specific
IR spectra assigned to the asymmetric stretching modes of carbonate groups (centred
at 1455 cm−1), as predicted and reported in prior investigations [27,28,31], which were
superimposed with the PLA afferent vibration band.

Consequently, when both HA and GNP were incorporated at modulated ratios into
the polymeric matrix (Figure 2b–f with indicated 1–5% GNP), the frequency assignment
depicted a second level of overlapping due to the solid bond formation and interference at
the molecular level between all types of materials. While some bands remained unchanged
across all spectra, due to the increased uptake of the HA component at 40 and 50 wt.%,
some of the PLA band (e.g., 1090 cm−1 and 1756 cm−1) intensities decreased significantly
in favour of the (PO4)3− groups in HA emerging at bands slightly shifted to 1038 cm−1,
regardless of the GNP ratio.

3.2. SEM/EDS Evaluation

The macroscopic results for all extruded composite filaments prepared with modu-
lated ratios of HA and GNP as reinforcement materials are presented in Figures 3 and 4,
respectively. The assessment, comprising the cross-section view and outer surface (top-
view) of the samples, was carried out in order to disclose the influence of the GNP addition
upon the fine and uniform dispersion degree of the ceramic component into the polymeric
matrix and their conjoined impact upon the overall integrity and full-length uniformity of
the filaments.

The macrographs acquired in cross-section view revealed the homogeneity of the
composite filaments after extrusion through the even scattering of the ceramic particles
into the polymeric matrix, independent of the HA and GNP ratios. Moreover, the non-
preferential dispersion of the ceramic filler also reached the outer surface of the filaments.
Here, the reference sample presented a smooth and neat surface that changed once the GNP
ratio seized, gradually, the highest value, leading to the formation of straight indentations
on the outer shell. The phenomenon appeared more pronounced with the successive
addition of HA particles in higher ratios, due to the supplementary emergence of mostly
round and micrometric irregularities on the filaments’ surface. At the intersection of high
loading concentrations of the reinforcement materials (above 30% HA and 3% GNP), larger
and rougher protuberances patterned the surface.

However, this behaviour could be significantly related to the increment of the van
der Waals forces between the graphene platelets once their ratio increased, leading to the
enhanced overlapping and thickening of the sheets [34]. This can also be tracked at higher
magnification scales.
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Hence, the micrographs of the extruded filaments analysed in both cross-section
(Figure 5) and top view (Figure 6) confirmed the incipient findings and exposed supple-
mental features afferent to the HA and GNP ratios. Here, the fracturing evolved from
brittle-like behaviour accompanied by folds of wavy lines for the reference sample and
PLA/HA (up to 30%) samples to a more ductile predisposition for samples with the gradual
incorporation of GNP (up to 3%), showcasing the existence of fibril structures (Figure 4).
However, once the loading ratios exceeded these values, the composite filaments presented
a mixed morphology that evolved to microfracturing at the highest HA/GNP ratio.
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For all extruded composite filaments, a fairly uniform dispersion and homogenous
embedding of the micrometric ceramic particles into the polymeric matrix were depicted,
while progressive surface coverage was assured by the larger polyhedral particles once
the HA ratio increased. During the extrusion process, most of the particles’ edges were
reformed from sharp to round, but the particles’ specific morphology, composed of micro-
metric pores [26], was preserved and clearly outlined for the larger particles. Thus, their
inherent microporosity and improved specific surface area stand as favourable factors for a
strong adhesion at the polymeric–ceramic interface, otherwise possible only by chemical
routes [18].

In contrast, wide pores and voids, which originated with the addition of GNP into
the polymeric network, were sequentially enclosed by the embedment of the HA particles.
Even so, this sympathetic mechanism functioned until the highest HA/GNP loadings were
involved (that is, 30–40% HA and 4–5% GNP). At this stage, remnant voids, pores, and
nuclei of agglomerated and compactly encapsulated particles in the form of folds were
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delineated into the PLA matrix, possibly due to the poor dispersion at high GNP ratios [34].
This effect was even more distinctively presented by the correspondence of folds→ mi-
crometric bumps, scattered in an irregular manner on the outer surface of the filaments
(Figure 6). Due to the overlapping of numerous bumps, several protuberances of varied
dimensions were depicted in each micrograph and could serve as stress concentrators,
leading to low mechanical uptake.
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In terms of using the composite mixtures as feedstock materials for the 3D-printing
process, the later observed features may come across as incompatible with the specific re-
quirements for constant filament diameter and surface–volume homogeneity (both essential
for the prevention of material clogging in the printer nozzle) [6,40,41].

Therefore, with the precise modulation of the precursor material ratios and the adjustment
of the nozzle diameter and extrusion temperature, the resulting composite filling could properly
respond to the desired and mandatory quality attributes of the final products [38].

The comparative representation of the elemental mapping, performed in cross-section
view for all extruded composite filaments, is given in Figure 7. The balance of the main
chemical elements was selected based on their relevance to the sample type: with or without
HA incorporated into the ceramic matrix [27,45,46]. Thus, for the reference and PLA/GNP
samples, the C content (red colour) presented a predominantly uniform dispersion across
the micrographs, regardless of the GNP ratio.
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Concomitant with the addition of HA particles, the characteristic Ca content (yellow
colour) presented a cvasiuniform distribution inside the filaments, outlining the ceramic
particles of all sizes (in the <40 µm range) and the afferent proportional degree of coverage,
which supports the SEM findings (Figure 5). Moreover, dependent on the gradually
increased HA ratio, the Ca content intensity spiked in constant upward shifts, followed row
by row in Figure 7. Correspondingly, for all samples, the dark background was attributed
to the O content. Hence, a uniform dispersion of HA particles was also endorsed based on
the difference in atomic number as compared to the components of the polymeric matrix.

3.3. Contact Angle and Surface Energy Investigations

With far-reaching significance to the final envisioned biomedical applications of the
developed composite materials and directly correlated to adequate cellular behaviour
and response after implantation, their wettability degree and surface free energy (SFE)
variations are shown in Figure 8. The surface hydrophilicity was evidenced by contact
angle measurements (CA), with three wetting agents (water (W), diiodomethane (DIM),
and ethylene glycol (EG)) used as parameters for the dispersive and polar interactions
at the solid–liquid interface required for further computing the SFE through the OWRK
method [56,61]. The nature of each wetting agent is known and reported [56]; here, water
and EG were employed as polar components, whereas DIM was a nonpolar or disper-
sive one.
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Figure 8. Surface wettability by contact angle measurements (wetting agents: water (W), di-
iodomethane (DIM), ethylene glycol (EG)) and surface free energy (SFE) computed by the OWRK
method for all composite pellets: (a–f) PLA/HA (0–50 wt.%)/GNP (0–5 wt.%).

Considering the PLA and PLA/HA samples as platforms for comparison, the results
steered a clear favourable influence of each reinforcement material, in turn, upon the
wetting behaviour of the composite pellets. It was noticed that for both instances, the CA
values dropped progressively once the HA and GNP were incorporated at higher ratios (in
the investigated ranges), independent of the wetting agent. For the PLA—PLA/HA set, the
W contact values ranged between 72◦ and 57◦, while the DIM and EG ones ranged between
57◦ and 47◦ and 63◦ and 53◦, outlining an elevated wettability disposition (CA < 90◦) of the
composite materials with modulated HA addition compared to the PLA alone.

The surface feature augmentation was further validated by the drastic exponential
decrease in the CA values with the increment of the admixed GNP ratio to the PLA/HA
materials. The incipient stage of the GNP mechanism was observed for the PLA/GNP
samples, where the DIM value was halved and the others decreased by ~0.88 → 0.84 (for



Biomimetics 2024, 9, 189 13 of 18

W and EG, respectively), corresponding to the maximum GNP amount. This is in complete
contrast to portrayal in the literature of the GNP materials as water barrier effect consolida-
tors due to their inorganic and impermeable state [12]. When both reinforcement materials
reached the highest HA/GNP ratio, the CA values conveyed the lowest records compared
to the PLA reference (downturn by ~0.42, ~0.21, and ~40 for W, DIM, and EG, respectively).
The corresponding SFE values corroborated the CA findings, retrieving an opposite trend
line of the results for both HA and GNP addition in turn and concomitantly. Thus, both
indicators argued towards a deep-seated wettability of the composite pellets, as was ex-
pected given the surface morphology (a key factor for the wettability evolution) composed
of micrometric bumps, increased concentration, and regular dispersion of the embedded
porous ceramic particles in any section of the samples (see Figures 5 and 6), leading to
progressively rougher surfaces [15]. Furthermore, particular attention was given to the
balance between these governing factors in additive manufacturing for properly printing
continuous lines without the full-merging phenomenon and for a given resistivity [13,62].
Moreover, the surface wettability of the composite materials will further influence the
overall wetting behaviour, integration, and degradation degree of the 3D-printed products
after implantation [52,63].

Overall, the obtained results translate into enhanced protein adsorption and the
positive cellular responses (adhesion, proliferation, and survival) required for new bone
formation at the composite materials–host tissue interface, the paramount goal in the bone
reconstruction applications field [7,13,39,64,65].

3.4. Mechanical Features Evaluation

The mechanical behaviour of all composite pellets was evaluated by uniaxial com-
pression testing. The afferent mean values and standard deviations for the compressive
strength and elastic modulus are graphically presented in Figure 9.

At first glance, one can easily note that the evolution line for the mechanical features
was preserved across all samples and was directly linked to the modulated HA/GNP ratios.
Considering the same comparison platforms as above mentioned (PLA and PLA/HA
samples), the variation in compressive strength and elastic modulus outlined a linear
upward trend line with the increase in the incorporated GNP ratio in the 0–3 wt.%, while for
the next 4–5 wt.% increments, the records disclosed an abrupt downshift trend, regardless
of the HA ratio. This backsliding tendency could be attributed to a series of governing
factors related to the morphology, dispersion degree, and intrinsic characteristics of GNP.
Hence, previously discovered pores, voids, and microcracks (Figure 4) directly impacted
the mechanical strength, as it is well known that the higher the remnant porosity or void
volume, the lower the final mechanical performance [43,66]. Another potential factor with
dramatic consequences in this regard refers to the lack of dispersion degree of GNP at high
loadings, arising in the form of folds or protuberance networks accompanying the HA
particles and acting against adequate stress transmission throughout the samples [12,34].
Another intertwined aspect in this direction could be the stacking effect of the GNP sheets
due to the inferred strong van der Waals interactions [34]: a certain maximal amount can
be loaded for attaining optimal results.

Compared to PLA alone, the addition of HA in the 10–50 wt.% range led to the improve-
ment of the compressive strength and elastic modulus by ~1.02 → 1.18 and ~1.12 → 1.77,
respectively. However, when GNP (0–3 wt.%) was loaded into the polymeric matrix, the
compressive strength and elastic modulus were further enhanced by ~1.08 → 1.12 and by
~1.08 → 1.21, respectively. This suggests a better play for the mechanical reinforcement
mechanism on the GNP account. These results are in tune with other reports concerning
the effect of graphene fillers on mechanical behaviour, due to their greater tensile strength
and elastic modulus, which block the movement of the polymeric chains under strain or
load-bearing actions [2,13].
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Outstanding results were acquired for samples with conjoined loaded HA/GNP
ratios, as their in turn interplay and connection with the polymeric matrix could explain the
exhibited higher variation in compressive strength and elastic modulus (by ~1.18 → 1.26
and by ~1.77 → 2.02, respectively), compared to the PLA values. Here, the results state the
following: (1) the physical adhesion at the HA-PLA interface was favoured by the highly
porous facets of the ceramic particles, which increase the surface tension without generating
supplementary pores [37], followed by the chemical bonding of the polar groups from
both materials [47]; (2) the HA-GNP bonding occurred through the electrostatic positive–
negative charges and interfacial interactions of graphene sheets with Ca2+ ions [20,67];
and (3) the PLA-GNP synergy was based on the GNP complete exfoliation in the polymer
matrix predicted at lower ratios, which could maximize the uniform dispersion degree and
impact stress takeover between the two materials [2,12,34].

Considering the incorporation of naturally derived HA and GNP materials at modu-
lated ratios, all three prerequisites were met for the further development of products with
a greater resemblance to the natural bone behaviour—optimal mechanical results were
favourably delineated according to the requirements for bone reconstruction applications
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(cortical and trabecular bone-like performance) [6,68–70]. Moreover, when needed, the
surface, composition, and mechanical features can be adapted and patiently customized by
tuning the reinforcement material ratio.

4. Conclusions

The feasibility of extruding composite PLA/HA/GNP filaments through the envi-
sioned strategy was confirmed. The influence of the conjoined incorporation and modula-
tion of the highest ratios of reinforcement materials (HA, GNP) into the PLA matrix on the
molecular architecture, morphology, wettability, surface free energy, and mechanical be-
haviour were accounted for here for the first time. The results of the correlation pinpointed
the optimal HA/GNP ratio required for the synthesis of printable composite filaments for
biomedical applications.

When both HA and GNP were incorporated at modulated ratios into the polymeric
matrix, the FTIR frequency assignment depicted two levels of overlapping structures
vouching for solid bond formation at the molecular level between all types of materials,
free of any traces, impurities, or other molecules or compounds.

Due to the technological conversion of bovine bones into HA, the singularities of the
derived ceramic particles acted as a double agent by (1) supporting the physical adhesion
at the HA/PLA interface due to the induced highly porous facets and (2) contributing to
the bursting of air bubbles (usually entrapped into the polymer during preparation) and to
no generated internal porosity due to their polyhedral shape with sharp and rugged edges.
Further, due to the synergy between the HA-GNP and PLA-GNP components, the overall
mechanical features signalled an enhancement limit corresponding to the GNP modula-
tion up to a maximum 3 wt.%, regardless of the HA ratio, leading to bone-compatible
compressive strength and elastic modulus values. Furthermore, the hydrophilic nature
outlined for all composite samples revealed the HA/GNP potential to induce positive
outcomes in terms of PLA’s improved wettability and future cell responses, independent of
the modulated ratios.

Overall, the proposed tuneable design for the synthesis and extrusion of suitable
composite reinforced filaments enables their use as feedstock materials for AM technologies,
with close regard to the bone application requirements.
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