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Abstract: This study explores the efficacy of metaheuristic-based feature selection in improving
machine learning performance for diagnosing sarcopenia. Extraction and utilization of features
significantly impacting diagnosis efficacy emerge as a critical facet when applying machine learning
for sarcopenia diagnosis. Using data from the 8th Korean Longitudinal Study on Aging (KLoSA),
this study examines harmony search (HS) and the genetic algorithm (GA) for feature selection.
Evaluation of the resulting feature set involves a decision tree, a random forest, a support vector
machine, and naïve bayes algorithms. As a result, the HS-derived feature set trained with a support
vector machine yielded an accuracy of 0.785 and a weighted F1 score of 0.782, which outperformed
traditional methods. These findings underscore the competitive edge of metaheuristic-based selection,
demonstrating its potential in advancing sarcopenia diagnosis. This study advocates for further
exploration of metaheuristic-based feature selection’s pivotal role in future sarcopenia research.

Keywords: metaheuristic; feature selection; genetic algorithms; harmony search; machine learning;
sarcopenia

1. Introduction
1.1. Background and Purpose of Study

Sarcopenia, a geriatric condition characterized by diminished skeletal muscle mass and
function, poses heightened risks of falls, fractures, and physical impairment. Prevalence
of the condition increases notably among individuals in their 80s compared to those in
their 60s and 70s. This suggests a potential rise in affected individuals, coinciding with
increased life expectancy. Consequently, addressing sarcopenia has become imperative as
we navigate an era dominated by aging demographics. However, despite its significance,
the precise mechanisms underlying sarcopenia remain elusive, confounding attempts to
pinpoint causative factors [1–3].

Efforts to tackle this challenge have led to studies employing machine learning method-
ologies in sarcopenia diagnosis, offering novel insights beyond human capacity. Some
methodologies integrate diverse datasets, such as microarrays, surveys, or imaging data,
to discern crucial patient features for diagnosis [3–5]. For instance, Kang et al. [5] uti-
lized a random forest algorithm to select features based on various clinical criteria. The
study acknowledges a limitation in feature selection, which is heavily dependent on ex-
pert knowledge. This prompts exploration into the possibility of computer algorithms
autonomously identifying diagnostic features. However, the escalating number of features
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presents challenges in identifying the optimal feature set, necessitating the implementation
of algorithms capable of robust performance in selection.

This study aims to experimentally validate the potential of employing a metaheuristic
algorithm for sarcopenia diagnosis through feature selection. Leveraging survey-based data,
we conducted experiments using the genetic algorithm and harmony search, among other
metaheuristic approaches, to identify suitable feature sets. Comparative analysis against
conventional algorithms shed light on the efficacy of metaheuristic-based approaches in
machine learning for sarcopenia diagnosis.

The remainder of this paper is organized as follows. In the rest of Section 1, we review
related work and introduce the contributions of our work. In Section 2, we explain the
proposed method in this study, followed by the experimental setup process in Section 3
and the results in Section 4. Section 4 also includes a summarization and discussion of our
results. Finally, we conclude with contributions and limitations of the work in Section 5.

1.2. Related Work and Contributions of the Study

While sarcopenia’s recognition as a disease is relatively recent, researchers have
diligently pursued its diagnosis and the identification of contributing factors. Numerous
studies have strived to establish diagnostic criteria and employ diverse methods—from
exercise testing to IoT-enabled body measurements—to pinpoint sarcopenia [6]. Survey-
based investigations, such as those using data from the National Health and Nutrition
Examination Surveys (NHANES) by the Centers for Disease Control and Prevention (CDC),
revealed potential links between sarcopenia susceptibility and inflammatory diets and
non-alcoholic fatty liver [7,8]. Past surveys heavily relied on statistical techniques such as
correlation and feature analysis to unravel sarcopenia-associated factors.

Machine learning has emerged as a potent tool for enhancing sarcopenia defini-
tion and diagnosis, uncovering patterns beyond human observation, and gaining deeper
insights [9,10]. Ongoing research explores machine learning’s role in diagnosing and under-
standing sarcopenia and promising results have been achieved using various datasets and
methodologies [11,12]. Some studies utilize machine learning to unveil sarcopenia factors
and predict their occurrence from clinical records [5,13]. Researchers additionally explore
cutting-edge technologies such as MRI and CT imaging, deep learning, or reinforcement
learning techniques for sarcopenia diagnosis. Innovative systems that integrate cloud
computing have also been investigated [3,14,15].

However, limitations for traditional studies, particularly in machine learning method-
ologies, are being debated. The issues include limited data access, imbalanced data, and
feature selection complexities that pose challenges, especially with excess features impact-
ing diagnostic accuracy [6,9]. Furthermore, related work also has certain limitations. As
prior survey-based investigations predict sarcopenia using statistical techniques, the meth-
ods necessitate intricate calculations and rules for identifying diagnostic criteria or factors.
The studies applying machine learning to diagnose sarcopenia and identify crucial factors
are constrained by the requirement of human intuition and domain-specific knowledge
data. Consequently, all preceding research is restricted by the potential for direct human
intervention in judgment. This prompts whether machines can autonomously diagnose
sarcopenia without human assistance and screen for its contributing factors.

This study aims to enhance feature selection by introducing metaheuristics, specifically
harmony search and the genetic algorithm, to bolster sarcopenia diagnosis performance.
The experimentation distinguishes itself by addressing previous concerns through meta-
heuristic applications. It highlights the effectiveness of these methods in sarcopenia diag-
nosis and provides valuable insights for future research considerations. Indeed, this study
holds significance for introducing a metaheuristic approach to sarcopenia research and
discussing its effectiveness and limitations. Through a series of experiments, we demon-
strate the application of metaheuristics into machine learning for sarcopenia diagnosis and
assess their performance relative to other algorithms. Furthermore, our work contributes
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to the field by indicating that algorithms can enhance sarcopenia diagnosis performance
independent of human knowledge domains and facilitate factor screening.

2. Materials and Methods
2.1. Diagnosing Sarcopenia

The development of sarcopenia involves a complex interplay influenced by diverse
factors such as age, gender, race, and environment. Ongoing comprehensive research is
necessary to fully comprehend it and establish clear diagnostic criteria [6]. Both the Asian
Working Group for Sarcopenia (AWGS) and the European Working Group for Sarcopenia
(EWGS) have pinpointed low muscle mass, strength, and physical activity capacity as
critical diagnostic criteria and have proposed guidelines accordingly [6,16,17].

Diagnostic tools such as SARC-F incorporate muscle strength, assisted walking, rising
from a chair, stair climbing, and falls to diagnose sarcopenia [18]. Other measurements such
as gait speed [19] and the Timed Up and Go (TUG) test [20], not covered by SARC-F, have
also been utilized due to their established link with sarcopenia. While some studies use a
combination of metrics such as SARC-F, others independently leverage specific metrics for
diagnosing sarcopenia [16,18,20]. Additionally, studies have explored indirect prediction
of sarcopenia through patient data [5,11,12], often employing feature selection to identify
causative factors, yielding varying results in features and accuracy [21,22].

Direct diagnosis through muscle strength remains a prominent approach, providing a
convenient and easily applicable metric in diverse clinical scenarios, particularly for early-
stage sarcopenia detection [6,16]. Diagnosing sarcopenia with muscle strength challenges
such as differing diagnostic criteria among ethnicities and regions highlights the need
for standardized measurement methods [6,23,24]. However, measuring muscle strength,
particularly handgrip strength, retains its validity as a diagnostic criterion. This is due to
its simplicity, convenience, and consistency in delineating sarcopenia diagnostic criteria,
including upper body function [23,25]. In particular, Verstraeten et al. [26] explain that
handgrip strength may be a more useful diagnostic indicator than the rising from a chair
test because of its ability to predict adverse outcomes. Therefore, we decided to diagnose
sarcopenia using handgrip strength in this study.

2.2. Feature Selection

Feature selection in machine learning involves selecting pertinent features related to
predicted data and utilizing them for learning. Unlike feature extraction, which generates
a new set of relatively low-dimensional features from existing ones, feature selection
specifically picks and incorporates only the necessary features for learning. Thereby,
feature selection filters out relatively irrelevant features, presenting an advantage [27].

Guyon and Elisseeff [28] highlight numerous benefits of feature selection in machine
learning. They explain these benefits, which include enhancing data visualization and
understanding, reducing computational complexity, and mitigating the curse of dimen-
sionality. This eliminates unnecessary features in high-dimensional data, proving its
significance in successful machine learning applications [27,29].

Feature selection algorithms fall into three broad categories: filter method, wrapper
method, and embedded method. The filter method evaluates each feature independently
using the predicted label, while the wrapper method employs a predefined algorithm’s
performance to assess selected features. The embedded method integrates feature selection
during machine learning model training, acting as a middle ground between the two
methods [28,29]. Although computationally less intensive, the filter method might yield
suboptimal solutions for machine learning. In contrast, the wrapper method’s disadvantage
lies in its extensive search space, which could be more problematic in high-dimensional
datasets. Conversely, low-dimensional datasets mitigate this disadvantage due to smaller
search spaces [29].

Solving the feature selection problem exhaustively by inspecting all feature sets is
impractical given the exponential growth in possible subsets with the number of features.
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An optimal solution through exploring all possible feature sets is infeasible due to its
exponential complexity [30,31]. Hence, employing metaheuristic-based algorithms becomes
pertinent as they explore a subset of the solution space to identify the optimal feature set,
avoiding exhaustive exploration. These algorithms, combined with optimization methods,
efficiently find high-quality solutions with minimal computational efforts. This emphasizes
the potential of metaheuristic-based feature selection [30,32,33]. Therefore, this study opts
for a metaheuristic-based algorithm for feature selection.

2.3. The Genetic Algorithm

The genetic algorithm (GA), initially conceptualized by Holland in 1975 as a mimicry
of biological evolution, simulates the evolution of individuals to discover optimized so-
lutions. Similarly to the combination and mutation of genes in living organisms, these
algorithms utilize crossover and mutation operations to generate new individuals, gradu-
ally converging toward a specific solution over generations [34].

However, genetic algorithms require a definitive overarching rule, which leads to
no assurance of finding the required answer. The nature of convergence might limit the
solution to a suboptimal result without guaranteeing the best solution [35]. Despite this,
their efficacy in exploring vast search spaces and tackling complex problems, notably
NP-hard problems such as feature selection, makes them a fitting choice. This is due
to their capability to navigate challenging problems and potentially discover optimal
combinations [36,37]. Hence, adopting genetic algorithms aligns with the goals of this study.

Typically, genetic algorithms commence with a randomly generated population.
Choromosomes are assessed and assigned probabilities for transmission to the next genera-
tion based on their alignment with problem criteria. The selected choromosomes undergo
recombination in various ways, generating new choromosomes that meet specific criteria.
Occasionally, a mutation operation alters the recombined solution with a certain proba-
bility, and this iterative process continues until the algorithm’s termination condition is
met [34,38]. Figure 1 illustrates a flowchart depicting this process.

Figure 1. A flowchart for a typical genetic algorithm.
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Essential points in genetic algorithms are crossover and mutation operations. A
crossover enables the generation of offspring solutions by exchanging components of
parent solutions, while mutation explores previously unexplored or overlooked solution
spaces. These operations significantly influence the algorithm’s ability to maintain diversity
within the population and its capacity to converge toward optimal solutions [39].

2.4. Harmony Search

The harmony search (HS) algorithm, conceived by Geem et al. [40], draws inspiration
from musical improvisation. It stands out as a potent metaheuristic method for solving
optimization problems, rivaling traditional metaheuristics in efficacy [41]. The algorithm
employs memory consideration and pitch adjustment, enabling efficient solution space
exploration while retaining proximity to promising solutions [42].

The operational principle of harmony search involves the following steps [32,40,41],
as illustrated by the flowchart in Figure 2:

1. Initialization of the problem and its parameters;
2. Random initialization of harmonies in the solution set;
3. Generation and evaluation of new harmonies;
4. Replacement of existing worst harmonies with newly created ones if they yield

better fitness;
5. Reiteration of Steps 3 and 4 until meeting termination conditions.

Figure 2. A flowchart for typical harmony search.

The critical parameters of harmony search include HMS (harmony memory size),
HMCR (harmony memory consideration rate), and PAR (pitch adjustment rate). HMS de-
termines the number of solution sets, while HMCR influences the referencing of previously
created values when generating new solutions. A higher HMCR increases the likelihood
of referencing stored values, while a lower value favors random selection. PAR dictates
the adjustment probability of fetched solutions, with a higher value indicating a greater
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likelihood of adjustment and use. The settings of these parameters significantly impact
solution quality due to the algorithm’s probabilistic nature [40,41,43].

However, fixed parameter values, as proposed by Geem et al. [40], can prolong the
optimization process, potentially necessitating further optimization to identify optimal
settings [32,44]. The absence of general rules for parameter control emphasizes the need
to iteratively vary parameters, enhancing the algorithm’s speed and efficiency [43,44]. To
solve this obstacle, dynamic parameter tuning is introduced to the original harmony search
algorithm to address its limitations. Incorporating dynamic parameter tuning or additional
components into the algorithm can mitigate these challenges, which is ultimately expected
to enhance solution outcomes [43]. Thus, in this study, we aim to implement parameter
dynamic tuning in harmony search and analyze the results.

Moreover, extending this concept of dynamic parameter tuning to genetic algo-
rithms is also part of our investigation. By introducing dynamic parameter tuning to
genetic algorithms, we aim to explore its impact and compare the outcomes with those
achieved through dynamic tuning with harmony search. This comparative analysis seeks
to unveil the efficacy of dynamic parameter tuning in both algorithms and assess their
performance enhancements.

3. Experiment Setup
3.1. Dataset

We utilized the Korean Longitudinal Study of Aging (KLoSA) dataset (retrieved from
https://survey.keis.or.kr/eng/klosa/klosa01.jsp, accessed on 3 November 2023). The
dataset that was used to diagnose sarcopenia was sourced from the Korea Employment
Information Service, specifically the 8th KLoSA survey in 2020, and was the latest available
as of 2023. This survey encompassed middle-aged and older individuals born before 1962,
residing in South Korea (excluding Jeju Island), and involved around 10,000 respondents.
Survey components spanned various domains: demographics, family ties, health status,
employment, income, consumption, assets, subjective expectations, and quality of life.

To streamline our analysis, we conducted data preprocessing on the KLoSA dataset.
Initially, we excluded unreliable features such as unique IDs and items with limited re-
sponses (five or fewer). Given sarcopenia’s multifaceted nature and elusive etiology [2–4],
we let algorithms consider comprehensive coverage across the KLoSA survey categories
while selecting features. This approach aimed to uncover novel factors influencing sar-
copenia diagnosis and shed light on the interplay between multiple factors and sarcopenia.
Subsequently, adhering to Korean diagnostic criteria [16,45], individuals with handgrip
strength below 28 kg for men and 16 kg for women were diagnosed with sarcopenia. Un-
diagnostic data, especially missing hand grip data, were then removed. Features directly
related to sarcopenia determination, such as handgrip strength data, were also excluded.
Further, we partitioned the dataset: 80% was used as a training set and 20% was used
as a test set, ensuring an even distribution of diagnosis results. After preprocessing, we
established 778 features and a single binary label across 5190 training and 1298 test in-
stances. Furthermore, the distribution of sarcopenia and normality is shown in Table 1. The
preprocessing process is illustrated in Figure 3.

However, we opted not to apply separate feature engineering techniques in our study.
Indeed, it is crucial to deal with feature engineering problems in machine learning and
data science. Survey data present a diverse mix of data types, posing challenges for feature
engineering. For instance, numeric data may contain outliers necessitating standardization,
while other data may be presented in ranges, making normalization more appropriate.
Effectively handling these various data types can be complex and, if performed incorrectly,
may hinder machine learning performance. Additionally, the computational nature of
NaiveBayes, which we utilized as a wrapper, allows for robust machine learning without
extensive feature engineering. Consequently, the impact of not applying feature engineering
in our feature selection process was minimal. For the same reason, we did not perform
any particular missing-value corrections. Different categories of data require different

https://survey.keis.or.kr/eng/klosa/klosa01.jsp
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ways to handle missing values, and different machine learning algorithms need particular
and effective ways of handling data imputation. If the process mishandled data, machine
learning could be interfered. The WEKA framework we used considers this and handles it
automatically, so we did not perform any additional missing-value corrections [46].

Table 1. Data distribution of sarcopenia and normal data.

Data Sarcopenia Normal Total

Training set 2051 3139 5190
Test set 513 785 1298

Total 2564 3924 6488

Figure 3. An overview of dataset preparation and preprocessing.

3.2. The Metaheuristic Algorithm
3.2.1. Algorithm Implementation

Genetic algorithm implementation for our experiments followed Lee et al.’s method [22]
as shown in Figure 1. We introduced binary encoding to represent solutions, assigning
a length equivalent to the number of features in the dataset to each solution. Within this
encoding, a selected feature was denoted by 1, while an unselected one was marked as 0.
Initially, the population comprised 30 solutions. Conversely to requiring a fixed number of
features for initial solutions, the number of randomly chosen solutions was determined
individually for each generation.

Assessment of generated solutions utilized the naive Bayes classifier (NaiveBayes)
within WEKA [46]. The solution achieving the highest accuracy via 5-fold cross-validation
was deemed the best solution. Furthermore, we evenly distributed the data during cross-
validation to maintain a balanced label ratio. By applying cross-validation to the wrapper
that evaluated the solution from a metaheuristic, we could provide a more general evalua-
tion of the solutions found by the algorithm. This approach also guards against overfitting
during feature selection and guarantees an impartial evaluation of the solutions. Naive-
Bayes, chosen as a wrapper, proved suitable due to its swift performance and effectiveness
in real-world classification tasks [47]. We used roulette-wheel selection for the selection
mechanism. We designed it so that only half of the solutions survived and were replaced
by new ones in each generation, with the top three solutions persisting unconditionally.
Employing one-point crossover and bit-flip mutation methods, the genetic algorithm’s
parameters were determined and are given in Table 2.

Table 2. Genetic algorithm parameters in our experiment.

Parameter Value

Population 30
Mutation rate 0.01

Parent selection rate 0.5

On the other hand, our harmony search implementation followed a fundamental
algorithmic sequence outlined in Figure 2. Similar to the genetic algorithm, our solution
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was represented in binary encoding. The evaluation of our solution relied on accuracy that
was assessed via 5-fold cross-validation using the NaiveBayes classifier. The parameters
used for our harmony search experiment are summarized in Table 3.

Table 3. Harmony search parameters in our experiment.

Parameter Value

HMS 30
HMCR 0.85

PAR 0.7

Feature selection is a technique to identify and select relevant features for a specific
objective or goal. It can be conceptualized as a binary decision process where each feature
is categorized as either ‘selected’ or ‘not selected’. Only those features marked as ‘selected’
are included in the final subset. The resulting feature set is then evaluated against a
predetermined metric.

The changes we made to our algorithm to incorporate feature selection into the
metaheuristic were mainly binary encoding and the set object function was used as an
evaluating wrapper. Binary encoding is a suitable abstraction for representing the selection
process within the metaheuristic. This encoding effectively captures the choices made
by the algorithm for each feature, offering a straightforward representation compared
to other encoding methods. The wrapper method evaluates the solution as performed
by a machine learning algorithm. This approach facilitates predicting performance more
effectively. Additionally, the performance metrics used for evaluation were intuitive, which
made it easy to evaluate which feature set was superior.

3.2.2. Dynamic Parameter Adjustment

Since metaheuristics rely on hyperparameters, setting them appropriately is crucial.
However, determining the optimal parameter values for a given problem is challenging
due to the absence of universal rules and the multitude of factors involved [43,48]. While
optimal parameters are often provided with algorithm proposals, such as in Geem et al. [40],
most researchers resort to parameter exploration techniques, such as grid search [49], or
develop optimization frameworks to mitigate additional optimization challenges [48] and
achieve improved solutions [32].

To enhance those pros in feature selection, we addressed the limitations of the original
harmony search algorithm by introducing a dynamic HMCR in this experiment. With this
approach, the parameter HMCR is varied across each iteration. This adjustment stems from
the algorithm’s working principle, recognizing that, initially, values in the solution set are
less likely to be optimal but become more probable with increased iterations. A smaller
HMCR facilitates exploring a broader solution space, while a larger HMCR aids fine-tuning
and faster convergence [32]. Hence, under a dynamic HMCR, we initially linearly varied
the HMCR to explore a broader range of solutions and refined the converged solution later
in the process.

Contrarily, we maintained a fixed value without dynamic adjustment for the PAR,
another critical parameter. This decision aligned with representing solutions in binary
encoding, when tuning with PAR parallels bit-flip mutation in a genetic algorithm. Dynamic
changes in PAR could restrict mutation in high-PAR settings, leading to false convergence.
Therefore, a fixed PAR value ensures stable solution convergence. In contrast, the genetic
algorithm dynamically adjusts mutation probability. Despite the risk of false convergence,
dynamic mutations offer a more comprehensive view of solutions in the current framework.
As altering crossover parameters has not improved convergence [50], we tuned mutation
probability similarly to dynamic HMCR, varying it linearly. However, unlike dynamic
HMCR, the mutation rate is initially large and decreases as more generations are created.
We also took measures to ensure the probability remained above a certain threshold to
prevent premature convergence. By tuning these parameters linearly, we alleviated the
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metaheuristic from incurring additional computational costs, and, by allowing this process
to unfold gradually, we mitigated abrupt changes in the solution [32]. The parameter
adjustment ranges are summarized in Table 4.

Table 4. The ranges of dynamic parameters in this experiment.

Parameter Value

HMCRmin 0.7
HMCRmax 1.0

Mutation ratemin 0.001
Mutation ratemax 0.1

3.3. Feature Set Evaluation

We employed several classification algorithms available in WEKA [46] to assess the
feature sets obtained from the feature selection algorithms. Specially, we evaluated the
feature sets with a decision tree (J48), a random forest (RandomForest), a support vector
machine (SMO), and the naive Bayes classifier (NaiveBayes). Hyperparameters for the
machine learning algorithms were set to their default values as provided by WEKA (see
Table A1 in Appendix A), and none of the changes were made in the algorithms. To
compare experimental outcomes based on the metaheuristics’ iterations, we evaluated
feature sets generated by our genetic algorithm across 100, 500, and 1000 generations. For
the harmony search, evaluations were conducted across 1000, 5000, and 10,000 iterations,
respectively. The genetic algorithm generated half of the solution as new solutions per
generation, totaling 1500, 7500, and 15,000 new solutions for the specified generations.
Conversely, harmony search produced one solution per iteration.

For benchmarking against traditional feature selection methods in algorithms cou-
pled with metaheuristics, we utilized CfsSubsetEval (CFS) [51] and InfoGainAttributeEval
(IG) [52]. These filter-method techniques, implemented in WEKA [46], assess feature sets
using correlation coefficients and information gain. Respectively, CfsSubsetEval gauges pre-
dictive power and redundancy between features, often combined with greedy algorithms
such as BestFirst. Meanwhile, InfoGainAttributeEval measures information gain for feature
selection, where higher values signify a stronger correlation with the classification label.
These methods focus on feature values rather than black-box approaches, contrasting with
the NaiveBayes-driven metaheuristic algorithm used in this study. This choice facilitates
a comparison between filter and wrapper methods. Under CfsSubsetEval, we utilized
the feature set calculated within the BestFirst algorithm. For InfoGainAttributeEval, we
selected features with an information gain of 0.1 or higher.

As depicted in Table 1, the dataset utilized in our study exhibits label imbalance,
necessitating a machine learning evaluation metric that accounts for this disparity. Eval-
uating performance solely based on accuracy fails to address this issue and may yield
biased outcomes. To mitigate this, we opted to introduce a weighted F1 score to rectify this
challenge that considers data imbalance by calculating an F1 score for each label, which is
calculated using Equation (1):

F1wg =
∑(F1cls · Ncls)

Nall
(1)

In classification tasks, the weighted F1 score corresponds to the number of categories
into which the target label can be divided. To compute this score, the F1 score is individually
calculated for each category (F1cls), then multiplied by the number of instances (Ncls) within
that category. These values are then summed across all categories and divided by the
total dataset size (Nall). This process yields a weighted average that considers the data
distribution in each category. It results in a more robust F1 score, which is particularly
beneficial in scenarios with imbalanced data distributions.
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4. Experimental Results and Discussion
4.1. Comparison with Traditional Feature Selection Methods

In our study, we conducted experiments to assess the potential enhancement of sar-
copenia diagnosis performance by employing metaheuristics and compared them with
established feature selection algorithms. We applied our experiments on a computer with
an Intel i7-8750H CPU (Intel, Santa Clara, CA, USA) , 16 GB of RAM, and a GTX 1060
mobile GPU (NVIDIA, Santa Clara, CA, USA). The summarized outcomes are presented
in Table 5 and Figure 4. Notably, the data showcasing the highest performance for each
machine learning algorithm are highlighted in bold for reference. We also summarized
feature selection time costs for each algorithm in the table. Additionally, note that all
metaheuristic results presented in the tables in Section 4 were obtained by running the
same algorithm five times and then averaging the outcomes.

Table 5. Machine learning performance on various feature sets. The data showcasing the highest
performance for each machine learning algorithm are highlighted in bold for reference.

Dataset

J48 RandomForest SMO NaiveBayes Selected
Features

Time
Costs(s)

Accuracy Weighted
F1

AUC Accuracy Weighted
F1

AUC Accuracy Weighted
F1

AUC Accuracy Weighted
F1

AUC

GA
100 0.728 0.722 0.705 0.742 0.729 0.808 0.760 0.757 0.740 0.718 0.718 0.777 327.0 145.34
500 0.722 0.715 0.692 0.733 0.717 0.794 0.752 0.748 0.729 0.722 0.717 0.770 181.0 469.01

1000 0.700 0.683 0.674 0.729 0.708 0.800 0.742 0.737 0.717 0.715 0.713 0.761 277.2 951.81

HS
1000 0.728 0.722 0.705 0.750 0.736 0.822 0.773 0.770 0.752 0.743 0.738 0.803 250.0 207.67
5000 0.728 0.722 0.706 0.748 0.733 0.830 0.784 0.781 0.764 0.754 0.748 0.808 238.0 848.32

10,000 0.727 0.721 0.705 0.746 0.730 0.824 0.785 0.782 0.765 0.749 0.744 0.807 233.8 1560.57

CFS 0.705 0.695 0.706 0.728 0.721 0.781 0.731 0.720 0.694 0.713 0.714 0.780 18.0 3.82

IG 0.711 0.704 0.682 0.746 0.737 0.818 0.747 0.742 0.721 0.715 0.716 0.773 94.0 1.72

Original 0.728 0.721 0.706 0.743 0.728 0.813 0.760 0.760 0.750 0.701 0.704 0.773 778.0 -

The results given in Table 5 underline a potential for enhanced performance through
metaheuristic-based feature selection methods. Except for RandomForest, applying genetic
algorithms and harmony search revealed performance improvements across most machine
learning algorithms compared with applying traditional methods on average, especially
compared with CFS. Notably, the combination yielding the most robust diagnostic per-
formance for accuracy and weighted F1 score was observed when applying SMO on the
feature set obtained via harmony search with 10,000 iterations. The highest AUC was
achieved with the combination of harmony search with 5000 iterations. Harmony search
consistently upheld or enhanced diagnostic accuracy across various scenarios except for
J48 with 10,000 iterations. Conversely, traditional methods such as CFS and IG did not
exhibit performance improvements, especially CFS, which demonstrated a decline across
all the cases except for NaiveBayes. Furthermore, the feature combination from harmony
search after 5000 iterations was equivalent to at least or outperformed the original data in
all machine learning experiments. These findings suggest that metaheuristic-based feature
selection might hold an edge over traditional methods in sarcopenia diagnosis.

Particularly noteworthy were the superior results from the harmony search. Harmony
search yielded a more effective solution set despite generating fewer solutions than genetic
algorithms. This could be attributed to the algorithm’s computation process. The one-point
crossover used in genetic algorithms can falter if not executed at the right point, posing
challenges when solutions have good features dispersed throughout [53]. Harmony search,
employing value adjustment for all features via HMCR, did not encounter these issues. To
address this challenge within the genetic algorithm, employing a broader range of opera-
tions in the crossover process—such as multi-point crossover or cycle crossover—could be
advantageous. Considering that the data in this study were categorized into bins, leverag-
ing the bin cutoff points as reference markers for the one-point crossover operation might
prove beneficial.
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Figure 4. Box plots for machine learning performance on various feature sets.

However, our experiments also revealed that longer iterations cannot always guarantee
superior performance. For instance, in genetic algorithms, the performance of Random-
Forest and SMO recorded the best results with feature sets obtained with 100 generations.
The performance with 1000 generations was inferior to that with 500 generations. Similarly,
RandomForest’s results with harmony search showed reduced performance as the number
of iterations increased. The 10,000 iteration run performed worse than the original data.
This highlights the importance of determining the optimal number of generations for meta-
heuristic algorithms to outperform traditional ones and the original data. Otherwise, the
advantages of metaheuristic feature selection may not manifest. The findings also indicate
that NaiveBayes exhibited a comparatively smaller decline in performance compared to
other machine learning methods. Despite some degradation in performance, NaiveBayes
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fared relatively well, particularly in terms of accuracy, which served as the primary criterion
for evaluating solutions in the metaheuristic process. While it may have appeared that
the NaiveBayes-based classifier performed proficiently, it is reasonable to assume that
the wrapper’s reliance on NaiveBayes accuracy may have led to overfitting. To ensure a
more balanced evaluation of feature selection, it is imperative to construct a black box with
multiple classifiers or employ evaluation criteria that are not reliant on a specific metric.

Additionally, it is important to reconsider whether or not feature sets obtained via
metaheuristics are constantly superior. Many studies suggest that optimal feature sets
are small and improve machine learning performance [28,54]. However, the sets derived
through metaheuristic-based feature selection contained more than 100 features, especially
with harmony search, which consistently selected over 200 features. In contrast, traditional
feature selection methods selected fewer than 100 features. This indicates that while
metaheuristic-based selection yields larger feature sets it might compromise performance.
Meanwhile, traditional methods produce smaller feature sets but might not optimize
performance. For future metaheuristics to achieve superior performance and small feature
sets that are essential for feature selection, additional parameters or constraints might need
consideration, which emphasizes that further exploration is needed in this domain.

4.2. The Effect of Dynamic Parameter Adjustment

We have extensively explored how fine-tuned parameters impact algorithm perfor-
mance, as evidenced by the comparative analysis of generational tuning. In the context
of parameter manipulation, it is pertinent to examine the effectiveness of dynamic HMCR
within the framework of applying harmony search and dynamic mutation rate within the
genetic algorithm, respectively.

To investigate this, we initially compared the results of the harmony search employing
dynamic HMCR against results obtained with fixed HMCR parameters set at 0.7 and 0.85.
Table 6 present these results. Contrary to our expectation, we saw the best performance
with the fixed HMCR. Especially, the result demonstrated superior accuracy and weighted
F1 score performance in experiments featuring the fixed HMCR. In addition, in the case
of J48, the best results were observed when HMCR was fixed, particularly regarding the
weighted F1 score. The overall superior performance was generally acheived when the
HMCR was fixed to 0.85 for SMO and NaiveBayes and 0.7 for J48 and RandomForest.

Table 6. Performance comparison of harmony search with dynamic HMCR and fixed HMCR. The
data showcasing the highest performance for each machine learning algorithm are highlighted in
bold for reference.

Dataset
J48 RandomForest SMO NaiveBayes

Accuracy Weighted
F1

AUC Accuracy Weighted
F1

AUC Accuracy Weighted
F1

AUC Accuracy Weighted
F1

AUC

Dynamic
HMCR

100 0.727 0.720 0.705 0.753 0.739 0.822 0.768 0.765 0.748 0.740 0.736 0.795
500 0.729 0.722 0.707 0.746 0.732 0.829 0.777 0.775 0.759 0.749 0.744 0.806
1000 0.726 0.720 0.704 0.746 0.729 0.827 0.783 0.781 0.766 0.751 0.747 0.808

HMCR = 0.7
1000 0.729 0.723 0.707 0.746 0.734 0.815 0.782 0.777 0.758 0.740 0.734 0.797
5000 0.728 0.722 0.705 0.748 0.735 0.823 0.780 0.776 0.711 0.747 0.741 0.805

10,000 0.727 0.719 0.707 0.754 0.743 0.826 0.778 0.774 0.753 0.745 0.739 0.807

HMCR = 0.85
1000 0.728 0.722 0.705 0.750 0.736 0.822 0.773 0.770 0.752 0.743 0.738 0.803
5000 0.728 0.722 0.706 0.748 0.733 0.830 0.784 0.781 0.764 0.754 0.748 0.808

10,000 0.727 0.721 0.705 0.746 0.730 0.824 0.785 0.782 0.765 0.749 0.744 0.807

On the other hand, the results of the dynamic mutation rate, as given in Table 7,
showed the highest scores. However, it would be premature to infer that dynamically
adjusting the mutation rate consistently enhances performance. Table 7 illustrates that
dynamic parameter tuning may not consistently enhance performance across all algorithms.
Specifically, NaiveBayes achieved its best performance when the mutation rate was fixed
at 0.1. These experiments suggest that dynamically tuned parameters possibily yield
performance enhancements. However, it is crucial to note that they do not always guarantee
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a performance booster; a misguided application may result in losses without commensurate
performance gains.

Table 7. Performance comparison of genetic algorithm with dynamic mutation rate and fixed parameters.
The data showcasing the highest performance for each machine learning algorithm are highlighted in bold
for reference.

Dataset
J48 RandomForest SMO NaiveBayes

Accuracy Weighted
F1

AUC Accuracy Weighted
F1

AUC Accuracy Weighted
F1

AUC Accuracy Weighted
F1

AUC

Dynamic
mutation

rate

100 0.727 0.721 0.706 0.742 0.728 0.808 0.774 0.771 0.753 0.718 0.718 0.774
500 0.729 0.723 0.707 0.747 0.734 0.814 0.749 0.747 0.732 0.714 0.715 0.775

1000 0.726 0.719 0.703 0.744 0.730 0.803 0.760 0.756 0.737 0.717 0.717 0.777

Mutation
rate = 0.1

100 0.721 0.712 0.693 0.733 0.719 0.800 0.769 0.765 0.745 0.720 0.718 0.777
500 0.726 0.720 0.701 0.741 0.726 0.809 0.769 0.761 0.743 0.721 0.719 0.775

1000 0.728 0.721 0.705 0.746 0.733 0.812 0.769 0.766 0.749 0.729 0.727 0.779

Mutation
rate = 0.01

100 0.728 0.722 0.705 0.742 0.729 0.808 0.760 0.757 0.740 0.718 0.718 0.777
500 0.722 0.715 0.692 0.733 0.717 0.794 0.752 0.748 0.729 0.722 0.717 0.770

1000 0.700 0.683 0.674 0.729 0.708 0.800 0.742 0.737 0.717 0.715 0.713 0.761

Mutation
rate = 0.001

100 0.727 0.721 0.703 0.743 0.728 0.808 0.759 0.757 0.741 0.714 0.715 0.771
500 0.726 0.719 0.700 0.738 0.724 0.801 0.741 0.739 0.724 0.718 0.718 0.770

1000 0.726 0.719 0.699 0.741 0.727 0.809 0.750 0.748 0.731 0.726 0.725 0.778

Considering the convergence dynamics of solutions, the efficacy of dynamic HMCR in
our experiment comes into question. Dynamic HMCR was implemented to avert stagnated
convergence and procure more consistent solutions. However, as depicted in Figure 5,
there is no notable alteration in the convergence patterns of the solution sets between
dynamic and fixed HMCRs. The parity in convergence speed between dynamic and fixed
HMCRs stems from the identical dynamic mutation rates applied. This showcases that
dynamic parameter tuning only hastens convergence or improves performance when using
1000 generations (see Figure 6).
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Figure 5. The average accuracy of the solutions founded by our harmony search according to HMCR.
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Figure 6. The average accuracy of the solutions founded by our genetic algorithm according to
mutation rate.

These findings suggest that while dynamic parameter tuning was proposed as an
alternative to the fixed parameters, it does not inherently confer advantages and may yield
a comparable performance to a method without dynamic tuning. Hence, introducing
dynamic parameter tuning demands caution, and exploring alternative dynamic tuning
approaches such as exponential scaling [32] or synchronizing with other parameters [55]
is prudent.

4.3. Summarization

To wrap up the discussion, our experimental findings indicate that employing meta-
heuristic algorithms can enhance sarcopenia diagnosis performance by eliminating irrele-
vant factors. We have demonstrated that these methods are competitive with traditional
feature selection techniques and can even outperform them under certain conditions. This
suggests their potential applicability to machine learning for sarcopenia diagnosis. Addi-
tionally, we have discussed the importance of fine-tuning parameters and algorithm conver-
gence in achieving successful outcomes, providing insights for future research directions.

However, despite these advancements, our study’s results have limitations concerning
interpreting how the extracted features relate organically to sarcopenia diagnosis. Our
study’s improved machine learning performance is attributed to the efficacy of metaheuris-
tic algorithms and their reliance on black-box methods. Notably, metaheuristic-based
feature selection with binary encoding lacks consideration of the importance of selected
features, thereby reducing explanatory potential compared to traditional methodologies.
This opacity and difficulty in explanation raise ethical concerns regarding applying our
findings in clinical practice [56,57]. While efforts to introduce explainable AI aim to address
these concerns [58], their impact on meaningful human decision-making still needs to
be improved [59]. Moreover, interpretations provided by explainable AI may not suffi-
ciently support meaningful decision-making at the patient level, necessitating improve-
ments in evidence-based justifications [60]. It is crucial to consider uncertainties, clinician
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reasoning, and potential errors to utilize our results in real-world clinical practice effec-
tively [56]. Further studies should focus on examining the outcomes of screened features to
enhance the explanatory power of our findings and mitigate the challenges associated with
AI interpretation.

We must also acknowledge the inherent limitations of metaheuristic algorithms them-
selves. While they excel in finding optimal solutions for NP-hard problems such as feature
selection and offer many algorithms to explore, they have their drawbacks. According to
the no-free lunch theorem, metaheuristics do not consistently maintain a state-of-the-art
status and may become trapped in local optima. Moreover, their performance relies heavily
on the computational methods used to reproduce solutions, and if there is significant
overlap during the solution reproduction process, the algorithm may only consider a nar-
row range of feature sets [61]. Addressing these challenges will require further research
involving the development of new metaheuristic approaches and experimentation under
stricter constraints.

5. Conclusions

This study introduced and applied metaheuristic-based feature selection methods for
diagnosing sarcopenia, primarily focusing on muscle strength data derived from survey
data. Our experiments utilized genetic algorithms and harmony search, demonstrating their
capacity to enhance machine learning performance in sarcopenia diagnosis. The findings
indicate that genetic algorithms and harmony search contributed positively to machine
learning performance. This was especially evident with the wrapper method algorithm
design, which showcased competitive outcomes compared to alternative methodologies.
Notably, the best results were observed using the support vector machine with harmony
search and an HMCR set at 0.85, yielding an accuracy of 0.785 and a weighted F1 score of
0.782. These findings indicate that the metaheuristic approach is on par with other feature
selection methods.

However, while these experiments highlight the potential of metaheuristic-based
feature selection in improving sarcopenia diagnosis, they also unveil limitations. Notably,
these methods need help identifying smaller feature sets. This suggests that metaheuristics
may require fine-tuning parameters such as the number of generations and could benefit
from regulations limiting feature set size. We also concluded that improper parameter
dynamic tuning not only fails to enhance performance but can also potentially lead to
performance degradation. Significantly, the methods in this study effectively enhanced
machine learning performance. However, a limitation lies in the need for several explana-
tory pieces of evidence regarding how feature selection impacts machine learning for
sarcopenia diagnosis.

In the future, applying metaheuristic-based feature selection beyond survey data to
various dataset types in sarcopenia diagnosis holds promise. Furthermore, The findings of
this study cannot be extrapolated to all surveys, as each survey serves a distinct purpose
and targets a specific population. Therefore, further investigation is necessary to explore the
applicability and effectiveness of feature selection methods across different survey contexts.
Moreover, forthcoming research endeavors could incorporate SHAP (SHapley Additive
exPlanations) [62] or employ explainable feature selection techniques [63] to address the
explainability of machine learning processes and outcomes, a limitation of our current
study. We expect that further refinement of the algorithms presented in this study and
diversification of preprocessing methods will improve performance in subsequent studies.
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Appendix A. Parameter for Machine Learning

As noted in Section 3.3, we applied the default parameters offered by WEKA [46] for
conducting the machine learning algorithms. The key parameters are outlined in Table A1.

Table A1. Key parameters of machine learning algorithm applied in this study.

Algorithm Parameter

J48 -C 0.25 -M 2
RandomForest -K 0 -M 1.0 -V 0.001 -S 1

SMO -C 1.0 -L 0.001 -P 1.0E-12 -K PolyKernel -calibrator Logistic
NaiveBayes Do not have specific parameter
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