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Abstract: The severe effects of attention deficit hyperactivity disorder (ADHD) among adolescents
can be prevented by timely identification and prompt therapeutic intervention. Traditional diagnostic
techniques are complicated and time-consuming because they are subjective-based assessments.
Machine learning (ML) techniques can automate this process and prevent the limitations of manual
evaluation. However, most of the ML-based models extract few features from a single domain.
Furthermore, most ML-based studies have not examined the most effective electrode placement on
the skull, which affects the identification process, while others have not employed feature selection
approaches to reduce the feature space dimension and consequently the complexity of the training
models. This study presents an ML-based tool for automatically identifying ADHD entitled “ADHD-
AID”. The present study uses several multi-resolution analysis techniques including variational
mode decomposition, discrete wavelet transform, and empirical wavelet decomposition. ADHD-AID
extracts thirty features from the time and time–frequency domains to identify ADHD, including
nonlinear features, band-power features, entropy-based features, and statistical features. The present
study also looks at the best EEG electrode placement for detecting ADHD. Additionally, it looks
into the location combinations that have the most significant impact on identification accuracy.
Additionally, it uses a variety of feature selection methods to choose those features that have the
greatest influence on the diagnosis of ADHD, reducing the classification’s complexity and training
time. The results show that ADHD-AID has provided scores for accuracy, sensitivity, specificity,
F1-score, and Mathew correlation coefficients of 0.991, 0.989, 0.992, 0.989, and 0.982, respectively, in
identifying ADHD with 10-fold cross-validation. Also, the area under the curve has reached 0.9958.
ADHD-AID’s results are significantly higher than those of all earlier studies for the detection of
ADHD in adolescents. These notable and trustworthy findings support the use of such an automated
tool as a means of assistance for doctors in the prompt identification of ADHD in youngsters.

Keywords: electroencephalogram (EEG); attention deficit hyperactivity disorder (ADHD); discrete
wavelet transform; variational mode decomposition; empirical wavelet decomposition; machine
learning

1. Introduction

Attention deficit hyperactivity disorder (ADHD), as it is currently defined, understood,
and managed, is a syndrome that is independent of etiology or anything other than the
presence of symptoms of attention deficits and/or hyperactivity [1]. About 60 percent of
children experience signs into their adult years. The associated nervous systems and irreg-
ular cognitive functioning play a major role in the development of ADHD [2]. Furthermore,
some environmental factors are responsible for the development of ADHD including the
consumption of drugs, addiction to alcohol, and smoking during pregnancy [3]. Adoles-
cents with ADHD have trouble concentrating on a given item or duty for an extended
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period, have behavioral changes, and exhibit hyperactive impulse control issues, which
negatively affect how well they are able to learn and interact with others [4]. Later or
untreated ADHD raises associated risks such as poor social skills, retarded education,
subpar academic performance, low self-esteem, a greater likelihood of attempting acts of
violence, and injury vulnerability [5]. Kids with ADHD can complete daily tasks while
discovering new things with the assistance of early identification, reliable evaluation, and
appropriate medications.

Initial identification of ADHD is crucial for the individual’s recovery. Clinical psy-
chiatrists as well as psychologists are typically the ones who diagnose ADHD in ado-
lescents. Clinical assessment is accomplished through several approaches involving
scales/questionnaires [6], interviews with parents along with the children themselves [7],
as well as certain ongoing performance examinations [8]. To diagnose ADHD, it is essential
to collect symptom history from parents and teachers in various environments, ensuring
they meet the DSM criteria for duration and frequency. Additionally, it is crucial to elim-
inate other conditions that may resemble ADHD such as depression, sleep deprivation,
etc. Despite the existence of various methods, the assessment takes a prolonged period [9],
requires an elevated degree of clinical proficiency, and can occasionally be inaccurate. The
bias inherent in such strategies also calls into doubt the accuracy of the detection. Fur-
thermore, according to a review [10], numerous medical professionals said they did not
have the sufficient familiarity necessary to identify ADHD. Thus, another perspective from
a computational standpoint such as artificial intelligence to automate the process could
additionally increase the medical professional’s trustworthiness regarding the result of
their assessment and could additionally conserve a significant amount of time. Although
artificial intelligence has been extensively used in the medical domain to aid the detec-
tion and diagnosis of various diseases [11–14], it may face challenges in real-world EEG
recordings due to noise and uncertainties. Comprehensive training on enormous databases
is essential for algorithms to effectively manage complexities, as noted by the reviewer.
Regrettably, extensive datasets of ADHD-related EEG recordings in natural settings may
not be easily accessible at this time.

Several studies have been conducted regarding developing aiding tools based on
artificial intelligence technology to speed up and improve the precision of the entire proce-
dure of detecting neurological and neurodevelopment diseases [15–18]. The latest research
has focused on initial ADHD recognition via several brain imaging modalities such as
electroencephalography (EEG) [19], magnetoencephalography [20], magnetic resonance
imaging [21], functional magnetic resonance imaging [22], and others. Among all these
approaches, the EEG method has emerged as one of the most popular methods for diagnos-
ing ADHD [23]. This is due to its accessibility, informational value, and affordability. EEG
waves are commonly used to identify physiological and brain anomalies including epileptic
attacks, emotions, fatigue, and stress [24]. EEG is also used with assistive technology for
patients with motor disabilities. EEG data can monitor alterations in brain function caused
by ADHD [25,26]. However, complex-level structures in the complex records generated by
the brains of humans are challenging to identify [27]. With the help of machine learning
(ML), detecting these complicated patterns is achievable. Many studies have employed
machine learning approaches to analyze EEG signals and detect ADHD [6,23,28–31].

1.1. Research Gaps

Numerous studies did not examine the most appropriate electrode placement on the
skull, which impacts the identification process. Other studies extracted features from a
single domain, either time, frequency, or time–frequency. Some studies extracted a few
features. Numerous research articles employed one or a few feature extraction approaches
to obtain features. Many studies did not perform a feature selection (FS) procedure to select
the most significant features, thus reducing the feature space dimension, which lowers
the complexity of the training models. Others relied on deep learning models with high
complexity and a huge number of parameters. Some studies tested their model on private
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datasets. Few of them depended on a few participants. Multiple research articles achieved
relatively low accuracy; therefore, their models could not be deemed reliable for identifying
ADHD.

1.2. Contributions and Novelty

This study introduces an automated tool for detecting ADHD based on several
machine-learning approaches. To overcome the previous limitations raised in the lit-
erature, this study adopts numerous multi-resolution analysis approaches to analyze EEG
waves and eliminate noise. Since feature extraction is the key element for the successful
classification of EEG waves, the present study has obtained thirty features (nonlinear fea-
tures, band-power features, entropy-based features, and statistical features) from time and
time–frequency domains to detect ADHD. Furthermore, this study examines the finest EEG
electrode placement for ADHD detection. It also investigates the best combination of loca-
tions that impact detection accuracy. Additionally, it exhibits several FS techniques to select
the most influential features that affect ADHD diagnosis, thus lowering the complexity and
training duration of the classification.

The key contributions and originality of the present study are summarized as follows:

• Extracting features from multiple domains including, time and time–frequency, and
then combining them instead of relying on a single domain.

• Utilizing several multi-resolution analysis methods to analyze EEG signals and remove
noise such as discrete wavelet transform (DWT), variational mode decomposition
(VMD), and empirical wavelet transform (EWT).

• Employing multiple feature extraction approaches such as nonlinear features, band-
power features, entropy-based features, and statistical features.

• Exploring the best electrode placement site that influences the identification perfor-
mance.

• Introducing various FS approaches to select the highly significant features, thus di-
minishing the complexity of the classification models.

1.3. This Paper’s Structure

The remaining sections of this paper are structured as follows. The second section
presents the related works on ADHD detection using EEG signals and ML/DL techniques.
The third section describes the methods and the proposed tool entitled ADHD-AID. Sub-
sequently, the forth section explains the parameters established. Next, the fifth section
presents the results, followed by section six which discusses the main findings of the results
and the limitations of ADHD-AID, and compares the results of ADHD-AID with other
studies in the literature. Lastly, the final section concludes the paper.

2. Related Works

Numerous EEG-based research articles have been carried out throughout recent years
to recognize the presence of ADHD [18–20]. The complicated details generated by human
brains make it challenging to find significant features and structures. There are two
categories of ADHD detection frameworks, which are the traditional ML-based frameworks
and DL-based frameworks. This section discusses both frameworks.

2.1. ML-Based Frameworks

ML approaches have been working to identify patterns for decades, with the goal of
predicting and categorizing EEG data. However, feature extraction is the main element
for the successful identification and classification of brain waves. Several studies have
employed multiple feature extraction and machine learning approaches; among them,
the research article [21] employed three empirical decomposition approaches including
EWT, empirical mode decomposition (EMD), and empirical variational decomposition
(EVD). The authors extracted 15 features from each domain of the EWT, EMD, and EVD
independently. Next, they applied a genetic algorithm and neighbor component analysis to
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each set of extracted features from EWT, EMD, and EVD individually. The selected features
were then fed into a support vector machine classifier (SVM) and artificial neural networks
(ANNs) to identify ADHD in children. Alternatively, the study [22] utilized variational
mode decomposition (VMD) followed by Hilbert transform to decompose EEG signals
and then obtained 41 statistical and nonlinear features from the fifth decomposed mode of
the signal. Afterward, features entered the explainable boosted machine model to identify
ADHD. Moreover, the study [4] proposed a new approach referred to as variational mode
and Hilbert transform-based EEG rhythm separation and employed several ML classifiers
reaching an accuracy of 99.95%.

In addition, the study [6] attained power spectral density features, entropy-based
features, and bi-spectral features. The authors then adopted minimum redundancy and
maximal relevance (mRMR) FS to select features. Those selected features were then used
to train an SVM classifier. Conversely, the researchers of [23] directly used the EEG data
obtained from 19 channels as inputs to three machine learning classifiers. These researchers
investigated the impact of different brain regions on the performance of the training models.
On the contrary, the study [24] extracted 10 statistical, power spectral density, and entropy-
based features from the time domain. Then, the principal component analysis approach
was used to reduce features that enter an SVM classifier to detect ADHD and differentiate
it from healthy cases. Meanwhile, the study [25] utilized intrinsic time-scale decomposition
(ITD). A number of connectivity-based features were extracted using different mixtures
of extracted features from a single domain of the modes, which ITD created. Afterward,
these features were used as inputs to several classifiers such as SVM, k-nearest neighbor
(k-NN), naïve Bayes, decision trees, and bagging ensembles. In contrast, in the study [26],
brain waves were used to create effective connectivity matrices. By measuring the directed
phase transfer entropy among every couple of the channels, the effective connectivity
matrices of all of them were determined to form a feature matrix. These features were then
reduced using a genetic algorithm, and then the chosen features were used to learn an
ANN. Elsewhere, the study [27] explored the relationship between ADHD and visuospatial
problems, which involve challenges in processing visual information. This study examined
16-year-old adolescents with ADHD and analyzed their brain activity using EEG during
a visual processing task, comparing it to a control group. The subsequent findings were
stated: Children with ADHD exhibited unique brain activity patterns when analyzing
intricate visual stimuli in comparison to the control group. The disparities were most
evident in the lower frequency brainwave bands, specifically delta and theta. The authors
suggested that these particular EEG characteristics could serve as potential indicators for
detecting visual processing challenges linked to ADHD. This study indicated that EEG
could be a useful instrument for comprehending the fundamental mechanisms of visual
processing issues in children with ADHD. The results could help enhance the creation of
better diagnostic methods and treatments for ADHD.

On the other hand, some studies have employed different FS approaches for selecting
features extracted from EEG signals to detect ADHD. Among them, the studies [19,28]
used the least absolute shrinkage and selection operator FS approach, the study [29] used
the Relief FS approach, the paper [30] employed PCA, hybrid step-wise regression, ridge
regression, and correlation-based FS, and the paper [24] employed the ANOVA FS method.

2.2. DL-Based Frameworks

Other studies have employed DL models for identifying ADHD; among them, in the
article [31], the authors used two recurrent networks involving long short-term memory
networks and gated recurrent networks and averaged their results. The research article [32]
converted EEG signals into RGB images using frequency bands and then fed a CNN
consisting of 13 layers to identify ADHD. On the other hand, the article [33] employed
connectivity-based features as inputs to a customized CNN. Similarly, the study [34] em-
ployed dynamic connectivity analysis to obtain features that then fed a convolutional long
short-term memory network model that used an attention mechanism. On the contrary,
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the article [35] employed EEGNet to identify ADHD without any pre-processing or feature
extraction steps. Meanwhile, the study [36] employed VMD and robust local mode decom-
position to obtain features that were then utilized to train a CNN model. The study [37]
extracted frequency features using Fourier transform (FT), and then these features were fed
into a customized CNN which employed a Layer-wise Relevance Propagation procedure
for channel selection. Table 1 summarizes the literature on ADHD identification using EEG
signals.

2.3. Limitations of Previous Frameworks

Table 1 highlights the main limitations of each study. Numerous research articles in
the literature have demonstrated some difficulty in obtaining undiscovered details of EEG
waves [31]. Limited articles employed feature extraction from EEG data directly without
applying a pre-filtering or denoising approach, while some feature extractors such as en-
tropy, Lyapunov exponent, and fractal dimension methodologies generated poor results
because of noise and improper scaling range choice. The appropriate values for filter coeffi-
cients are crucial for the EEG analysis-based methods of filtering to produce sharp filtering
limits. Fast Fourier transform (FFT) has problems with noise sensitivity, time–frequency
localization, subpar spectrum calculation, and incorrectly localized peaks [32]. Despite
CNN-based methods offering the ability to extract and categorize features at the same time,
they necessitate greater amounts of memory. Additionally, the currently used methods
select their ML models based on empirical data. When numerous testing configurations
are used, a single ML algorithm cannot assure the same performance. Furthermore, the
majority of previous studies employed one method for EEG analysis. Moreover, they
obtained features from either time, frequency, or time–frequency domains. Nevertheless,
employing features from numerous domains and several analysis methods could improve
performance [33,34]. To overcome the previously mentioned limitations, this study pro-
poses a framework for ADHD detection based on EEG signals, multiple multi-resolution
analyses, and FS approaches. It extracts features from multiple domains including time and
time–frequency, and then combines them instead of relying on a single domain. In addition,
it utilizes several multi-resolution analysis methods to analyze EEG signals and remove
noise such as DWT, VMD, and EWT. Furthermore, ADHD-AID employs multiple feature
extraction approaches such as nonlinear features, band-power features, entropy-based
features, and statistical features.
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Table 1. Summary of the literature on ADHD recognition along with the limitations of each study.

Article Dataset Feature Extraction Feature Selection Models Accuracy Limitations

[21]
IEEE Dataport [38]
60 Healthy
61 ADHD

A total of 15 features including
power, energy, entropy, and
statistical-based features obtained
from EMD

GA ANN 96.16%

• Extracted features from a single domain.
• Employed individual classification models.
• Not very high accuracy.
• Did not search for the best electrode

placement on the skull.

[22]
IEEE Dataport [38]
60 Healthy
61 ADHD

A total of 41 statistical features
from the fifth mode of VMD-HT N/A EBM 99.81%

• Extracted features from a single domain.
• Obtained only nonlinear and statistical

features.
• Did not employ FS.
• High complexity of the models due to large

feature space.

[25]
Private Dataset
15 Healthy
18 ADHD

A total of 15 connectivity-based
features from different modes of
ITD

N/A Bagging Trees 99.46%

• Extracted features from a single domain.
• Did not employ FS.
• Depended on a private dataset.
• Did not search for the best electrode

placement on the skull.

[26]
IEEE Dataport [38]
60 Healthy
61 ADHD

ECMs using dPTE GA ANN 89.1%

• Extracted features from a single domain.
• Employed one method for feature extraction.
• Did not search for the best electrode

placement on the skull.
• Employed individual classification models.
• Low accuracy.

[23]
IEEE Dataport [38]
60 Healthy
61 ADHD

Employed EEG signals directly to
training models N/A Adaboost 84%

• Did not employ feature extraction.
• Did not perform FS.
• Low accuracy.
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Table 1. Cont.

Article Dataset Feature Extraction Feature Selection Models Accuracy Limitations

[6]
Private Dataset
50 ADHD
58 Healthy

PSD + entropy features +
bi-spectral features mRMR SVM 84.59%

• It depended on a private dataset.
• Did not search for the best electrode

placement on the skull.
• Employed individual classification models.
• Low accuracy.

[24]
IEEE Dataport [38]
60 Healthy
61 ADHD

A total of 10 statistical, power
spectral density, and
entropy-based features from the
time domain

PCA SVM 94.2%

• Features extracted from the time domain only.
• Few features were extracted.
• Employed individual classification models.
• Did not search for the best electrode

placement on the skull.
• Low accuracy.

[39]
Private Dataset
12 ADHD
12 Healthy

Linear univariate and
multi-variate features + nonlinear
univariate and multi-variate
features

N/A SVM 99.58%

• Extracted frequency from a single domain.
• Did not employ FS.
• Employed individual classification models.
• High feature dimension.
• Did not search for the best electrode

placement on the skull.

[31]
IEEE Dataport [38]
60 Healthy
61 ADHD

N/A N/A LSTM+GRU 95.33%

• Studied features from the temporal domain
only.

• High complexity of the classification models.
• Low accuracy.
• Did not search for the best electrode

placement on the skull.
• Depended on a private dataset relying on a

low number of subjects.
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Table 1. Cont.

Article Dataset Feature Extraction Feature Selection Models Accuracy Limitations

[32]
Private Dataset [40]
15 Healthy
15 ADHD

N/A N/A CNN 97.47%

• Studied features from spatial domain only.
• High complexity of the classification models.
• Not very high accuracy.
• Did not search for the best electrode

placement on the skull.
• Employed individual classification models.
• Employed a private dataset relying on a low

number of subjects.

[33]
Private Dataset
51 Healthy
50 ADHD

A total of 13 connectivity-based
features from the brain network N/A CNN 94.67%

• Obtained features from a single domain.
• Used one feature extraction approach.
• Huge feature dimension.
• The complexity of the classification model

was high.
• Did not employ FS.
• Employed individual classification models.
• Used a private dataset.
• Did not search for the best electrode

placement on the skull.

[34]
IEEE Dataport [38]
46 ADHD
45 Healthy

Dynamic connectivity tensor N/A Conv-LSTM 99.34%

• Used one feature extraction approach.
• The complexity of the classification model

was high.
• Did not employ feature selection.
• Did not search for the best electrode

placement on the skull.



Biomimetics 2024, 9, 188 9 of 30

Table 1. Cont.

Article Dataset Feature Extraction Feature Selection Models Accuracy Limitations

[35]
Private Dataset
44 Healthy
100 ADHD

N/A N/A EEGNet 83%

• Low accuracy.
• Employed a single classification model.
• The complexity of the classification model

was high.
• Did not employ feature selection.
• Did not search for the best electrode

placement on the skull.
• Dataset was private.
• Employed individual classification models.
• Unbalanced dataset.

[36]
IEEE Dataport [38]
60 Healthy
61 ADHD

VMD+RLMD N/A CNN 95.24%

• Obtained features from a single domain.
• Did not perform feature selection.
• Did not search for the best electrode

placement on the skull.
• High complexity of the classification model.

[37]
IEEE Dataport [38]
30 Healthy
31 ADHD

PSD frequency features using FT N/A CNN 94.52%

• Obtained features from a single domain.
• Did not perform feature selection.
• Did not search for the best electrode

placement on the skull.
• High complexity of the classification model.

N/A: Not applicable.
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3. Materials and Methods
3.1. Multi-Resolution Analysis

The nonlinear behavior, complexity, and nonstationary nature of the EEG wave make
it challenging to recognize and analyze in its original state. The decomposition of an EEG
wave into its multiple components is necessary to obtain comprehensive knowledge and
indicative features of the signal. Each method of analysis has its unique advantages; thus
in this study, multiple multi-resolution analysis approaches are employed and compared.

3.1.1. Variational Mode Decomposition

The original input is divided by VMD into a pre-determined amount of components
with distinct sparsity characteristics. Every mode’s frequency domain bandwidth is selected
as its level of sparsity. The procedures listed below can be employed for accessing each
mode’s bandwidth: (1) computing each mode’s unilateral range of frequencies using
the Hilbert transform, (2) shifting each mode’s frequency range into “baseband” by its
determined center frequency, and (3) utilizing squared L2 norm to calculate the bandwidth,
resulting in the subsequent restriction issue [41].

min
{hm},{wm}

∑m

∥∥∥∥∂t

[(
∂(t) +

j
πt

)
∗ hm(t)

]
e−jwmt

∥∥∥∥2

2
∑m hm = z (1)

[22]

where M is the overall amount of modes, wm is the frequency that corresponds to the mth

mode, and z(t) is the original signal. Utilizing Lagrangian multipliers (
→
λ ) and the quadratic

penalty factor (â), the restricted problem is transformed into an unrestricted one. This

results in the addition of
→
λ and â for improved convergence properties. The enhanced

Lagrangian is represented by the following equation [41]:

L
(
{hm}, {wm},

→
λ

)
= â∑m

∥∥∥∂t

[(
∂(t) + j

πt

)
∗ hm(t)

]
e−jwmt

∥∥∥2

2
+ ∥z(t)− ∑m hm(t)∥2

2+〈→
λ(t), z(t)−∑m hm(t)

(2)

[22]

3.1.2. Discrete Wavelet Transform

One well-liked method for transforming a signal that is discrete in time into its wavelet
representations, which demonstrates time–frequency details, is the discrete time wavelet
transform (DWT) [42]. In the DWT, there are in fact a number of wavelets that can be
generally categorized as orthogonal wavelets. The invention of the perpendicular form is
credited to Hungarian mathematician Alfréd Haar [43]. The signal (X) enters a low-pass
filter with an impulse response (L) in the DWT investigation, which results in a convolution
process, illustrated below.

DWT[n] = (X ∗ L)[n] = ∑∞
k=−∞ X[n]L[n − k] (3)

[44]

where k is the instance/sample and n is the decomposition level.
The input data are also subjected to the high-pass filter (H). The result is divided into

two sections: the detailed coefficients (D1), which come from the high-pass filter, and the
approximation coefficients (A1), which come from the low-pass filter [44]. The Nyquist rule
states that 50% of an input’s spectrum is removed. Therefore, the output of the low-pass
filter result in Figure 1 is decreased by two, and it is then analyzed again by crossing it
through additional high and low-pass filters, in which L and H are the low and high-pass
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filters’ impulse responses, respectively, while every single one of them is reduced by two,
as is apparent here:

DWTlow[n] = ∑∞
k=−∞ X[n]L[2n − k] (4)

[44]
DWThigh[n] = ∑∞

k=−∞ X[n]H[2n − k] (5)

[44]
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3.1.3. Empirical Wavelet Decomposition

The empirical wavelet transform (EMT) is a traditional completely adaptive signal
analysis method employed to analyze nonstationary data by choosing the right range of
frequency for band-pass filters. The extremely complicated EEG signal is subjected to
the EWT in order to be divided into detail coefficients (D1) that stand for high-frequency
components and approximation coefficients (A1) that provide low-frequency components.
In order to identify the frequency band with the most useful information, the approxima-
tion coefficient (A1) is once again divided into detail coefficient (D2) and approximation
coefficient (A2). The EWT is used for the decomposition of the EEG signals into an array of
band-limited modes and comprises the following steps:

Step 1: To obtain the frequency spectrum associated with the EEG waveform with the
desired frequency interval [0, π], FFT is applied to the input EEG data signals.

Step 2: To determine the edge frequency ranges {Ωj}j=0,1,2,. . .n, the EEG signals are
divided into n portions using the horizon identification approach. The frequency of the
edge Ω0 = 0 and Ωn = π. As a result, the frequency spectrum is written as [0, Ω1], [Ω1,
Ω2],. . ..[Ωn−1, π].

Step 3: To acquire capable coefficients from the segmented EEG portions, the EWT
function and the EWT scaling function are utilized.

To count n segments, the captured time-domain EEG signal X(t) is considered. Utiliz-
ing local maxima of X(t), the proper number of segments is determined, and the Fourier
spectrum of frequency [0, π] for each of them is assigned as Λn = [Ωn, Ωn]. One must take
into consideration the period of transition that revolves around each center, which is taken
as the one in which the inner product of the applied signal and the wavelet function are
used for calculating the detail coefficients.

3.2. EEG Dataset

The dataset “EEG data for ADHD/Control children” on IEEE Dataport [38] provides
an important resource for academics studying EEG activity in children with ADHD in
comparison to healthy controls. The dataset consists of recordings from 121 participants,
61 of whom have been diagnosed with ADHD (48 boys and 13 girls), with an average age
of 9.62 ± 1.75 years, and 60 are healthy controls (50 boys and 10 girls) with an average
age of 9.85 ± 1.77 years [46]. The participants are all between the ages of 7 and 12 years.
Qualified psychiatrists verified the ADHD diagnoses according to DSM-IV criteria. The
other participants were normal controls who did not have any neuropsychological disorders.
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The standard 10–20 system was used to collect EEG data from 19 electrode positions (Fp1,
Fp2, Fz, Cz, Pz, C3, T3, T4, F3, F4, F7, F8, P3, P4, T5, T6, O1, O2, Fp1, Fp2, Fz, Cz, and
Pz). Figure 2 shows the position placement of these electrodes. The EEG recordings were
performed with a standardized 19-channel system at a sampling frequency of 128 Hz to
ensure uniformity and enable in-depth analysis of brain wave patterns. Subjects engaged
in a visual attention task during the recordings, which required them to count cartoon
characters in order to stimulate neural activity associated with attention processing. The
character count ranged randomly from 5 to 16, and the images were sufficiently large for
simple viewing and counting. Each image was presented immediately after the child’s
response to maintain ongoing stimulation without interruption during the recording [47].
This dataset has the potential to enhance our comprehension of the neurophysiological
basis of ADHD and the creation of EEG-based tools for diagnosis or treatment.
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3.3. Proposed ADHD-AID Tool

The proposed automated detection tool named ADHD-AID has five steps, which are
EEG signal pre-processing, multi-resolution analysis and feature extraction, feature and
channel site fusion and selection, FS, and detection. Initially, the EEG signals are filtered and
segmented. Next, several multi-resolution analyses are used to decompose the segments
of the EEG signals. Furthermore, numerous feature extraction approaches are utilized to
extract features from time and time–frequency domains from each EEG electrode. After
that, features from the time and time–frequency domains are fused and different placement
sites are investigated using a sequential forward search. Afterward, various FS approaches
are applied to select a reduced set of features. Finally, five machine learning classifiers are
constructed and trained to detect ADHD. Figure 3 summarizes the steps of the proposed
automated tool ADHD-AID.
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3.3.1. EEG Signal Pre-Processing

The EEG data acquired from all electrodes are initially filtered by a band-pass IIR
Butterworth filter of order 6 with a frequency range from 0.5 Hz to 60 Hz during the pre-
processing phase. This frequency range is selected because it includes all of the important
EEG bands (delta, theta, alpha, beta, and gamma). Afterward, a 50 Hz IIR notch filter of
order 2 is applied to reduce the interference caused by the power lines. Each EEG signal is
segmented into four-second intervals. The aforementioned segmented intervals have labels
that are exactly the same as the EEG signals they originate from (control or ADHD). The
segmentation-based approach adopted in this study is consistent with the study approach
of multiple researchers who used a segmentation window size of 2–10 s in the research
they performed [32–34].

3.3.2. Multi-Resolution Analysis and Feature Extraction

In this step, three multi-resolution analysis (MRA) approaches are applied to the EEG
signals including VMD, DWT, and EWT. The EEG signal is decomposed into various fre-
quency bands using wavelet functions in DWT. Researchers can use wavelet coefficients to
detect and eliminate noisy elements while maintaining brain-related activity within specific
frequency bands. The author has decomposed EEG signals using one decomposition level
of DWT which results in approximation and detailed coefficients. Then, the approxima-
tion coefficients which resemble the denoised EEG version are used to extract features.
VMD breaks down the EEG signal into a sequence of intrinsic mode functions (IMFs) with
different frequency and amplitude features, along with residuals. VMD, unlike DWT,
dynamically identifies these components, possibly providing a more data-centric method
for eliminating noise. Researchers can achieve a cleaner EEG signal by carefully excluding
IMFs that are likely to be noise. In this study, the authors included only nine IMFs and
excluded residuals to reduce noise. EWT combines the advantages of DWT and VMD. DWT
breaks down the signal into wavelet packets of distinct frequencies, enabling precise noise
reduction in pre-determined frequency ranges. Pre-determined wavelets may not fully
capture the complexities of EEG noise. VMD accomplishes this by dynamically breaking
down the signal into IMFs according to their inherent characteristics. EWT bridges the gap
by employing wavelets for decomposition while integrating an adaptive sifting process
comparable to VMD. This iterative process identifies and separates noise components in
the IMFs, allowing for their elimination while maintaining the original brain activity in the
EEG signal. EWT provides a potentially better approach for cleaning EEG data by merging
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the structured breakdown of DWT with the data-driven adjustment of VMD. The present
study employs a maximum of nine peaks to ascertain the passbands of the EWT filter. If
EWT detects fewer peaks than the given number, it will utilize the maximum number of
peaks that are present. If no peaks are detected, EWT employs a level-one DWT filter bank.

After MRA, various complex attributes are extracted from segmented and denoised
EEG signals in the time domain and their time–frequency representations using VMD,
DWT, and EWT methods. To achieve this, some of the most significant prior works based
on EEG signal processing were carefully examined and I subsequently determined a set of
essential features. Based on the systematic review article [49] that examined and analyzed
the utilization of EEG indices to measure how well individuals perform in various cognitive
tasks, the common EEG indices used in the literature were selected. In addition, according
to the research article [50] that assessed and contrasted different types of EEG indices for
the identification of ADHD, those EEG indices that were capable of diagnosing ADHD
were employed in this study. An attempt to cover all significant feature types during that
process was conducted. These features include nonlinear features, band-power features,
entropy-based features, and statistical features. These feature extraction approaches are
summarized in Table 2. Samples of the segmented EEG signal after VMD and EWT MRA
are displayed in Figure 4. Note that the frequency boundaries are delta (1–4 Hz), theta
(4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–60 Hz) [4].

Table 2. A list of the feature extraction approaches.

Hjorth Activity [51] Renyi Entropy [52] Skewness [53]

Hjorth Mobility [51] Shanon Entropy [52] Kurtosis [53]

Hjorth Complexity [51] Log Energy Entropy [54] Auto Regressive Model [55]

Log Root Sum of Sequential Variation [51] Tsallis Entropy [52] Band-Power Alpha

Mean Curve Length [56] First Difference [57] Band-Power Beta

Mean Energy [56] Second Difference [57] Band-Power Theta

Mean Teager Energy [56] Normalized First Difference [57] Band-Power Gamma

Median [56] Normalized Second Difference [57] Band-Power Delta

Minimum [56] Variance [58] Ratio Band-Power Alpha Beta

Maximum [56] Standard Deviation [58] Arithmetic Mean [56]

3.3.3. Feature and Channel Site Fusion and Selection

In this step, features extracted from EEG signals in time and time–frequency domains
using VMD, DWT, and EWT methods are concatenated. Next, different electrode sites are
examined in a sequential forward search strategy. First, each electrode placement site is
ranked according to the detection accuracy achieved in the detection step. After that, the
site with the highest accuracy is set as the initial site set. Afterward, subsequent electrode
placement sites are added iteratively according to their rank. The search terminates when
all electrode placement sites are processed.

3.3.4. Feature Selection

In this step, the attributes of the chosen site set are subjected to an FS procedure in
order to determine a smaller set of attributes that influence detection efficiency. FS refers to
a collection of computational techniques that aim to identify the most appropriate features
out of the original set of features. FS is an effective method for dealing with extremely
multi-dimensional information since it can reduce feature dimensions and redundancy,
which can help with issues such as overfitting models. FS can also shorten the period of the
learning/detection time and simplify classifiers’ complexities. In FS, only those attributes
that satisfy pre-defined criteria or optimize specific computation methods are determined
and selected by FS algorithms. In this study, three FS approaches are employed to choose a
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reduced number of features. These FS approaches include analysis of variance (ANOVA),
Chi-squared (Chi2), and Kruskal–Wallis (KW).
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ANOVA [59] is a method used to analyze empirical information where a number
of attributes are determined according to different conditions that are recognized by a
single attribute or further classification of attributes. The one-way ANOVA technique
can be utilized for evaluating null hypotheses based on similar averages across various
populations. ANOVA can provide information regarding whether all averages have equal
significance or if there appears to be a disparity between the averages of various groups.

Chi2 is a popular FS approach that determines the deviation from the anticipated
distribution if an attribute’s occurrence is independent of its classification label [60].

Kruskal–Wallis (KW) is a method that calculates the score S by determining whether
the median of more than one class label is equal. Chosen features have discriminatory
ability. The attribute can only be chosen if it includes discriminatory information, which is
indicated by a score S close to “0” [61].

3.3.5. Detection

The final step of the ADHD-AID automated tool is detection. In this step, five machine
learning classifiers are employed including cubic-SVM (C-SVM), quadratic SVM (Q-SVM),
medium Gaussian SVM (M-SVM), k-nearest neighbor (kNN), and ANN. The effectiveness
of the classification algorithms is evaluated using k-fold validation (k = 10), in which the
data are divided at random into k portions for both training and testing. The classification
algorithm is created using k-1 portions during the training process, and the remaining k is
utilized for testing where an estimation of the model’s accuracy is achieved. This procedure
is repeated, where all time distant k-1 folds are utilized for testing, and the remaining k for
testing.

4. Parameter Setting

For VMD and EWT, the number of intrinsic mode functions are nine. The Symlets-5
mother wavelet is employed for DWT, where the number of decomposition levels are one
and other parameters are kept in their default values in MATLAB 2022a. Note that k = 3
and the Euclidean distance metrics are used for the k-NN classifier, whereas for the ANN,
two hidden layers are employed. Each hidden layer has 10 neurons with a rectified linear
unit activation function. For the SVM classifier, cubic, quadratic, and medium Gaussian
kernels are used. The box constraint level is one.

5. Detection Results

This section initially introduces the results of the five classification models fed with
features obtained from the segmented EEG signals in time and time–frequency domains ex-
tracted by VMD, DWT, and EWT methods for all of the channels. Next, the results achieved
using the concatenated features from the multiple domains are presented in parallel with
those attained using different electrode location sites. After that, the detection results of
the examination of several channel site fusions utilizing a sequential search strategy are
demonstrated. Finally, the performance metrics calculated after the FS approaches are
illustrated.

5.1. Multi-Domain Feature Extraction Results

This section compares the results of the five classifiers achieved using features ex-
tracted from segmented multi-dimensional EEG signals in the time domain and the
time–frequency domain. The time–frequency representations are obtained by using VMD,
DWT, and EWT multi-resolution analysis methods. The comparison of results is displayed
in Table 3. As can be seen in Table 3, the time domain features achieved peak accuracy
of 97.9%, 98.5%, 96.3%, 97.7%, and 96.4% for the Q-SVM, C-SVM, M-SVM, k-NN, and
ANN classifiers. Whereas for DWT-based features, the accuracy is slightly lower than that
of the time domain features and equal to 97.7%, 98.2%, 96.2%, 97.9%, and 95.5% for the
Q-SVM, C-SVM, M-SVM, k-NN, and ANN classifiers. In addition, the accuracy attained
using EMT-based features is 96.8%, 97.9%, 95.6%, 98.1%, and 94.9% for the Q-SVM, C-SVM,
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M-SVM, k-NN, and ANN classifiers, and for the VMD-based features, the accuracy is 96.3%,
97.3%, 94.5%, 97.1%, and 94.1% for the same classifiers. These accuracies indicate that the
time domain and DWT-based features have comparable performance and are higher than
those obtained by EWT and VMD.

Table 3. Detection accuracy (%) for time and time–frequency domain features (VMD, DWT, and
EMT).

Method Q-SVM C-SVM M-SVM k-NN ANN

Time 97.9 98.5 96.3 97.7 96.4

DWT 97.7 98.2 96.2 97.9 95.5

EWT 96.8 97.9 95.6 98.1 94.9

VMD 96.3 97.3 94.5 97.1 94.1

5.2. Electrode Placement Site Results

The time and time–frequency domain features (VMD, DWT, and EMT) are merged and
then different electrode locations are investigated. The results of the classification models
fed with fused time and time–frequency domain features for each electrode placement
are presented in Table 4. The results in the table indicate that the combined features of
frontal location achieved the highest accuracy, 91.2%, 93.5%, 90.1%, 95.1%, and 88.8% for the
Q-SVM, C-SVM, M-SVM, k-NN, and ANN classifiers. Afterward, those features obtained
by the temporal site reached an accuracy of 89.5%, 91.6%, 87.5%, 92.4%, and 86.9% for
the Q-SVM, C-SVM, M-SVM, k-NN, and ANN classifiers. Subsequently, parietal position
features accomplished an accuracy of 88.1%, 90.6%, 87.3%, 92.7%, and 85.9% for the Q-SVM,
C-SVM, M-SVM, k-NN, and ANN classifiers. Following that, the accuracy attained by
features of central electrode position was 84.3%, 87.4%, 83.6%, 88.3%, and 82.0% for the
Q-SVM, C-SVM, M-SVM, k-NN, and ANN classifiers. Afterward, the occipital electrode
site’s features reached an accuracy of 83.5%, 84.2%, 82.3%, 86.1%, and 80.6% for the Q-
SVM, C-SVM, M-SVM, k-NN, and ANN classifiers. According to the detection accuracies
achieved by each electrode position, these locations have been ranked in descending order
and then investigated using a sequential forward strategy to search for the best combination
of sites that influence the performance of ADHD-AID.

Table 4. Detection accuracy (%) for combining time and time–frequency domain features at different
electrode locations.

Electrode Locations Q-SVM C-SVM M-SVM k-NN ANN

Pre-Frontal 82.9 86.1 81.6 86.9 81.0

Frontal 91.2 93.5 90.1 95.1 88.8

Central 84.3 87.4 83.6 88.3 82.0

Parietal 88.1 90.6 87.3 92.7 85.9

Temporal 89.5 91.6 87.5 92.4 86.9

Occipital 83.5 84.2 82.3 86.1 80.6

5.3. Electrode Site Selection Results

The results of investigating fusing electrode positions using a sequential forward
strategy are demonstrated in this section. Table 5 shows the detection accuracy for the
combination of electrode sites. It can be observed from Table 5 that the detection accuracy
starts to increase by adding more electrode positions. This is because initially, with the
combined features of frontal electrodes alone, the accuracy is 91.2%, 93.5%, 90.1%, 95.1%,
and 88.8% for the Q-SVM, C-SVM, M-SVM, k-NN, and ANN classifiers. This accuracy
keeps on increasing by considering more electrode locations until it reaches 98.2%, 98.8%,
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97.1%, 98.5%, and 96.6% using the same classifiers fed with the fused features of the
temporal plus frontal plus parietal plus central plus occipital plus pre-frontal electrode
sites. The results indicate that employing more electrode sites has a positive impact on the
detection accuracy at the cost of an increase in the feature space dimensionality.

Table 5. Detection accuracy (%) for investigating fusing electrode positions using a sequential forward
strategy.

Electrode Locations Q-SVM C-SVM M-SVM k-NN ANN

Frontal 93.5 90.1 95.1 88.8 91.2

Temporal + Frontal 95.7 97.0 94.4 97.2 93.7

Temporal + Frontal + Parietal 97.5 98.1 95.7 97.9 95.4

Temporal + Frontal + Parietal + Central 97.4 98.4 96.5 98.1 95.9

Temporal + Frontal + Parietal + Central + Occipital 97.8 98.6 96.9 98.2 96.0

Temporal + Frontal + Parietal + Central + Occipital + Pre-Frontal 98.2 98.8 97.1 98.5 96.6

5.4. Feature Selection Results

As mentioned earlier, the addition of more electrode locations improves the perfor-
mance; however, it also makes the dimension of the feature space huge, which increases
the complexity and training duration of the classification models. Thus, in this study, three
FS approaches are employed to reduce the dimensionality of feature space. The results of
the three FS methods are compared and displayed in Table 6. For the Chi2 FS approach,
the highest accuracies (98.9% and 98.8%) are achieved using C-SVM and k-NN classifiers
with 1500 features, followed by the Q-SVM (98.4%) with 2000 features. Subsequently, the
M-SVM and ANN achieve an accuracy of 97.3% and 96.8% utilizing 2000 and 1500 features,
respectively, whereas for the ANOVA FS approach, the peak accuracies (99.1% and 98.6%)
are attained by the C-SVM and k-NN with 1000 features. Following that, the Q-SVM,
M-SVM, and ANN classifiers reach an accuracy of 98.4%, 97.3%, and 96.9% using 2000,
2000, and 1000 features, respectively. Meanwhile for the KW FS approach, the C-SVM and
k-NN accomplish the maximum accuracy of 99% and 98.7% using 1000 features. Next,
the Q-SVM, M-SVM, and ANN classifiers attain an accuracy of 98.4%, 97.5%, and 97.1%
using 1500 features. Note that the accuracies accomplished with the three FS approaches
are greater than those displayed in Table 5 but with a lower number of features obtained
from all features of the 19 electrodes (2508 features).

Table 6. Detection accuracy (%) after the FS step using the three FS methods.

Features Q-SVM C-SVM M-SVM k-NN ANN

Chi2

1000 98.0 98.7 96.6 98.7 96.6

1500 98.3 98.9 96.9 98.8 96.8

2000 98.4 98.9 97.3 98.7 96.8

ANOVA

1000 98.3 99.1 97.8 98.6 96.9

1500 98.3 98.9 97.8 98.5 96.7

2000 98.4 98.8 97.3 98.6 96.4

Kruskal–Wallis (KW)

1000 98.1 99.0 97.0 98.7 96.7

1500 98.4 99.0 97.5 98.7 97.1

2000 98.4 98.9 97.3 98.6 96.4
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Other performance metrics including sensitivity, precision, specificity, MCC, and
F1-score are further calculated for the highest scenario achieved for each classification
model in Table 6. It can be noticed that the sensitivity, specificity, precision, F1-score, and
MCC for the C-SVM and M-SVM are (98.9% and 96.6%), (99.2% and 98.7%), (98.9% and
98.3%), (98.9% and 97.5%), and (98.2% and 95.5%) using the 1000 features selected by the
ANOVA FS approach. Meanwhile, for Q-SVM and ANN, the 1500 features chosen using
the KW FS method lead to a sensitivity, specificity, precision, F1-score, and MCC of (97.7%
and 96.6%), (98.9% and 97.5%), (98.7% and 96.9%), (98.2% and 96.8%), and (96.7% and
94.2%), respectively. However, for k-NN, the sensitivity, specificity, precision, F1-score,
and MCC achieved utilizing the 1500 picked by the Chi2 FS approach are 98.7%, 98.9%,
98.6%, 98.6%, and 97.5%, respectively. The confusion matrices employed to calculate these
performance metrics achieved after the FS step for the best scenario for each classification
model mentioned before are shown in Figure 5.

It can be noted from Table 7 that Q-SVM outperforms all other FS methods and feature
counts in terms of achieving the highest F1-score, with scores ranging from 97.5% to
98.2%. C-SVM excels when combined with ANOVA FS, yielding F1-scores ranging from
98.5% to 98.9%. Its performance diminishes marginally when compared to other feature
selection methods. The M-SVM classifier has the lowest F1-score compared to the other
two classifiers, with F1-scores ranging from 97.1% to 97.5%. k-NN consistently performs
well, with F1-scores of approximately 98.6% across various FS methods and feature counts.
ANN exhibits the worst performance among all classifiers, with F1-scores varying from
96.3% to 96.8%.

Table 7 shows that all classifiers demonstrated high precision ranging from 96.2%
to 98.9% and specificity ranging from 98.2% to 99.2%, suggesting a strong capability to
accurately distinguish between positive and negative cases.

Table 7. Performance metrics (%) after the FS step for the best scenario for each classifier.

FS Method Features
Number Sensitivity Specificity Precision F1-Score MCC

Q-SVM KW 1000 97.2 98.8 98.5 97.8 96.2

Q-SVM KW 1500 97.7 98.9 98.7 98.2 96.7

Q-SVM KW 2000 97.5 98.8 98.5 98.0 96.4

C-SVM ANOVA 1000 98.9 99.2 98.9 98.9 98.2

C-SVM ANOVA 1500 98.6 99.1 98.9 98.7 97.7

C-SVM ANOVA 2000 98.5 99.0 98.7 98.6 97.5

M-SVM ANOVA 1000 96.6 98.7 98.3 97.5 95.5

M-SVM ANOVA 1500 97.0 98.5 98.1 97.5 95.6

M-SVM ANOVA 2000 96.5 98.2 97.6 97.1 94.8

k-NN Chi2 1000 98.3 98.9 98.6 98.6 97.2

k-NN Chi2 1500 98.7 98.9 98.6 98.6 97.5

k-NN Chi2 2000 98.6 98.9 98.6 98.6 97.4

ANN KW 1000 96.4 96.9 96.2 96.3 93.3

ANN KW 1500 96.6 97.5 96.9 96.8 94.2

ANN KW 2000 96.4 97.0 96.3 96.4 93.5
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Figure 5. Confusion matrices after the FS step for the best scenario for each classifier. 
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Sensitivity is high for all classifiers, ranging from 96.5% to 99.2%, except for M-SVM,
which has a slightly lower sensitivity ranging from 96.5% to 97.0%. Some positive cases
may go undetected by M-SVM. It can be concluded from Table 7 that Q-SVM appears to be
the most resilient classifier when tested with various FS methods and feature quantities.
Utilizing ANOVA FS with C-SVM could enhance accuracy, although other classifiers
demonstrate similar performance even without FS.

A confusion matrix is a key tool for assessing the effectiveness of classification models
in machine learning. The tabulated structure displays a comparison between the model’s
predicted classes and the true (actual) classes. The matrix comprises essential components
which are TP, TN, FP, and FN. Comprehending the outcomes of a confusion matrix is
essential for assessing the capabilities and limitations of a classification model while making
well-informed decisions for enhancement. For Q-SVM, the TN and TP are 3513 and 4513,
while FN and FP are 48 and 84. For C-SVM, the TN and TP are 3560 and 4524, while FN
and FP are 37 and 37. In the case of the M-SVM classifier, the TN and TP are 3476 and 4501,
while FN and FP are 60 and 121. Whereas in the case of k-NN, the TN and TP are 3549 and
4510, while FN and FP are 51 and 48. For ANN, the TN and TP are 3476 and 4449, while
FN and FP are 112 and 121. The receiving operating characteristic (ROC) curves for the
best scenario for each classifier are plotted and displayed in Figure 6. Furthermore, the area
under the ROC curves (AUC) is determined and displayed in Figure 6. The ROC curve
illustrates the balance between a classifier’s true positive rate and false positive rate at
different classification thresholds. The AUC measures the model’s capacity to differentiate
between classes. An AUC of 1.0 signifies an ideal classifier that can perfectly distinguish
between positive and negative instances, whereas an AUC of 0.5 suggests a model that
performs no better than random chance. The ROC results show outstanding discriminating
capabilities for all classifiers, with AUC values very near to 1.0. The M-SVM classifier
obtained an AUC of 0.9975, demonstrating superior capability in distinguishing between
positive and negative instances at different classification thresholds. Closely behind are
C-SVM with an AUC of 0.9958 and k-NN with an AUC of 0.9971, both showing exceptional
classification performance. Q-SVM and ANN demonstrate strong performance, with AUC
values of 0.9943 and 0.9895, respectively, slightly below the other three classifiers. The
results indicate that all models could be useful in a diagnostic or classification scenario
where accurate discrimination is crucial.
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6. Discussion

This study introduces an ML-based tool for automatically detecting ADHD. The
present study employs various MRA techniques to analyze EEG waves and eliminate
background noise in order to address the limitations identified in the literature. In the
research procedure, thirty features are retrieved from the time and time–frequency domains
to detect ADHD, comprising nonlinear features, band-power features, entropy-based
features, and statistical features. This study also examines the optimal EEG location of
electrodes to identify ADHD, identifying the location configurations that have the most
significant effect on detection accuracy. Various feature selection strategies are utilized
to determine which features are most likely to impact the diagnosis of ADHD, thereby
decreasing the complexity and training duration of the classification process.

The MRA results indicated that features obtained through DWT are more accurate
compared to those acquired through empirical wavelet transform (EWT) and variational
mode decomposition (VMT). The time domain features achieved similar accuracy to the
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DWT features. By integrating time domain features with three multi-resolution analysis
methods (DWT, EWT, and VMD) and by examining various electrode positions, it was
observed that the frontal position significantly influences performance more than other
electrode locations. When seeking the optimal electrode location, combining all electrode
sites was found to have the greatest impact on performance, despite the drawback of
increasing feature space dimensions and training complexity. The results showed that
using various feature selection approaches led to a reduction in feature dimensionality,
resulting in improved detection accuracy.

Figure 7 shows a comparison between the peak performance reached in MRA and the
resulting fusion of electrode sites. The data confirm that accuracy improves after combining
electrode sites and merging features from multiple multi-resolution analyses. The accuracy
was enhanced through multiple feature selection approaches, resulting in a reduced number
of features. The final accuracies obtained after the FS step are 98.4% for Q-SVM, 99.1% for
C-SVM, 97.8% for M-SVM, 98.8% for k-NN, and 97% for ANN classifiers. These accuracies
were obtained by utilizing 1500 features for Q-SVM, k-NN, and ANN, using the KW FS
technique for Q-SVM and ANN, and the Chi2 FS method for k-NN. On the other hand,
the accuracy values for C-SVM and M-SVM were acquired using 1000 features with the
ANOVA FS method.
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Figure 7. Detection accuracy comparison between the highest performance achieved during multi-
resolution analysis of the electrode site fusion.

6.1. Comparative Analysis

In order to confirm the competitive capabilities of the proposed ADHD-AID automated
tool, the performance measurements achieved by ADHD-AID are compared with recent
related studies based on the same ADHD IEEE Dataport dataset. The comparison is
illustrated in Table 8. It can be concluded from Table 8 that the proposed ADHD-AID tool
has a significant competing ability. This is obvious as ADHD-AID has an outstanding
performance compared to existing studies for ADHD detection. The accuracy, sensitivity,
specificity, F1-score, and MCC achieved by ADHD-AID are 0.991, 0.989, 0.992, 0.989, and
0.982, which are greater than those obtained by previous studies. The reason for this is
that in contrast to other studies based on a larger number of features [21,24], ADHD-AID
extracts thirty features including nonlinear features, band-power features, entropy-based
features, and statistical features. Furthermore, ADHD-AID acquires these features from
time and time–frequency domains of several multi-resolution analysis approaches such as
VMD, DWT, and EWT, which is not the case in previous studies [21,23,24,26,36]. In addition,
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it employs an FS approach to select the influential features that impact performance, in
contrast to other studies [23,31,36,62].

Table 8. Comparative performance analysis with recent related studies based on the same ADHD
IEEE Dataport dataset.

Article Feature Extraction Feature
Selection Models Accuracy Sensitivity Specificity F1-Score MCC

[21]

A total of 15 features
including power,
energy, entropy, and
statistical-based
features obtained
from EMD

GA ANN 96.16% - - 96.32% 92.0%

[26] ECMs using dPTE GA ANN 89.1% - - - -

[23]
Employed EEG
signals directly with
training models

N/A Adaboost 84% 96.0% 70.0% - -

[24]

A total of 10
statistical, power
spectral density, and
entropy-based
features from time
domain

PCA SVM 94.2% - - - -

[31] N/A N/A LSTM+GRU 95.33% 96.20% 95.80%

[36] VMD + RLMD N/A CNN 95.24% - - - -

[62]
Cross-recurrence
plots + Welch power
spectral distribution

N/A N/A 97.24% 97.0% 94.0% - -

Proposed
ADHD-
AID

A total of 30 features
(nonlinear features,
band-power features,
entropy-based
features, and
statistical features)
from time and
time–frequency
domains of VMD,
DWT, and EWT

ANOVA C-SVM 99.10% 98.9% 99.2% 98.9% 98.2%

N/A: Not applicable.

6.2. Limitations and Upcoming Works

This study has a number of constraints. The main restriction is the small number of col-
lected samples in the dataset employed. Because of the restrictions on the clinical gathering
of data, there were limits on the dataset’s size and the number of subjects, which make the
findings less convincing. Another limitation is due to the unavailability of public datasets
for ADHD detection among children. This study only utilized one public dataset. A further
drawback is that considering the diversity of ADHD individuals [63], the subgroup of
children with ADHD had not been considered. By employing a sizable and evenly matched
sample of adolescents, more thorough analyses will be carried out to validate this tool. The
present study did not employ deep learning, explainable AI, and uncertainty quantification
approaches. Future work will take into account deep learning techniques [64] including
LSTM and CNN [65], explainable AI approaches [66] such as Gradient-weighted Class
Activation Mapping (Grad-CAM) [67], as well as uncertainty quantification approaches like
the Bayesian method. This study also did not use ensemble techniques [68], so further work
will include ensemble techniques instead of using individual models. In the upcoming
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work, the proposed model can be applied to detect other diseases and can be involved in
more EEG applications such as emotion recognition and personal identification.

EEG features are currently improbable as an independent diagnostic method for
ADHD. EEG shows potential for studying the neurophysiological mechanisms of ADHD,
similar to how structural or functional brain imaging is used, without replacing a thorough
clinical evaluation. The author firmly believes that a comprehensive clinical assessment
following DSM criteria, which includes input from parents, teachers, and possibly other
experts, is essential for diagnosing ADHD. However, the EEG criteria-based ML tool was
developed as an adjunct, not as the sole determinant in diagnosing ADHD. The proposed
tool is an aiding tool that aids physicians by combining their clinical expertise with EEG to
accomplish accurate detection.

It is worth mentioning that the EEG is not the best approach for detecting function
localization. Future work will consider using magnetic resonance imaging (MRI), functional
MRI (fMRI), diffusion tensor imaging, or positron emission tomography (PET) [69,70].
Also, this study employed only 19 EEG electrodes. Future work will consider using more
electrodes for a comprehensive independent analysis of the components and to exclude the
biological artifacts. Furthermore, EMG, oculography, and ECG will be performed. Since
the EMG of the frontal muscles of the scalp tone is increased in patients with ADHD, it is
very important to consider EMG in upcoming investigations.

Additionally, not providing the frequency analysis of individual alpha peaks is one
of the limitations of this study since the individual frequency of the alpha peak is the
key to determining the boundaries of other frequency ranges. Moreover, it is known that
the individual alpha peak frequency in an eyes-closed condition is decreased in patients
with ADHD [71,72]. Upcoming work will consider performing frequency analysis of
individual alpha peaks and studying the individual alpha peak frequency in eyes-closed
cases for patients with ADHD. Also, the frequency of the alpha peak, the level of neuronal
activation, and the EMG tone of the frontal muscles depend on the hormonal state of
women; for example, the frequency is higher in the luteal phase (progesterone phase) and
lower in the menstrual, follicular, and pre-menstrual phases. Accordingly, it is necessary
to take this fact into account when assessing EEG activity and when conducting machine
learning. Unfortunately, the present study did not investigate the gender factor when
evaluating EEG activity and when operating machine learning, which will be taken into
consideration in future work. Furthermore, the potential future extensions of this work
include the incorporation of EEG channel selection methods and the detection of children’s
neurodevelopmental conditions aside from ADHD. Upcoming work will also conduct
experiments employing the leave-one-subject-out cross-validation procedure to look for
subject-wise accuracy levels, taking into account long EEG signals.

More EEG data will be analyzed, focusing on features associated with ADHD patho-
physiology. This will enable us to recognize patterns in the cleaned signals that could be
more pertinent to comprehending the fundamental mechanisms of ADHD. Furthermore, a
more thorough analysis will be conducted to compare the ADHD group with the control
group. This will entail statistically comparing the identified features to determine if the
denoising process uncovered any notable differences in brain activity patterns associated
with ADHD. In addition, upcoming research will concentrate on interpreting the results
in relation to the current understanding of ADHD and EEG. This will connect technical
analysis with its potential implications for real-world clinical practice.

7. Conclusions

This study presented an aiding tool called ADHD-AID that assists physicians by
integrating their clinical experience with EEG to achieve accurate detection of ADHD.
Contrary to previous research that obtained few feature extraction approaches to extract
features from a single domain, this study employed a large variety of features. ADHD-AID
obtained these features from time domains as well as various multi-resolution analysis
methods including VMD, DWT, and EWT. Furthermore, ADHD-AID explored the impact
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of different electrode locations on ADHD detection accuracy. It also investigated the
influence of fusing features from multiple domains and different sites on the detection
performance. The raw EEG signals do not offer a lot of useful discriminating information.
Consequently, thirty attributes are retrieved in this study including nonlinear features,
band-power features, entropy-based features, and statistical features. The outcome of this
research demonstrated that the frontal area is essential for identifying ADHD in children.
In addition, the results proved that merging features from the time domain and several
time–frequency domain approaches can boost performance. The findings also showed
that combining more electrode sites can enhance performance at the cost of an increase
in feature space dimension. Thus, when employing multiple FS approaches including
Chi2, ANOVA, and KW to reduce the huge dimensionality, the results indicated that the
three FS approaches were capable of improving performance while lowering the number of
features employed to train the classification model, which consequently reduced training
complexity and duration. The results proved that the suggested ADHD-AID tool has a
remarkable capacity for learning to detect the fundamental variation in ADHD-affected
kids, and this finding offers a chance for comprehending the possible mechanism of ADHD
and for developing an exceptionally reliable secondary detection system.
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Abbreviations

AI Artificial intelligence
ADHD Attention deficit hyperactivity disorder
ANN Artificial neural networks
ANOVA Analysis of variance
Chi2 Chi squared
Conv-LSTM Convolutional long short-term memory
CNN Convolutional neural network
C-SVM Cubic support vector machine
dPTE Directed phase transfer entropy
DWT Discrete wavelet transform
EBM Explainable boosted machine
ECM Effective connectivity matrices
EEG Electroencephalography
EMD Empirical mode decomposition
EWD Empirical wavelet transform
EVD Empirical variational decomposition
FFT Fast Fourier transform
fMRI Functional magnetic resonance imaging
FN False negative
FP False positive
FS Feature selection
GA Genetic algorithm
Grad-CAM Gradient-weighted Class Activation Mapping
GRU Gated recurrent network
HT Hilbert transform
ITD Intrinsic time-scale decomposition
k-NN k-nearest neighbors
KW Kruskal–Wallis
LRM Layer-wise Relevance Propagation
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LSTM Long short-term memory
MCC Mathew correlation coefficient
ML Machine learning
MRA Multi-resolution analysis
MRI Magnetic resonance imaging
mRMR Minimum redundancy and maximal relevance
M-SVM Medium Gaussian support vector machine
PCA Principal component analysis
Q-SVM Quadratic support vector machine
RLMD Robust local mode decomposition
SVM Support vector machine
TN True negative
TP True positive
VMD Variational mode decomposition
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