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Abstract: This paper proposes an autonomous robotic system to prune sweet pepper leaves using
semantic segmentation with deep learning and an articulated manipulator. This system involves
three main tasks: the perception of crop parts, the detection of pruning position, and the control of
the articulated manipulator. A semantic segmentation neural network is employed to recognize the
different parts of the sweet pepper plant, which is then used to create 3D point clouds for detecting
the pruning position and the manipulator pose. Eventually, a manipulator robot is controlled to
prune the crop part. This article provides a detailed description of the three tasks involved in building
the sweet pepper pruning system and how to integrate them. In the experiments, we used a robot
arm to manipulate the pruning leaf actions within a certain height range and a depth camera to
obtain 3D point clouds. The control program was developed in different modules using various
programming languages running on the ROS (Robot Operating System).

Keywords: autonomous robotic system; robotic pruning; agricultural robotics; 3D point clouds;
semantic segmentation neural network; sweet pepper

1. Introduction

Sweet pepper is a valuable vegetable crop that is grown worldwide. It contains high
amounts of vitamins A, B, and C, as well as several minerals [1]. Nowadays, sweet peppers
are cultivated in greenhouses to provide fruits throughout the year, even in winter. How-
ever, fruit quality is greatly influenced by environmental factors and pruning methods [1–4].
Sweet pepper plants produce numerous leaves throughout the year, from the roots to the
tips, which farmers usually remove manually, a repetitive and time-consuming task. There-
fore, we decided to investigate an automated system for this purpose in our research.

Autonomous robots to apply agriculture is an emerging technology. It is considered
to be the key to increasing productivity while reducing the need for human labor. Robots
are capable of performing repetitive tasks and can operate at any time, whether it is day or
night. Autonomous robots are utilized for harvesting apples, sweet peppers, cucumbers,
strawberries, and tomatoes [5–13]. They are also used for pruning tomato plants, apple
trees, and grape vines [14–18]. Although they may serve different purposes and have
varying hardware structures, autonomous robotic systems must consist of three funda-
mental modules: vision perception, action point (for cutting or picking) in 3D space, and
manipulation. In the case of harvesting sweet peppers, neural networks combined with
3D information are utilized to detect peduncles [6,7]. For pruning fruit trees, the aim is to
detect tree skeletons and pruning positions on 2D images using deep learning techniques
and then obtain 3D positions based on depth images. It is not necessary to reconstruct
the entire tree in 3D since it consumes more time and resources. To recognize branches,
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mask R-CNN [19] was employed with multiple backbones models [14,16,18]. This pruning
method is quite successful with fruit trees, but applying the same technique to greenhouse
plants such as sweet peppers or tomatoes is challenging. The pruning of fruit trees is
carried out in the winter when there are no leaves on the trees, making it easier to detect the
skeletons without any occlusions or hidden parts. In addition, all the branches can be cut
during pruning. Otherwise, greenhouse plants have many leaves, which makes it difficult
to detect the parts that need pruning. Moreover, only leaves below a specific height or the
first fruit should be cut. Hence, a 3D reconstruction based on multiple RGB-D images is a
helpful technique to obtain the plant’s structure and reduce information loss. This result
helps in implementing different pruning strategies easily. Once the system determines
the pruning positions, it needs to maneuver a pruning tool to the target. This operation
requires high precision and collision avoidance. To meet these requirements, the robot arms
with 5 or 6 degrees of freedom are employed [6,7,10,12,14,18].

In this paper, we propose an autonomous robotic system to prune sweet pepper
leaves that involves three tasks: the perception of crop parts, determination of pruning
area, and manipulation of the robot arm. We utilized a semantic segmentation neural
network to recognize the parts of sweet pepper crops on 2D images and generate semantic
segmented images. We then created 3D semantic point clouds based on RGB-D images
and semantic segmented images to detect the pruning position and generate the pruning
direction. Eventually, the articulated manipulator can approach the pruning position and
the end-effector performs precision pruning. To demonstrate our method, we chose simple
pruning rules, which were to cut the lowest leaf of a stem. We used an Intel RealSense
to obtain RGB-D images and a Universal Robot UR3 with an end-effector to perform the
pruning action. The system is complex and comprises several modules. Our previous
research has focused on semantic segmentation neural networks to recognize plant parts
and how to build 3D semantic point clouds based on sequences of RGB-D images [20,21].
In this paper, we present a method to find the pruning position and direction from the 3D
semantic point clouds, as well as the controlling robot arm program and an end-to-end
autonomous pruning system.

2. Related Works
2.1. Recognition of Sweet Pepper Crop Parts

As stated earlier, perception plays a crucial role in providing the system with informa-
tion about the location and nature of crop parts on RGB images. This process involves two
tasks, namely classification and segmentation. In the early 2010s, several semantic segmen-
tation algorithms were implemented, but they failed to meet the required standards [22–25].
With the development of deep learning, there has been significant progress in semantic
segmentation. Deep Convolutional Neural Networks (DCNNs) are used to extract fea-
tures, while Fully Connected Neural Networks are used to classify objects. These semantic
segmentation neural networks can classify objects at the pixel level and are composed of
two parts: the encoder and decoder. The encoder typically includes a backbone neural
network consisting of a long line of DCNNs used to extract image features at various reso-
lutions. To improve the efficiency of neural networks and reduce computational resources,
new types of convolutions, such as dilated convolution (Atrous convolution) [26] and
depthwise separate convolution [27], have emerged. Some of the popular convolutional
neural network backbones used in computer vision tasks include VGG-16 [28], ResNet [29],
Xception [30], MobileNetV2 [31], and MobileNetV3 [32]. These networks have shown
improved performance by incorporating new convolutional techniques. The DeepLab
model has also demonstrated the effectiveness of Atrous Spatial Pyramid Pooling, which
utilizes multiple parallel Atrous convolutional layers with varying scales to enhance the
model’s performance [26]. Building on these successes, we proposed a real-time semantic
segmentation neural network that recognizes different parts of greenhouse plants [20].
This neural network comprises bottleneck blocks, which are introduced in MobileNetV2,
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a pyramid pooling block to obtain features at multiple scales. Depth images were also
explored to improve the network performance.

We prepared a dataset consisting of approximately 1000 images of sweet peppers
to train the neural network. The images were captured using an Intel RealSense L515
camera from various greenhouses, and each image was expected to have a stem and other
relevant parts present. To annotate the images, we utilized the Semantic Segmentation
Editor software v1.5. An example from this dataset is shown in Figure 1 to provide a better
understanding. The stems, leaves, petioles, and fruits are represented in purple, green,
pink, and red colors in the right image of Figure 1. Black color represents other objects.
This type of image is called a semantic image.
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Figure 1. Example of annotated images.

2.2. Three-Dimensional Point Cloud Creation of Sweet Pepper Crop

Three-dimensional reconstruction is the process of creating a 3D representation of
objects from a set of 2D RGB or RGB-D images. The output of this process is 3D point
clouds. One of the important techniques for 3D recovery is Structure from Motion (SfM)
recovery [33]. In SfM, feature points in a pair of RGB images are first extracted to match
the objects, and then camera poses are estimated to create 3D sparse point clouds. Some
popular algorithms for extracting feature points include SIFT [34], SURF [35], FAST [36],
and ORB [37]. The Bundle Adjustment (BA) algorithm is used to improve the accuracy
of the camera poses and 3D point positions simultaneously [38]. However, creating a
dense point cloud still posed difficulties until the RGB-D camera became popular. The
combination of SfM and RGB-D images has achieved promising results in 3D reconstruction,
but it cannot run in real time. Visual SLAM is a camera-based sensor system that performs
simultaneous localization and mapping in real-time, requiring fewer resources and being
suitable for robotics [39]. The ORB-SLAM family [40–42], which includes ORB-SLAM3, is a
popular open-source visual SLAM system that supports various types of cameras, such as
monocular, stereo, and RGB-D cameras with pin-hole or fisheye lens models. It uses the
ORB and BA algorithms to extract feature points and optimize camera poses in local or
global maps. Due to its advantages, we proposed a method to create 3D point clouds by
using ORB-SLAM3 and then optimizing the result with the help of the Iterative Closest
Point (ICP) method [21]. The process is described in Figure 2.

In this method, one camera is used to obtain RGB-D images. The camera is moved
around the plant to obtain RGB-D images. These images are firstly the input of ORB-SLAM3
to find the camera pose. At the same time, these images are passed through a semantic
segmentation neural network to recognize plant parts and create semantic images. We did
not create a dense map of the sweet pepper and its surrounding objects. Once the camera
pose and semantic image are obtained, a 3D semantic point cloud is generated that includes
only parts of the tree. The camera pose, which is retrieved from ORB-SLAM3 in this way,
cannot be refined by ORB-SLAM3 when it performs a loop. Furthermore, the drift problem
is cumulative from one frame to another. The ICP method is used to register each point
cloud to reduce this error. After conducting many experiments, we found that moving the
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camera in a straight trajectory is recommended for the best results. It is also suitable for
greenhouse working environments because the robot always runs on rails between rows of
sweet peppers.
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We used a semantic segmentation neural network to select only the sweet pepper crop
parts. This technique helps reduce the number of points in the point clouds, ultimately
saving time. The final output is 3D semantic point clouds of the sweet pepper obtained
from multiple RGB-D images.

3. Proposed Autonomous Robotic System
3.1. Pruning Position Detection

In our previous research, we introduced a technique for identifying pruning positions
by detecting the intersection of a petiole and a stem on 2D semantic images. We then located
the pruning regions by generating 3D semantic point clouds. The center point of a pruning
region is considered a pruning position [21]. This method has some drawbacks. Firstly, the
pruning point is detected in some different 2D images with different viewpoints. Therefore,
when projecting them in 3D space, they are not always close to each other for making a
perfect pruning group of points. Second, the pruning point is detected by the intersection of
a petiole and its stem when they are enlarged on 2D images. The distance from the pruning
point to the stem is not stable. It can be very close or far from the stem. Finally, the process
of finding pruning points on the 2D image must be performed iteratively until the 3D point
cloud generation process is finished. So, this method has high time consumption and the
risk of damaging stems in cutting leaves due to the proximity of the pruning positions
to the stems. In this study, we propose a new method for detecting pruning positions, as
shown in Figure 3. The important difference in this new method is that we find the cutting
point after the process of creating the 3D point cloud is finished, and the distance from the
cutting point to the corresponding stem is precisely calculated.

To start, we use a previously established algorithm [21] to extract individual petiole
point clouds from the 3D semantic point clouds. Next, the petioles are sorted in ascending
order of height by determining their center points. To achieve our research objective, we
select the lowest petiole to prune. With each petiole center point denoted Pc (xc, yc, zc),
we detect a group of stem points having Oz values within zc ± 0.01 m. After removing
noise points, the center point of this stem group is used to detect the distance between
the stem and the candidate pruning points. The selected petiole is then divided into five
equal segments based on the Ox value within the 3D coordinate system of the robot arm,
and we represent each segment by its respective center point. The final pruning position is
determined by selecting the point closest to the corresponding stem, provided that it is at a



Biomimetics 2024, 9, 161 5 of 11

distance greater than a specific threshold, denoted as “t”. After conducting experiments,
we determined that a threshold of 0.02 meters is the optimal distance as it ensures that
the end-effector remains clear of any potential stem collisions. In addition, this distance
should be less than 0.1 m to be sure that the petiole being pruned belongs to the main stem.
By removing the detecting pruning point process on 2D images, the 3D semantic point
cloud-creating process takes 0.2–0.3 s for one 640 × 480 RGB-D image, while it took 0.725 s
with the previous method.
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3.2. Pruning Direction Estimation

After detecting the pruning positions, the following step is to establish a rotation
matrix that aligns the robot arm with the desired pruning direction. For obtaining the
ideal cut, as shown in images Figure 4b,c, it is crucial to ensure that the end-effector is
perpendicular to the petiole. Our approach involves a four-step process for determining the

rotation matrix. Firstly, we identify the petiole vector,
→
v1, which is defined by the pruning

position and one of the five petiole positions. It should be the closest point to the pruning

point. Secondly, using the positions of the camera and pruning position, the camera
→
v2

is determined. In the third step, the perpendicular vectors
→
v3 and

→
ve are computed as

detailed in Equation (1). The combination of
→
v3,

→
v1, and

→
ve corresponds to the Ox, Oy, and

Oz coordinate axes of the end-effector, collectively forming the precise end-effector pose.
Finally, we normalize all vectors, after which the rotation matrix of the end-effector can be
calculated, as shown in Equation (2).

→
v3 =

→
v1 ∗

→
v2

→
ve = −

→
v3 ∗

→
v1

(1)

v3x v1x vex
v3y v1y vey
v3z v1z vez

 (2)
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Figure 4. Pruning direction estimation. Images (a,b) describe how to detect an end-effector pose from
the 3D semantic point clouds. Image (a) is the front view, and image (b) is the left-side view. Images
(c,d) describe how an end-effector prunes a petiole in a simulator environment. The five blue points
from light blue to deep blue are five petiole points. The yellow point is the pruning position.

3.3. Articulated Manipulator

The manipulator comprises a 6-degree-of-freedom robot arm and a gripper, which is
known as an end-effector. To control the robot arm, the open-source software framework
MoveIt [43] is used. It provides a comprehensive set of tools and libraries that enable
robots to generate motion-plan paths, visualize, avoid collision, and execute movements.
Additionally, MoveIt has a 3D perception function that enables the robot to perceive its
environment. This is important for collision detection and obstacle avoidance during mo-
tion planning. To prevent collisions with stems and fruit, their point clouds are configured
as collision objects. Once the pruning pose is received, the RRT-Connect algorithm [44]
is applied to find collision-free paths from the start position to the pruning position. The
pruning process is described in Figure 5 as the module manipulation. Firstly, the robot is
initialized in the ready position when the robot arm is up and 0.5 m away from the plant,
as in Figure 5. Then, the pruning direction module calls services and passes the pruning
direction to the manipulation module. At this time, MoveIt detects the collision objects
and generates the moving path for the robot arm. The end-effector is maneuvered to the
first position, and then the cutter is opened and moved to the pruning position in the
same direction. Finally, the pruning action is performed, and the robot moves back to the
first position.
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3.4. Autonomous Robotic System for Pruning

The system is composed of three main modules, each written in a different program-
ming language and separated from the other. These modules include the image perception
module, which uses a semantic segmentation neural network to detect crop parts; the
pruning direction module, which reconstructs the crop in 3D space and detects the pruning
direction; and the robot controlling module, which moves the robot arm to the pruning
position and performs the pruning action. ROS is used to employ ROS topics and ROS
services to connect these modules [45]. Figure 6 illustrates the structure of the entire system.
ROS offers a flexible working environment, facilitating the connection and modification
of system components. Figure 5 shows the activity diagram of the whole system, from
obtaining RGB-D images to pruning action.
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4. Experiments and Results
4.1. Training the Semantic Segmentation Neural Network

The training program was written in Python 3.9 and uses PyTorch 1.8 and Torch-Vision
1.10 library. The model was trained and tested on a machine with GPU Nvidia Ge-force
RTX 3090 with CUDA Version 11.2. The model has the best IOU (intersection over union)
of 0.69 and fps (frame per second) of 138.2 after 25 epochs. Figure 7 shows the loss and
IOU in the training and evaluating process of the mode, and Figure 8 shows an example of
plant part prediction of the semantic segmentation neural network.
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4.2. Running the Robotic System

Our hardware setup is shown in Figure 9. The robotic system consists of a 6-degree-of-
freedom Universal Robot UR3, an end-effector OnRobot RG2, which represents a cutting
end-effector, and an Intel RealSense L515. The image perception module was written in
Python, and other modules were written in C++. These modules are written as ROS Node
of ROS Noetic under Ubuntu 20.04.6. They can interact with each other via ROS service
and ROS topics.

Biomimetics 2024, 9, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 9. Experimental setup. 

Table 1. Experiment results. 

Percentage Result Failure Reasons 
57.00% success  

13.33% 
Failure 

Cannot detect the pruning positions and pruning 
directions 

20.00% Cannot find motion plan paths or out-of-reach 
6.67% Detect incorrect pruning positions 
3.0%  Hit obstacles 

This result shows that the whole system can archive the pruning task but not in high 
performance. There are three main failure reasons. Firstly, the system is unable to identify 
the lowest pruning position as per the experimental requirements. This is due to the 
objects being hidden from view. In certain cases, the lowest leaf is obscured by other 
leaves, while in others, the petiole is too small for the camera to capture depth information. 
Secondly, 20% of the experiments failed because the pruning positions were out of reach 
or there were obstacles in the robot’s path, preventing MoveIt from generating motion 
plan paths. The UR3’s standard reach is approximately 500 mm, and the end-effector is 
about 230 mm, which limits the robotic system’s maximum reach. Additionally, the 
camera used in the experiments was an obstacle object and was positioned close to the 
robot arm. Finally, a small number of errors occurred due to inaccuracies in semantic 
segmentation prediction, resulting in errors in pruning position detection. 

The performance of the system can be improved by letting the robot arm and camera 
on a mobile robot. Our 3D reconstruction modules can create 3D point clouds from many 
RGB-D images, but in these experiments, the camera cannot move. Therefore, if the robot 
arm and camera are placed on a mobile robot to move through these crops to take images 
and create 3D point clouds before detecting the pruning position, it can reduce the 
problem of occlusion and hiding. Moreover, if MoveIt cannot find the free-collision-free 
path, the whole system can move to a new nearby position and try to find a new one.  

The process of generating robot arm moving paths also affects the system 
performance. If the moving path is too long, it will take time. It should have some 
constraints of working safe area because one camera cannot detect all obstacles around 
the robot’s arm. Furthermore, the camera itself is an obstacle object too. Therefore, the 

Figure 9. Experimental setup.

These experiments focus on the performance of the whole system, including the
percentage of success, failure, and failure reasons. The experiments were conducted in
the lab. The robotic system had to prune the lowest leaf. Table 1 shows the results of
the experiments. We tried 30 times with different plants and positions. Overall, 57% of
attempts were successful, and 43% of attempts failed, in which 20% of failures was due
to out-of-reach or inability to find the collision-free paths, 13.33% could not detect the
pruning position, and 6.67% detected the incorrect pruning positions, and 3% of robot arms
encountered environmental obstacles due to not being detected in the semantic point cloud.
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Table 1. Experiment results.

Percentage Result Failure Reasons

57.00% success

13.33%

Failure

Cannot detect the pruning positions and pruning directions

20.00% Cannot find motion plan paths or out-of-reach

6.67% Detect incorrect pruning positions

3.0% Hit obstacles

This result shows that the whole system can archive the pruning task but not in high
performance. There are three main failure reasons. Firstly, the system is unable to identify
the lowest pruning position as per the experimental requirements. This is due to the objects
being hidden from view. In certain cases, the lowest leaf is obscured by other leaves, while
in others, the petiole is too small for the camera to capture depth information. Secondly,
20% of the experiments failed because the pruning positions were out of reach or there
were obstacles in the robot’s path, preventing MoveIt from generating motion plan paths.
The UR3’s standard reach is approximately 500 mm, and the end-effector is about 230 mm,
which limits the robotic system’s maximum reach. Additionally, the camera used in the
experiments was an obstacle object and was positioned close to the robot arm. Finally, a
small number of errors occurred due to inaccuracies in semantic segmentation prediction,
resulting in errors in pruning position detection.

The performance of the system can be improved by letting the robot arm and camera
on a mobile robot. Our 3D reconstruction modules can create 3D point clouds from many
RGB-D images, but in these experiments, the camera cannot move. Therefore, if the robot
arm and camera are placed on a mobile robot to move through these crops to take images
and create 3D point clouds before detecting the pruning position, it can reduce the problem
of occlusion and hiding. Moreover, if MoveIt cannot find the free-collision-free path, the
whole system can move to a new nearby position and try to find a new one.

The process of generating robot arm moving paths also affects the system performance.
If the moving path is too long, it will take time. It should have some constraints of
working safe area because one camera cannot detect all obstacles around the robot’s arm.
Furthermore, the camera itself is an obstacle object too. Therefore, the position of the
camera should be carefully considered. It should minimize the impact of moving path
generation but also obtain the most information about the plant.

The experiment results show that being “out of reach” is the most common error.
To increase the reach of the robot arm, we can employ other longer robot arms such
as UR5 or UR10. Developing a specialized robot to perform pruning operations is also
promising research.

5. Conclusions

We proposed an autonomous robotic system to prune sweet pepper leaves, which
consists of three modules: perception, pruning position detection, and manipulation. The
perception module employed the semantic segmentation neural network to recognize sweet
pepper plant parts. The pruning position detection module uses 3D reconstruction and
the proposed pruning pose detection methods that reduce the 3D semantic point cloud
generation time from 0.7 s of the previous method to 0.2–0.3 s. We used Moveit to generate
the moving path and control the robot arm in the manipulation module.

The robotic system demonstrates a complete process that takes RGB-D images as input
and performs pruning actions as output. The experiments show that the proposed system
performs well and has potential for future improvements. This paper also presents an
overview of a smart agricultural robotic system designed for tending to greenhouse crops.
The structure of this system can be applied to other crops and purposes as well.
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