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Abstract: The vertebrate basal ganglia play an important role in action selection—the resolution of
conflicts between alternative motor programs. The effective operation of basal ganglia circuitry is also
known to rely on appropriate levels of the neurotransmitter dopamine. We investigated reducing or
increasing the tonic level of simulated dopamine in a prior model of the basal ganglia integrated into a
robot control architecture engaged in a foraging task inspired by animal behaviour. The main findings
were that progressive reductions in the levels of simulated dopamine caused slowed behaviour and,
at low levels, an inability to initiate movement. These states were partially relieved by increased
salience levels (stronger sensory/motivational input). Conversely, increased simulated dopamine
caused distortion of the robot’s motor acts through partially expressed motor activity relating to
losing actions. This could also lead to an increased frequency of behaviour switching. Levels of
simulated dopamine that were either significantly lower or higher than baseline could cause a loss of
behavioural integration, sometimes leaving the robot in a ‘behavioral trap’. That some analogous
traits are observed in animals and humans affected by dopamine dysregulation suggests that robotic
models could prove useful in understanding the role of dopamine neurotransmission in basal ganglia
function and dysfunction.

Keywords: basal ganglia; dopamine; robot; Parkinson’s disease; dopamine dysregulation; neurorobotics;
computational neuroscience; computational psychiatry

1. Introduction

The vertebrate basal ganglia are thought to play an important role in action selection—the
resolution of conflicts between alternative motor programs [1–7]. The effective operation
of basal ganglia circuitry and its regulation of motor behaviour are also known to rely on
appropriate levels of the neurotransmitter dopamine (DA) [3,8,9]. For instance, dopamine an-
tagonists (inhibitors), or dopamine-depleting brain lesions, have been found to impair a range
of instrumental and spontaneous behaviours [10–16], affect the maintenance of behaviour over
time [10,17], impair the initiation of movement [18,19], reduce behaviour switching [13,20–23],
and can induce bradykinesia (slowed movement) or akinesia (lack of movement) [24,25].
Conversely, dopamine agonists (promoters) have been shown to cause increases in behaviour
switching [21,22,26], or to lead to patterns of repetitive behaviour (stereotypy) [27–30]. Human
basal ganglia-related disorders such as Parkinson’s disease (PD), schizophrenia, attention
deficit hyperactivity disorder (ADHD), and Tourette’s syndrome are also known to involve
abnormalities in the dopamine regulation of basal ganglia circuitry [31–35]. Nevertheless, in
both humans and animals, there is still much to understand about how variation in tonic
dopamine levels can have these different and variable effects on behaviour.
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In this article, we show that when the tonic level of simulated dopamine in a robot
model of the basal ganglia [36] is significantly reduced or increased, relative to a baseline, a
variety of behavioural outcomes are observed that provide interesting comparisons with
the results of animal studies, and with some of the observed behavioural consequences of
dopamine dysregulation in disorders affecting the human basal ganglia. In this way, we
hope that this article can contribute to the emerging field of computational psychiatry [37]
and to the investigation of models of psychopathology via robotics [38].

The structure of the article is organised as follows. Section 2 describes some principles,
derived from the study of animal behaviour, that allow us to measure the effectiveness of
action selection. This section also provides an outline of the computational model of the
vertebrate basal ganglia, viewed as an action selection mechanism, developed by Gurney,
Prescott, and Redgrave [39,40] and extended by Humphries and Gurney [41]. This section
also summarises the embedding of this model in the control architecture of a mobile robot,
as previously reported by Prescott, Montes González et al. [36]. Section 3 describes Study 1,
which concerns experiments with a non-embodied version of the model that provides fresh
insights into the effects of tonic dopamine modulation on selection. Section 4 then describes
Study 2, which applies ethological methods to analyse the results of experiments with the
robot embedding of the model in which we vary the simulated level of tonic dopamine.
Finally, Section 5 draws some comparisons with animal and human data, and discusses
some of the implications of our study for the use of robotic modelling in neuroscience.

2. A Robot Model of Action Selection by the Basal Ganglia
2.1. Requirements for Effective Selection

The requirements for effective action selection in animal nervous systems have been
previously analysed by a number of authors from the perspective of understanding how
natural selection pressures could lead to the emergence of different action selection strate-
gies and mechanisms [3,4,42–45]. In particular, we have previously argued that the need
to provide fast and clean selection between alternative courses of action, and to do so effi-
ciently with respect to computational and connectivity costs, has favoured the development
of specialised action selection mechanisms, of which the vertebrate basal ganglia are an
important example [3]. Here, we provided a summary of the key requirements; for further
explanation and justification, see [3,44].

Given a set of competing and incompatible programs, the requirements for an effective
action selection mechanism can be summarised as follows: (i) In selecting a winner, all else
being equal, prefer the most strongly supported, or most salient, competitor as indicated by
relevant external and internal cues. (ii) Allow only one program to be expressed at a given
time; this winner should be cleanly selected (i.e., allowed unrestricted access to the motor
apparatus), and the losers should be prevented from interfering with its performance,
termed lack of distortion. (iii) Provide clean switching—a competitor with a slight edge
over its rivals should see the competition resolved rapidly and decisively in its favour.
(iv) Support action maintenance—a winning competitor may be required to remain active
at lower salience levels than are initially required for it to overcome the competition. This
latter characteristic, also termed hysteresis [46] or behavioural persistence [47], can prevent
unnecessary switching, or ‘dithering’, between closely matched competitors.

Note that this view of action selection treats input salience as a ‘common currency’ [3,48],
in accordance with which diverse behavioural options can be evaluated for possible selection.
The selector does not need to know what the option is, only how salient it is, with salience
being determined by genetics and learning. We note that other ways of selecting between
actions are possible that do not rely on salience computation, and that may well exist in the
brain. These could operate in a complementary fashion with the centralised action selection
mechanisms considered here (see [45] for further discussion).
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2.2. A Model of Basal Ganglia Intrinsic Circuitry

In a series of computational models, Gurney and co-workers [39–41] showed that the
intrinsic connectivity of the basal ganglia, shown in Figure 1 (left), can meet many of these
requirements for effective selection via a variety of mechanisms centred on the following:
(i) a set of pathways from the striatum, the basal ganglia’s chief input nucleus, that can
generate focused inhibition in basal ganglia output structures—the substantia nigra pars
reticulata (SNR) and the globus pallidus internal segment (GPi) (entopeduncular nucleus
in rats) [2]; (ii) diffuse excitation of these output structures by the subthalamic nucleus
(STN) [49]; and (iii) regulation of the contrast between this focused striatal inhibition and
diffuse STN excitation by the globus pallidus external segment (GPe) [39,50,51]. The overall
mechanism, which is consistent with several theoretical accounts (e.g., [2,3,6]), is one that
selects by removing tonic inhibition of motor pathways provided by basal ganglia outputs,
for selected actions only, whilst maintaining or increasing inhibition of non-selected actions.
The novelty of the Gurney et al. model included showing that intrinsic circuitry involving
the GPe acts to regulate this selection effect, for instance, by normalising the level of
surrounding inhibition for different numbers of competitors [40].
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topeduncular nucleus in rat); STN—subthalamic nucleus; SNc—substantia nigra pars compacta; 
SNr—substantia nigra pars reticulata. TRN—thalamic reticular nucleus—VL—ventrolateral thala-
mus. Reprinted with permission from Ref. [41]. 2002, Taylor & Francis Informa UK Ltd—Journals. 

The balance between the different intrinsic basal ganglia mechanisms is also thought 
to depend on the level of tonic dopamine expression, which differentially impacts striatal 
projection neurons with different receptor types [39,52]. Specifically, striatal projection 
neurons can be separated into two broad classes. One population contains the neuropep-
tides substance P and dynorphin, preferentially expresses the D1 subtype of dopamine 
receptors, and projects directly to the output nuclei (SNr and GPi). Activity in these ‘D1 
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Figure 1. (A) A diagram of the connectivity, relative position, and relative size of the nuclei that
comprise the vertebrate basal ganglia showing the separate projection targets of the D1 and D2
receptor striatal neurons as modelled by Gurney et al. [39,40]. (B) The connection scheme of the
extended basal ganglia model, as modelled by Humphries and Gurney [41], incorporating a feedback
pathway to the cortex via the thalamus. The box labelled ‘basal ganglia’ contains the functional
anatomy shown on the left. Solid lines depict the excitatory pathway, and dotted lines depict
inhibitory pathways in both diagrams. Anatomical labels are for the primate brain. Abbreviations:
GPe—globus pallidus external segment; GPi—globus pallidus internal segment (EP—entopeduncular
nucleus in rat); STN—subthalamic nucleus; SNc—substantia nigra pars compacta; SNr—substantia
nigra pars reticulata. TRN—thalamic reticular nucleus—VL—ventrolateral thalamus. Reprinted with
permission from Ref. [41]. 2002, Taylor & Francis Informa UK Ltd—Journals.

The balance between the different intrinsic basal ganglia mechanisms is also thought
to depend on the level of tonic dopamine expression, which differentially impacts striatal
projection neurons with different receptor types [39,52]. Specifically, striatal projection
neurons can be separated into two broad classes. One population contains the neuropep-
tides substance P and dynorphin, preferentially expresses the D1 subtype of dopamine
receptors, and projects directly to the output nuclei (SNr and GPi). Activity in these ‘D1
neurons’ suppresses the tonic firing in basal ganglia output structures, thus acting to select
(disinhibit) target structures in the thalamus and brainstem [39,53]. A second population of
projection neurons contains enkephalin and preferentially expresses D2 subtype dopamine
receptors. The inhibitory projection from these ‘D2 neurons’ constitutes the first leg of
an indirect, or control [39], pathway to the output nuclei that has two inhibitory links
(Striatum–GPe; GPe–STN), followed by an excitatory one (STN–GPi/SNr). The net effect
of D2 activity is therefore to activate output nuclei, increasing inhibitory control of the
thalamus and brainstem [39,54,55]. Gurney et al. [40] demonstrated that simulation of
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increasing tonic dopamine in the model basal ganglia has the effect of increasing D1 neuron
activity, reducing D2 activity, and consequently reducing activity in GPi/SNr. They con-
cluded that raising tonic dopamine levels makes selection more ‘promiscuous’ increasing
the likelihood that target motor pathways will be disinhibited, and potentially leading to
‘soft’ selection—the full or partial disinhibition of multiple channels.

2.3. A Model of the Extended Basal Ganglia

Humphries and Gurney [41] extended this intrinsic model, as shown in Figure 1 right,
to include extrinsic feedback pathways via the ventral thalamus (VL) and the thalamic
reticular nucleus (TRN). This new model provided improved selection, compared with that
provide by the model of intrinsic circuitry alone, particularly with regard to generating
clean selection with absence of distortion (the partial expression of losing channels) and
the ability to maintain selected actions through positive feedback provided by the basal
ganglia–thalamo-cortical loop. In Study 1 (Section 3), we present previously unpublished
data and analysis obtained using this extended basal ganglia model, which casts light on
how different tonic dopamine levels impact on its selection behaviour.

2.4. Robot Embedding of the Extended Basal Ganglia Model

Prescott et al. [36,56] embedded the extended basal ganglia model [41] within the
control architecture of a mobile robot in order to demonstrate that signal selection by
the embedded model (as described for disembodied models above) could translate into
effective action selection for an embodied agent expressing goal-directed behaviour. This
model was based on consideration of the typical behaviour of a hungry rat placed in
an open-topped arena with high sides (Figure 2A and Supplementary Video, part 1). In
this situation, animals initially show fearful or thigmotaxic behaviour—avoiding open
areas in the centre of the arena, whilst exploring walls and corners. As animals become
more accustomed to the novel environment, they show foraging behaviour—collecting
food pellets from a dish placed in the centre of the arena and typically consuming them in
sheltered areas near the periphery. Salamone [10] showed that effective behaviour switching
in a similar environment is compromised by the dopamine antagonist haloperidol and
by dopamine-depleting lesions of the striatum. Hence, the task is an appropriate one for
investigation of the effects of variation in simulated dopamine on robot action selection.
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Figure 2. The model task. (A) A hungry rat placed in an open arena will initially explore the periphery
(frames 1 and 2) before eventually venturing into the centre (frame 3) to retrieve food pellets that are
then consumed in a sheltered ‘nest’ corner (frame 4). (B) In the robot, these behaviours are simulated
by seeking (frame 1) and following walls (frame 2) and by searching for and acquiring cylinders
(frame 3) that are then deposited in the lit corner of the arena (frame 4) (see Supplementary Video,
part 2).
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In the robot model of this task (Figure 2B and Supplementary Video, part 2), a table-top
Khepera I mobile robot with a gripper turret is placed in a rectangular arena with illumi-
nated corners to simulate safe places, and with small foil-covered cylinders to simulate food
rewards. Fearful behaviour is simulated as staying close to walls and corners. Foraging
involves searching for, locating, and picking up the cylinders. Consummatory behaviour
is modelled as carrying a cylinder to one of the two illuminated corners and depositing
it there.

To generate appropriate behaviour, robot activity is decomposed into five action sub-
systems inspired by the ethological classification of behaviour. Three of the five action
sub-systems—cylinder-seek, wall-seek, and wall-follow—map patterns of input from the
robot’s sensors into movements that orient the robot towards or away from specific types
of stimuli (e.g., object contours). These behaviours can be viewed as belonging to the
ethological category of orienting responses or taxes (e.g., see [57]). The two remaining
sub-systems—cylinder-pickup and cylinder-deposit—generate carefully timed movement se-
quences that achieve specific behavioural outcomes and are modelled on the ethological
concept of a fixed action pattern (FAP) [58]. Each action sub-system generates its preferred
action at a given moment in the form of a motor vector that specifies target values for the
speeds of the two wheels, and for the positions of the gripper arm (raised/lowered) and
gripper jaw (open/shut). In the case of the orienting responses, the preferred action is
computed using the sensory information available to the robot at that moment. In the case
of FAPs, action specification can also depend on the current value of an internal clock.

In order to make appropriate action selection decisions, the robot needs information
about relevant external and internal cues. Signals pertaining to external cues are computed
by perceptual sub-systems from the raw sensory data available to the robot via an array
of infra-red distance sensor signals, an ambient light sensor, and an optical sensor in the
robot gripper. These sensory inputs are used to compute four bipolar signals indicating:
the presence (+1) or absence (−1) of a nearby wall, nest area, or cylinder, or of an object in
the robot gripper. Internal state cues are provided in the form of two real-valued intrinsic
drives, loosely analogous to hunger and fear, as calculated by two motivational sub-systems.
In the model, ‘fear’ is calculated as a function of exposure to the environment and is reduced
with time spent in the environment, whilst ‘hunger’ gradually increases with time and is
reduced when cylinders are deposited in the nest corners of the arena.

Figure 3 shows how these different component sub-systems come together and interact
with the embedded basal ganglia model. The model is composed of three parts: (i) the
robot and its sensory and motor systems; (ii) the embedding architecture, that is, the
set of perceptual, motivational, action sub-systems; and its interface to (iii) the extended
basal ganglia model. Connections for the first of the five action sub-systems are shown;
projections to and from the other action sub-systems are indicated by dotted lines.

As shown in Figure 3, each action sub-system takes inputs from the perceptual and
motivational sub-systems, and from an internally generated busy signal (b) that is only non-
zero if the action is currently selected, and that allows that sub-system to selectively boost its
own salience. Based on these inputs, the action sub-system generates a weighted sum (the
weights are hand-tuned) that is an estimate of its own instantaneous salience (s). This signal
is then provided as an input to the embedded basal ganglia model. At the same time, the
action-generating component of the sub-system calculates its preferred motor vector based
on the robot’s sensor input and a feedback signal (f ) from the component of the basal ganglia
model corresponding to the ventrolateral thalamus (VL). This feedback signal is used to
update or reset the clock (C) for the action system (in the case of a FAP), and to trigger the
busy signal that contributes to its salience calculation. Full details of the implementation of
this model are provided in [36] and also described in the Supplementary Methods.
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bines the gated motor output of all five channels. See text, Section 4.2, the Supplementary Methods,
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hibition (Equation (1)); e—gating signal; b—busy signal; s—salience signal; f —feedback signal;
ysnr—basal ganglia output; v—motor vector; v̂—aggregate motor vector; SSC—somatosensory cortex;
MC—motor cortex (other anatomical abbreviations as per Figure 1). Reprinted with permission
from [36]. 2006, Elsevier Science and Engineering Journals.

In our earlier publications [36,56], we reported on the development of the robotic
model and its behaviour for a fixed value of tonic dopamine transmission selected to
provide effective action selection capabilities. In Study 2 (Section 4), we report previously
unpublished data and analysis showing the behaviour of this model for a wide range
of values of simulated dopamine values and explore the usefulness of the model for
understanding the effects of variation in tonic dopamine in animals and humans.

3. Study 1: Tonic Dopamine Modulation in the Extended Basal Ganglia Model

Before presenting results for the robot model, it is useful to investigate the response of
a non-embodied version of the extended basal ganglia model to changes in tonic dopamine
modulation as this will provide a helpful yardstick for evaluating the embodied robotic
version. This investigation will also help us to better understand any specific consequences
due to embodiment when we come to examine the robotic model. This investigation also
builds on prior studies of simulated tonic dopamine modulation [40,41] by providing a
fine-grained analysis across the spectrum of possible simulated DA levels.

3.1. Methods

Humphries and Gurney [41] provide a motivation for, and full description of, the
extended basal ganglia model. Here, we note that this model, as well as the embedded
version deployed in the robot, is based on standard ‘leaky integrator’ units, where one unit
is used to represent activity in a pool of neurons in each of the modelled nuclei illustrated
in Figure 1, and for each of the competing basal ganglia ‘channels’. As illustrated in
Figures 3iii and 4, input to channel i of the model, denoted as si, indicates the instantaneous
salience of that channel, computed either by structures outside of the basal ganglia or by the
striatal projection neurons themselves. The output for channel i, denoted as ysnr

i , indicates
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the instantaneous value of the inhibitory signal from the basal ganglia output nuclei to
their targets elsewhere in the brain.
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Figure 4. Processing within the ith basal ganglia channel. The salience of channel i is represented by
the variable si. Leaky integrator units represent the activity in the input striatal units, with separate
units for the D1- and D2-type neuron populations, and the substantia nigra output units. Other units
within the model are not shown (see [36] and the Supplementary Methods). Synaptic efficacy is
increased by tonic dopamine within the D1 channel (1 + λ) and reduced within the D2 channel (1 − λ).
The basal ganglia output for channel i is modelled as affecting target motor systems via shunting
inhibition (Equation (1)) and represented by the gating signal (ei) for that channel.

3.1.1. Tonic Dopamine Modulation of the Model Basal Ganglia

Tonic dopamine modulation of the model is provided by a multiplicative factor in
the equations, specifying afferent input to the striatum, the main input structure in the
basal ganglia, based on a variable parameter, λ, where 0.0 ≤ λ ≤ 1.0. As illustrated in
Figure 4, in striatal D1 units, where dopamine modulation increases synaptic efficacy, the
effective weight is (1 + λ). In D2 units, where the effect is to reduce efficacy, the weight is
(1 − λ). Note that the net effect of increasing dopamine is to increase inhibition on basal
ganglia output structures via both the D1 and D2 internal pathways (labelled selection
and control in Figure 4). Increasing inhibition of basal ganglia outputs in turn reduces
basal ganglia inhibitory control of motor system targets, therefore making selection more
promiscuous [39].

Previous studies have established that the basal ganglia model, in both its original [40]
and extended forms [41], shows good selection properties, across a wide-range of salience
pairings, with the simulated dopamine level set at around λ = 0.20. These studies also
found an increasing prevalence of multiple-channel selection (see definition below) for
λ values of 0.40 and above. Therefore, in the current analysis, we examined values of
simulated dopamine ranging from 0.0 through to 0.5 in increments of 0.01. Note that the
intention is to model changes in dopamine that happen over longer time scales and that we
do not attempt, in this study, to model phasic short-latency dopamine responses that may
also have an important effect on selection and that are considered to be play a critical role
in some forms of learning [8,59].

3.1.2. Using Basal Ganglia Outputs as Selection Signals

In order to consider the basal ganglia model as a model of selection, we need to
interpret the effects of basal ganglia outputs on targets in the brainstem and thalamus. As
noted above, selection corresponds to basal ganglia removing inhibition from the winner(s)
and increasing inhibition on the losers. We assume that for any given channel, this effect
varies between full disinhibition, partial inhibition, and full inhibition, and model this effect
via a mechanism termed ‘shunting inhibition’, thought to capture some of the non-linear
effects of the GABAergic outputs from basal ganglia on their targets in vivo (see [36]).
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Specifically, and as illustrated in Figure 4, for the ith channel, we define the selection, or
gating, signal ei (0 ≤ ei ≤ 1) as follows:

ei = L(1 − ysnr
i /c), (1)

where L(a) is the piecewise linear function that forces ei to lie between 0 and 1

L(a) =


0 : a < 0

a : 0 ≤ a ≤ 1,
1 : a > 1

(2)

Here, c is a constant equal to the value of ysnr
i obtained when the basal ganglia model is

run to convergence with zero-salience input on all channels (in other words, the tonic output
level when there are no active competitors). The gating signal, ei, is applied multiplicatively
to adjust the gain of the ith channel. Thus, if ysnr

i matches or exceeds the basal ganglia
output when there are no active channels (which implies full inhibition of all channels
since BG outputs are tonically active), then the effective gain is 0. On the other hand, if
ysnr

i falls below this level, due to positive-salience input in channel i, then ei will be non-
zero and will be maximal when the basal ganglia outputs for channel i are fully inhibited
( ysnr

i = 0
)
. Modelling the effects of basal ganglia outputs using multiplicative gating builds

on previous theoretical proposals that inhibitory synapses on or close to the cell body have
a non-linear (multiplicative) effect [60,61] and on evidence from electron microscopy that
GABAergic axon terminals from SNR to colliculus, in rats, are located on the soma and
proximal dendrites of target neurons [62]. This interpretation of basal ganglia outputs as
gating specific motor programs is also consistent with evidence showing that optogenetic
activation of SNR cells, that oscillate in phase with rat consummatory behaviour, had the
effect of inhibiting licking but did not affect other (non-consummatory) behaviours, such
as those involving blinking and whisking, that are also controlled by the colliculus [63].

All parameters used were those described in Prescott et al. [36], and yielded a value
of c = 0.169 for Equation (1). For a detailed explanation of parameter setting in the wider
model, see [36,40,41].

3.1.3. Metrics for Measuring Effective Selection

Before progressing, it is useful to set out some criteria for evaluating the selection
properties of the basal ganglia model for different levels of simulated dopamine. The gating
signal, ei, provides a normalised measure of selection efficiency that we can use to evaluate
any given version of the model against our requirements for effective action selection
(Section 2.1). It is useful to define some qualitative/categorical labels for different values
of ei. Allowing a 5% margin from absolute limits (based on common practice in statistical
analyses of behaviour, and for ease of comparison with earlier studies [36,41]), we define
the selection state of the ith competitor as fully selected if 0.95 ≤ ei ≤ 1.0, partially selected if
0.05 ≤ ei < 0.95, and unselected if ei < 0.05. It will also be useful to define specific metrics
relating to the winning channel, w. Hence, we define ew = max∀iei as the efficiency of the
current winner, 1 − ew as its inefficiency, and

dw = 2
(
∑i ei − ew

)
/∑i ei (3)

as the level of distortion affecting the output of this winner. Note that dw will equal
zero when all other competitors have zero efficiency, will increase with the number of
partially disinhibited losers, and will be 1.0 or greater if two or more channels are fully
disinhibited (multiple winners). Inspired by ethological research [64], we will also describe
an uninterrupted series of time steps that share the same winner, and for which ew ≥ 0.05,
as a single bout of behaviour.

Finally, we note that the result of the basal ganglia selection competition, as a whole,
can be summarised by the vector e. It is useful to have some categorical labels to describe
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selection outcomes and in order to facilitate discussion of results. Following [36], and using
the criteria just defined for single competitors, we assign the following qualitative labels to
the possible outcomes of the full competition as defined by the instantaneous value of e:

Clean selection: One competitor fully selected; all others unselected.
No selection: All competitors unselected.
Partial selection: One or more competitors partially selected; no competitor fully selected.
Distorted selection: One competitor only fully selected; at least one other partially selected.
Multiple selection: Two or more competitors fully selected.

3.1.4. Procedure

To better understand the effect of varying simulated dopamine on the selection prop-
erties of the extended basal ganglia model, we simulated a five-channel model, with
two active channels, varying the salience, s1, in channel 1 systematically from 0 to 1 in
steps of 0.01, and then for each value of s1, varying the salience, s2, of channel 2 from 0
through to 1, again in steps of 0.01. For each resulting salience vector (s1, s2, 0, 0, 0), the
model was run to convergence and the result classified in accordance with the scheme set
out above. Importantly, selection competitions were run in sequence from low values to
high values. The activations levels of all leaky integrator units in the model were initialised
to zero for each new value of s1 but thereafter, while that salience value was tested, were
retained from one competition to the next. In other words, we simulated a situation where
channel 1 was initially the only active channel, and gradually increased channel 2 while
holding channel 1 constant. The goal here, is to simulate some aspects of the continuity of
experience that we can expect in the robot model in which the recent history of selection
competitions may influence the current competition through hysteresis.

3.2. Results

Figure 5A shows the percentage of action selection competitions, across the 500,000
(50 × 100 × 100) runs, falling into each of the selection classes—clean selection, no selection,
partial selection, distortion, and multiple selection. Values of λ below 0.01 result in no
selection, while for those in the range 0.04–0.15, partial selection predominates, and for
those from 0.15 upwards, the majority of competitions end in clean selection with a peak
around 0.22; distorted selection begins to appear with values above 0.2, and multiple
selection occurs with levels of 0.25 and greater.
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Figure 5. (A) The percentage of selection competitions falling into different classes of selection
outcome for values of simulated dopamine, λ, ranging from 0 through to 0.5 in increments of 0.01.
Data were obtained through an exhaustive search of a two-dimensional salience space. Partial
selection is predominant for low dopamine values; distortion and multiple selection are evident at
high dopamine values. Simulation with levels of λ > 0.5 resulted in continuation of the trends shown
in the figure (see Supplementary Materials). (B) Average efficiency (green) and distortion (red) across
all runs at each level of λ.
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Figure 5B shows the average values of efficiency and distortion across all runs at a
given level of λ. These graphs indicate that average efficiency increases, gradually reaching
its maximal value (1.0) at λ = 0.23, while distortion increases gradually from zero beginning
at around λ = 0.15 and reaching 0.2 by λ = 0.5.

Figure 5 shows the average outcome at different levels of λ across all possible (s1, s2)
dyads. In order to better understand the interplay between salience, simulated dopamine,
and selection, Figure 6 shows the outcome of the simulation for five specific values of
simulated dopamine (λ = 0.06, 0.12, 0.22, 0.31, and 0.40), indicating the boundaries of
different classes of selection outcome on the (s1, s2) plane. For clean selection only, the plots
also distinguish between the selection of channel 1 (which is active first) and of channel 2
(which then competes for selection against channel 1).
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Figure 6. Selection boundaries in two-dimensional salience space for sample levels of simulated
dopamine—very low (λ = 0.06), low (0.12), intermediate (0.22), high (0.31), and very high (0.40). For
each plot, the salience of channel 1 is shown on the x-axis, and that of channel 2 is shown on the
y-axis ranging from 0.0 to 1.0 (shown only for the central plot). Labels indicate the following: N—no
selection; P—partial selection; C1—clean selection of channel 1; C2—clean selection of channel 2;
D—distortion; M—multiple selection.

Several properties of Figure 6 are worth noting. First, at all levels of λ, there is little
or no selection at very low salience levels. This is largely a consequence of the threshold
value of the model striatal input neurons, which serves to weed out weakly salient inputs.
Second, with low λ (e.g., 0.12), clean selection (C1 or C2 in Figure 6) occurs, if at all, only
when there is a high salience input in just one channel; otherwise, partial selection is the
norm. Third, at all simulated dopamine levels, there is no clean selection for strong, evenly
matched salience values (top-right corner of all plots). With low values of λ (0.06; 0.12), the
outcome is no selection or partial selection of one or both channels, while with high values
(0.31; 0.4), the result is distortion of the selected channel or multiple selection. The dotted
line in the central plot (λ = 0.22) is shown to illustrate the extent of hysteresis in the model:
channel 1 wins many selection competitions (encroaches across the diagonal) in which the
salience of channel 2 is greater, purely because it is activated first.

To further our understanding of hysteresis in the model, the simulation results de-
scribed above were reclassified to show the extent to which channel 1, which is always
active first, is preferred to channel 2, irrespective of the selection outcome. Thus, the
result of each competition was rescored as either a channel 1 win (e1 > e2), a channel 2 win
(e 2 > e1), a tie (e 1 = e2 ̸= 0), or no selection (e1 = e2 = 0). Figure 7A shows the results of
this reclassification, and reveals that hysteresis is a property of the model for all but the
lowest levels of simulated dopamine modulation (λ ≤ 0.06), with channel 1 consistently
winning up to 10% more competitions than channel 2.
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Figure 7. (A) Selection outcomes in the disembodied model re-classified as a channel 1 win, a channel
2 win, a stand-off (no selection), or a tie. Channel 1 (c1) wins substantially more competitions than
channel 2 (c2) for all but the lowest levels of simulated dopamine. (B) The level of channel 2 salience,
s2, required for channel 2 to prevail (i.e., e2 > e1) against a channel 1 salience, s1, of 0.3, 0.4, or 0.5, for
different values of λ. Data are shown only where there is a clear switch from channel 1 to channel
2 with increasing s2 (i.e., without an intervening interval of no selection or multiple selection). The
degree of hysteresis varies depending on λ and s1, with the value of λ that generates maximum
hysteresis decreasing with increasing s1.

However, this is still not the full story. Figure 7B shows a further measure of hysteresis—the
level of channel 2 salience required to overcome a given level of channel 1 salience—for
three different initial fixed levels of s1. The plot shows that hysteresis is governed by a complex
interaction of λ with salience. Specifically, for values of s1 in the range 0.3–0.5, the degree of
hysteresis first increases with increasing λ, peaks, and then decreases; at its maximum, channel 2
salience needs to reach 176% of the channel 1 salience in order to win the selection competition.
The peak λ value for hysteresis also changes for different values of s1—as the salience of the
selected channel increases, the value of λ at which hysteresis is maximal goes lower.

We conclude that the relatively flat level of hysteresis shown across a broad range
of λ values in Figure 7A masks a significant dependency on salience. This outcome can
be explained by understanding that hysteresis in the model occurs as a consequence of
activity in the basal ganglia–thalamo-cortical feedback loop (via VL and TRN in Figure 1).
Activity in this loop increases in proportion to reduced basal ganglia output; in other
words, it increases with selection efficiency. With low values of λ, partial selection (low
efficiency) predominates for low or intermediate salience values. This outcome results in
less positive feedback via the thalamo-cortical pathway than for high-salience competitions.
Consequently, when λ is low, hysteresis will be maximal with high salience. In contrast,
high λ levels result in high-efficiency selection with comparatively low levels of salience
input, thus generating substantial positive feedback and strong hysteresis. However,
high-level salience competitions can result in the partial or full disinhibition of multiple
channels (distorted or multiple selection). One consequence of this is an increase in TRN
inhibition of the VL thalamus for the winning channel, resulting in a significant reduction
in thalamocortical feedback for that channel. This means that with higher levels of λ, the
current winner can be more vulnerable to interruption by its competitors.
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4. Study 2: Selection in the Neurorobotic Basal Ganglia Model

Clean selection for the disembodied model, as illustrated in Figure 5, was above 75%
in the simulated dopamine range 0.2 ≤ λ < 0.3, fell steeply to zero in the lower range
0.0 ≤ λ < 0.2, and fell more gradually (to 55%) in the higher range 0.3 ≤ λ ≤ 0.5. Defining
these ranges as, respectively, intermediate, low, and high λ, and building on the analysis just
described (and in earlier explorations in [36,40,41]), we can make the following hypotheses
concerning the possible effects of varying simulated dopamine in the robotic model:

Hypothesis 1. At intermediate levels of λ (0.2 ≤ λ < 0.3), we should expect to see a high
proportion of clean selection with selected behaviours fully disinhibited and competing behaviours
fully suppressed.

Hypothesis 2. At low levels of λ (0.0 ≤ λ < 0.2), we should expect a predominance of partial
selection or no selection (very low λ) and consequently the slowing or absence of movement.

Hypothesis 3. For high levels of λ (0.3 ≤ λ), we should expect to see reduced inhibition of losing
channels, leading to distorted or multiple selection, and resulting in motor commands that mix the
movement requests of more than one action sub-system.

Hypothesis 4. At both low and high levels of λ, we should expect to see changes in the hysteresis of
selected channels modulated in accordance with the nature of the salience competition (e.g., whether
the salience of competing channels is high, low, or evenly matched) as illustrated in Figure 7B.
Changes to hysteresis can be expected to translate into consequences for action maintenance and for
the timing of behavioural switching.

With respect to each of these hypotheses, the observed behaviour of the robot may
depend on a variety of factors related to its embodiment (discussed further below) and
the requirement to generate sequences of integrated behaviour. Moreover, whereas the
analysis in study 1 was based on an exhaustive search of an essentially two-dimensional
salience space, the robot model samples behaviour-dependent trajectories through a five-
dimensional salience space. The actual outcomes with respect to hypotheses 1–4 are there-
fore only partially predictable from the disembodied model and to be further determined
from observation.

4.1. Methods

As illustrated in Figure 3ii and 4, for each action sub-system, i, the output of the basal
ganglia, ysnr

i , is converted into a gating signal, ei, via Equation (1), which is then used to
scale the value of the motor vector for that action. An integrator module then sums up all of
the motor vectors and passes the aggregate vector through a limiter (L) (Equation (2)) that
constrains all values to lie in the range 0–1; this vector is then converted into the specific
motor commands that control the robot.

Full details of the test environment, the robot sensor and motor systems, and the
embedding architecture components, including their motivation in relation to the neuro-
scientific understanding of relevant brain sub-systems, are provided in [36], which also
provides a broader discussion of the use of robotic models in neuroscience. Details of the
full implementation of the robotic model and source code are provided in the Supplemen-
tary Materials. The basal ganglia model and robot embedding were implemented in C++,
and the robot was controlled using Webots software (www.cyberbotics.com, accessed on
the 23 February 2024) from a Linux workstation via an umbilical cable.

Note that the embedded basal ganglia model, which is simulated using the Euler
method, is run to convergence for each time step of the robot model. The full robot model
operates on a series of discrete time steps, providing sensor updates and modifying its
action output at a rate of approximately 7 Hz; thus, it is always operating on the output of
a fully converged model basal ganglia.

www.cyberbotics.com
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4.1.1. Measuring Effective Action Selection in the Robot Model

We will explore the results of our study using the methodology of the ethogram from
behavioural science. This is illustrated in Figure 8 for a single 240 s run with simulated
tonic dopamine set at an intermediate level of λ = 0.20. The top five lines of the plot show
the value of the gating signal, ei, for each of the five action sub-systems at each time step
in the style of a behavioural ethogram. Comparing the different action sub-systems, it is
evident that the robot generates extended sequences of behaviour with no more than one
sub-system fully selected at any given time. The efficiency of selected actions is 100% or
near it, actions are performed over extended bouts (solid blocks of high efficiency), and
the inefficiency of the winner (plotted as the sixth line of the plot) is generally near-zero.
In this run, the robot is initially fearful and seeks the wall (wall-seek), then switches into
its wall-follow behaviour. This can be viewed as the robot forming higher-order sequence
of avoidance (av) behaviour, as labelled in the seventh line of the plot. The final line of
the plot shows the activity of the model motivational systems. As the level of simulated
fear gradually subsides, simulated hunger increases. As a result, at around 50 s, the
robot rapidly switches into its cylinder-seek behaviour. When it subsequently locates a
cylinder, it switches to cylinder-pickup, then to wall-seek (this time carrying a cylinder),
then wall-follow, and, when it finds a lit corner, cylinder-deposit. The higher-order action
sequence beginning with cylinder-seek and ending with a successful deposit is labelled as
foraging (fo) in the plot. Releasing the cylinder has the effect of reducing simulated hunger
such that the robot is again motivated principally by fear to perform its avoidance-related
behaviours (wall-seek and wall-follow). However, the level of simulated hunger gradually
rises, which leads to two further higher-order foraging sequences interspersed by a period
of no behaviour. The absence of behaviour occurs when neither of the intrinsic motivations
is sufficiently strong to trigger any action—the robot sits idle, just as the rat might lie quietly
in the corner of the arena.
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Figure 8. Bout/sequence structure of action selection in the robot model for a 240 s trial (λ = 0.20);
the first 100 s is shown in the Supplementary Video, part 3. Each of the first five plots shows the
efficiency (e) of selection for a given action sub-system plotted against time. The sixth plot shows
the inefficiency of the current winner, the seventh the higher-order structure of the bout sequences,
(av = avoidance; fo = foraging; n = no behaviour), and the final plot the levels of the two simulated
motivations. All measures vary between 0 and 1 on the y-axis. The robot displays appropriate bouts
of behaviour organised into integrated, goal-achieving sequences.
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From the perspective of the observer, the robot’s behaviour appears to be integrated
and purposeful; individual action bouts are assembled into larger sequences that success-
fully reduce its drives. Below, we will compare this example of effective action selection
and integrated behaviour with other runs in which the robot demonstrates various forms
of behavioural disintegration as the result of lowering or raising the level of simulated
dopamine in the model basal ganglia.

To further our analysis of behavioural (dis)integration, we have also developed a
simple binary classification scheme to assess each trial according to its success in achieving
higher-order behavioural goals. Specifically, we define ‘integrated behavior’ for this robotic
task as constituting, at minimum, successful avoidance in the initial ‘high fear/low hunger’
phase, and a successful foraging sequence in the later ‘low fear/high hunger’ phase.
Operationally, we define the following:

(i) Successful avoidance is activity resulting in the discovery of a wall (ignoring any cylin-
ders encountered en route) followed by movement covering some distance along the
wall’s length.

(ii) Successful foraging is activity resulting in the deposition of a cylinder in a ‘nest’ area.

This classification scheme proved simple enough to be applied during live observa-
tion of robot behaviour. In addition, automatic logs were recorded detailing the robot’s
sensory, motivational, and basal ganglia state at each time step, and the bout structure of
its behavioural selections, allowing us to reconstruct and analyse the robot’s behaviour
post hoc.

4.1.2. Procedure

Based on our analysis of the disembodied model, we decided to test the robot for
30 trials each at low, intermediate, and high simulated dopamine levels, with five trials,
each lasting 120 s, at each of 18 different values of λ: low = 0.03, 0.06, 0.09, 0.12, 0.15, and
0.18; intermediate = 0.20, 0.21, 0.22, 0.23, 0.25, and 0.28; and high = 0.31, 0.34, 0.37, 0.40,
0.43, 0.46. This resulted in 90 trials in total. The robot started each trial in the centre of the
arena, facing one of the four walls, with four cylinders placed 18 cm diagonally from each
corner (Figure 2, right). Following our initial analysis, a further 26 trials were conducted
using a quota sampling strategy, as explained in the Section 4.2 below. Finally, in order
to better understand our results, we also performed an additional 90 trials in which we
enforced ‘hard’ selection of the winning action, for comparison with the baseline model,
which allows the simultaneous expression of multiple actions (‘soft’ selection).

Since the behaviour of the robot is susceptible to noise, we applied statistical methods
(using the SPSS statistical package, vs. 28) to further analyse some results. In the statistical
analyses reported below, we used an alpha value of 0.05 and report significance values as
two-tailed. When comparing between conditions, we used Levene’s test to check whether or
not samples had similar variance. Where this test is significant, we report “equal variances
not assumed” and provide adjusted degrees of freedom and p-values.

4.2. Results

In each trial, which typically consisted of around 800 robot time steps, the outcome of
the basal ganglia selection competition, at each time step, was classified in accordance with
the selection criteria specified in Section 3.1 above. For each λ value, the percentage of time
steps resulting in each type of selection outcome was then averaged across all five trials
regardless of the behavioural outcome of individual trials (which we consider next). The
results of this analysis are shown in Figure 9A–E, for the initial 90 trials, together with a
plot of average efficiency and distortion (as defined in Section 3.1) across the different λ
levels (Figure 9F).
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Figure 9. (A–E). The percentage of selection competitions falling into different classes of selection
outcome for values of simulated dopamine ranging from 0.03 through to 0.46. Data were obtained
by averaging five 120 s trials of robot behaviour, for each of the eighteen λ levels tested. Standard
error bars are shown. Plots are coloured as per the colour scheme in Figure 5—clean selection (dark
green), no selection (orange), partial selection (purple), distorted selection (pink), multiple selection
(light green). Black dotted lines show the equivalent results obtained using the non-embodied model
(Figure 5). Comparison of the selection properties of the non-embodied and robot models shows
more clean, partial, and distorted selection in the robotic model and fewer selection competitions
where the outcomes were either no selection or multiple selection. (F). Average efficiency (green) and
distortion (red) across all runs at each level of λ.

These results show the expected similarity between the selection profiles for the
robotic and non-embodied models; nevertheless, there are some important differences.
These include, in the robotic model, an increased proportion of partial selection at low
λ levels (0.03 ≤ λ ≤ 0.12), of clean selection at intermediate and moderately high levels
(0.2 ≤ λ ≤ 0.4), and of distorted selection at high levels (0.3 ≤ λ ≤ 0.46). There is also an
almost complete absence of multiple selection at high λ levels. Whilst average efficiency
is similar across the robotic and disembodied models, the robot model overall has less
distortion except at the highest λ levels. In the intermediate range of simulated dopamine
(λ = 0.20–0.29), clean selection for the robotic model is in the range of 89–95% compared to
73–81% for the disembodied model.

These results largely reflect the fact that the robot spends little time sampling the
very-high-salience areas of the state space, or the very-low-salience areas, compared to
the exhaustive search conducted for the disembodied model. This was confirmed via an
analysis of salience values across 15 runs (one at each level of λ), which found that 95% of
selection competitions were in the range of 0.3–0.75 for the winning channel and 0.2–0.7 for
the strongest losing channel (see also [36] for a plot of how the salience space is sampled
by the robot model). Note that that there may also be up to five channels with non-zero
salience at any time as opposed to just two in the disembodied model. We next explore
how the different levels of λ impacted on robot behaviour.
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4.2.1. Effects of Simulated Dopamine Modulation on Behavioural Outcome

The outcome of our initial binary analysis (see Section 4.1.1) was as follows. Seven
levels of simulated dopamine (0.20–0.28 and 0.37) were scored as generating successful
behaviour in all five trials; five levels (0.03–0.12 and 0.46) were unsuccessful in all trials,
and the remaining six levels (0.15, 0.18, 0.31, 0.34, 0.40, and 0.43) generated a mixture of
successful and unsuccessful trials.

In order to better understand what was happening at levels of λ that generated mixed
results, a quota sampling strategy was implemented in which further trials were conducted
until five successful trials in total, at each of these levels, had been achieved. This required
between 1 and 11 trials per level, resulting in an additional 26 trials. Figure 10 shows the
total trials (Figure 10A), and the overall success rate (Figure 10B) at different levels of λ,
across all 116 trials, assessed against the criteria of success in both avoidance and foraging.
Figure 10C shows a more detailed analysis of types of failures under the low- and high-λ
regimes that we describe further below.
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Figure 10B confirms that in the range of intermediate λ values (0.2–0.28), which
generates high proportions of clean selection, as shown in Figure 9, the robot also reliably
generates integrated sequences of behaviour. The absence of any failures in the 30 trials in
this range provides a 95% level of confidence that the failure rate for this class of models is
10% or less.

In the remainder of this section, we consider the nature of the failures in behavioural
integration that occur with levels of λ below or above this intermediate range, and explore
the effects of simulated dopamine modulation on the timing and frequency of behaviour
switching. Figure 10C provides an analysis of the types of failure of behavioural integration
observed at different levels of λ and as described in Table 1. Figure 11A–E shows some
example runs, recorded with low and high λ, that help to illustrate the robot behaviour
observed at different levels of simulated dopamine.
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Table 1. Types of behavioural disintegration in the robot basal ganglia model.

Failure to meet success criterion

Fails to avoid open space (fa) Failure with respect to criterion (i) above.

Fails to forage (ff) Failure with respect to criterion (ii) above.

Behaviours typically leading to fa or ff

Absence of movement (am) Failure to express movement despite being motivated. Typically leads
to fa as the robot fails to leave open space.

Fails to raise arm (fra)
Fails to lift the arm after grasping a cylinder. Typically leads to ff as the
lowered arm blocks the infrared sensor’s ability to detect the
environment.

Fails to grasp cylinder (fgc)

Fails to lower the arm sufficiently to grasp a cylinder (therefore
grasping at air). This can lead to ff, as, when the robot fails to grasp the
cylinder, it then immediately looks for another cylinder. This generally
leads to repeated cycles of cylinder-seek followed by (unsuccessful)
cylinder-pickup.

Forms of behavioural disintegration typically not leading to fa or ff

Slowed movement (sm) Scored when behaviour, such as wheeled movement, is slowed to 75%
or less of the usual speed (as measured by the output motor signal).

Loses wall (lw)
Losing contact with the wall while expressing wall-follow behaviour.
Determined to occur if contact has been lost a minimum of four times
in sequence (since occasional losses can occur due to sensor noise).
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Figure 11. Bout/sequence structure of action selection in the robot model for three 120 s trials with
low simulated dopamine, (A) λ = 0.06, (B) λ = 0.09, and (C) λ = 0.12, and three 120 s trials with high
simulated dopamine: (D) λ = 0.31; (E) λ = 0.31; (F) λ = 0.40. The graph layout is as described for
Figure 8, except that distortion, dw, of the winning action, replaces inefficiency for panels D–F (as
inefficiency is always zero in these trials). Labels in the ‘sequence’ plot show successful avoidance
(av), foraging (fo), or different forms of behavioural disintegration as per Table 1. With low simulated
dopamine, the robot shows slowed movement (sm) and an absence of movement (am). Inefficient
selection can also cause premature deselection, leading to the failures to grasp the cylinder (fgc) or
raise the gripper arm (fra) shown in plots B and C. With high values of λ, distortion of the selected
behaviour by the motor output of losing competitors becomes a significant issue. Distortion in the
run shown in plot D has only benign effects, but in the run shown in plot E causes behavioural
disintegration as the robot fails to grasp a cylinder (fgc) despite multiple attempts. The run shown
in plot F demonstrates that there is a high frequency of behaviour switching with high levels of
simulated dopamine, in this case because distortion causes to the robot to repeatedly lose track of the
walls (lw). See the text for further discussion and Appendix A for a detailed commentary.

4.2.2. Behavioural Consequences of Low Simulated Tonic Dopamine (λ < 0.2)

Slowed movement and periods of inaction. In Section 3, we showed that the
model basal ganglia generates partial (low-efficiency) selection for low levels of simu-
lated dopamine. Since our robotic model employs the basal ganglia output as a gate in
targeted motor systems, the consequence of partial selection in behavioural terms should
be that this gate is not fully opened for winning competitors; motor acts should be slowed
or even extinguished altogether. This expectation, noted in hypothesis 1 above, was borne
out in our study (see Figure 10C), which saw the expected translation of partial/weak
selection into slowed movement (sm) for all runs at λ level 0.12 or lower. At λ = 0.06 and
0.03 the robot moves too slowly to meet the criterion for successful avoidance (fa) and
consequently also fails to complete a successful foraging sequence in the time allowed
(ff). Periods during which the robot makes no movement (am), despite being otherwise
sufficiently motivated, are seen at λ = 0.06 (an average of 14 s per trial, compared to 2 s for
intermediate levels of λ) and for longer spells at λ = 0.03 (an average of 38 s per trial). Note
that it is possible to distinguish between the dysfunctional absence of movement due to
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low λ, as seen in Figure 11A, and its appropriate absence during periods of low motivation
(as in the period of no selection for λ = 0.20 in Figure 4). The Supplementary Video (part 4)
shows an example of slow movement and no movement for an example run with λ = 0.10.

Premature deselection. In the range λ = 0.06–0.15, behaviour can break down as the
result of the premature deselection of an ongoing behaviour; this can be seen as a failure
of persistence or action maintenance. At λ = 0.09 or below, this typically occurred during
the initial wall-seek bout, leading to an absence of movement and failure to reach the
wall as noted above. A further point of vulnerability was seen in the range λ = 0.09–0.15
and occurred when the robot attempted to execute the cylinder-pickup FAP but either
failed to grasp the cylinder (fgc in Figure 10C) or failed to raise the gripper arm at the
end of cylinder-pickup bout (fra in 10C). An example of the fgc failure is shown in the
Supplementary Video (part 5). Failure to raise the gripper arm occurred in 80% of trials at
λ = 0.12 and 50% of trials at λ = 0.15, and also resulted in a behavioural trap, as described
in Appendix A, where the robot detected its lowered arm as an obstacle and engaged in a
slow circling behaviour until the end of the trial.

Failures are more likely at low salience levels. Our experiments show that, under low
λ, weakly selected behaviours are typically not executed with sufficient vigour and can be
vulnerable to interruption. Further investigation also shows support for hypothesis 4—that
the effects of varying simulated dopamine can also depend on the salience level. Specifically,
comparison across the 10 trials at λ = 0.15 shows that the variability in outcome (successful
vs. unsuccessful) resulted from differences in the timing of the initial cylinder-pickup
bout across trials. Specifically, the robot encountered a cylinder, and initiated the cylinder-
pickup FAP, significantly later in the successful runs (M = 66.7 s, SD = 6.88) compared to
the unsuccessful runs (M = 52.0 s, SD = 2.23) (independent samples t-test: t(4.8) = 4.557,
p = 0.007; equal variances not assumed). Recall that the salience of cylinder-pickup increases
with simulated ‘hunger’, which in turn increases gradually with longer search times. In
other words, for those runs at λ = 0.15 in which a cylinder is discovered quickly, and in
which the robot is therefore more likely to fail through premature deselection, the selection
of the cylinder-pickup behaviour is at a lower salience level than for the successful trials
(longer search durations). This can be related to Figure 7B, which shows reduced hysteresis,
and hence less behavioural persistence, for low values of λ (compared to intermediate
values). More generally, in all low-λ conditions, robot behaviours are executed more
efficiently at higher salience levels, and therefore the symptoms of reduced simulated
dopamine such as slowed movement are more pronounced when salience is low.

4.2.3. Behavioural Consequences of High Simulated Tonic Dopamine (λ > 0.3)

Distortion of winning channels by active losers. At high levels of λ, the non-
embodied model predicted reduced inhibition of the motor output from losing channels,
leading to distortion of the winning action (hypothesis 3). The behavioural consequences
of distortion are visible in the robot model with levels of simulated dopamine of λ ≥ 0.31
and occasionally resulted in behavioural disintegration for λ = 0.31 and 0.34 through failure
to complete a foraging bout (ff in Figure 10C). The likelihood of failure increased with very
high levels of λ with more than 50% fails at λ = 0.4 and 0.43 and 100% fails at λ = 0.46. At
all of these λ levels, failure to forage was typically due to an inability to grasp a cylinder
(fgc). However, other evidence of behavioural disintegration was also evident, particularly
difficulty in tracking walls (lw). Failure to grasp a cylinder oftens results in a second form of
behavioural trap where the robot enters repeated cycles of cylinder-seek and (unsuccessful)
cylinder-pickup. An example of this can be seen in Figure 11E (t = 85–120 s), and a further
example of this type of failure is shown in the Supplementary Video (part 6).

Failure is more likely at high salience levels. That there was a mix of successful
and unsuccessful runs, at some high λ levels, indicates that the impact of distortion on
behavioural outcome can depend on circumstances. We illustrate this by comparing, in
Figure 11D,E, two trials with λ = 0.31, showing that both successful foraging (Figure 11D)
and disintegrated foraging (Figure 11E) are possible at this level. In Figure 11D, the robot
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quickly locates a cylinder at t = 49 s; in Figure 11E, the only unsuccessful run at this λ level,
there is a much more protracted cylinder-seek search ending at t = 84 s (see Appendix A for
a detailed commentary and comparison). At higher λ levels (0.40 and 0.43), a comparison
of successful (M = 37.1 s, SD = 6.06) vs. unsuccessful trials (M = 63.3 s, SD = 16.4) shows
that, on average, in successful runs, the robots discovered a cylinder whilst foraging earlier
than in unsuccessful trials (independent-samples t-test: t(18) = −4.741, p < 0.001). This is
the reverse of the situation with low λ—with high simulated dopamine, there are longer
search bouts, giving rise to higher salience levels (from increasing ‘hunger’), that tend to
result in greater behavioural disintegration. This again matches hypothesis 3—that the
effect of varying simulated dopamine on behaviour will depend upon salience levels, with
contrasting effects seen at low and high λ levels.

From Figure 7B, it is evident that we can expect reduced hysteresis (behavioural
persistence) for higher levels of λ; however, this figure also shows that increasing salience
at high λ does not significantly impact hysteresis. To understand why the robot performs
better at lower levels of salience with high λ, we therefore need to look beyond the basal
ganglia model itself and to consider the influence of distortion on behavioural persistence
via its effect on behaviour. This is the topic of our final analysis.

4.2.4. Effects of Distortion on Behavioural Persistence

A key property of the robotic model, that distinguishes it from the non-embodied
simulation, is that selection outcomes have behavioural consequences that shape the
robot’s subsequent sensory experiences. More specifically, the robot’s motor output, in part,
determines its trajectory through the state space of perceptual and motivational affordances
for future selection competitions. Since varying the level of simulated dopamine can
influence motor behaviour by slowing movement or by merging partially-selected actions
with winning ones, it is interesting to establish whether or not this has any significant
consequences for the selection behaviour of the embodied model.

Here, we explore this issue by examining some of the effects of distorted selection
on the timing and frequency of behaviour switching. To assist this analysis, an additional
90 robot trials were performed at all of the λ levels previously tested, but this time with
a ‘winner-takes-all’ filter applied to the efficiency values of all sub-systems, such that the
winning sub-system was always assigned an efficiency of 1.0, and all losers an efficiency
of 0.0. In the following analyses, the behaviour of this winner-takes-all variant will be
contrasted with the ‘soft’ selection generated by the standard model that allows multiple
channels to influence motor output.

Timing of behaviour switching. Our investigation of the non-embodied model
showed significant hysteresis at almost all levels of simulated dopamine in the context of
closely matched salience competitions (Figure 7); this should show up strongly in the robot
model, in the initial transition from avoidance to foraging behaviour. The key competitors
at this point are wall-follow and cylinder-seek and the prime determinant of their relative
salience, which eventually allows the latter to prevail, is a gradual, time-determined
reduction in ‘fear’ alongside a steady increase in ‘hunger’. The length of time leading up
to this switch from avoidance to foraging therefore provides a measure of the operation
of behavioural persistence in the model. Figure 12A plots this ‘time-to-switch’ measure
against different levels of λ and shows the different outcomes observed with both the
standard model (from the original set of 90 trials) and the new winner-takes-all control.
For each dopamine level, we plot the average and standard error of the time-to-switch
calculated over the five trials.
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Figure 12. Comparison of the standard ‘soft switching’ robot model of the basal ganglia with a winner-
takes-all variant in terms of the timing and frequency of behavioural switching for different levels
of simulated dopamine. (A) ‘Time-to-switch’ from avoidance to foraging. The plot demonstrates
that persistence (time-to-switch to foraging) varies with simulated dopamine and is affected by
motor distortion at higher dopamine levels in the case of the standard model only, leading to earlier
switching (less persistence) compared with the winner-takes-all variant. (B) Total number of bouts
during the first avoidance and foraging sequences combined. Bout frequency is significantly increased
at very high λ levels for the standard model only, indicating that distortion of motor behaviour can
cause more frequent switching. Each average is over five runs. Bars show standard errors.

Comparison with Figure 7B shows that the graph for the winner-takes-all variant
provides a good match to the degree of hysteresis found for a fixed salience (on the
initial winning channel) of 0.4. Since the salience of wall-follow preceding the switch is
typically in the range 0.3–0.4, this demonstrates that hysteresis in the embodied model
basal ganglia generates a corresponding level of behavioural persistence under winner-
takes-all conditions. However, the standard model generates an interesting difference from
this result. Specifically, two-way ANOVA shows a significant interaction (F(1,16) = 3.641,
p < 0.001) between model type (standard vs. winner-takes-all) and λ. Post hoc comparisons
for low, intermediate, and high λ values show a difference for high values only (λ ≥ 0.31)
where switching occurs significantly earlier in the standard model (M = 31.7 s, SD = 6.26)
compared with that under the winner-takes-all variant (M = 45.4 s, SD = 5.66) (independent
samples t-test: t(58) = −8.92, p < 0.001). We conclude that, with higher λ, the distortion
provided by losing channels can significantly reduce behavioural persistence in the robot
model. This reduction is over and above that resulting from lower hysteresis in the
embedded basal ganglia model.

Looking at Figure 11 (panels D and E), which shows behaviour for two trials with
λ = 0.31, we can observe, towards the end of the wall-follow bout (around t = 30), a
small, but gradually increasing, output on the cylinder-seek channel. It is this ‘leakage’ of
motor output from the cylinder-seek sub-system that constitutes the difference between
the standard and winner-takes-all versions of the model. A key to understanding the
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effect of this distortion is to note that the wall-follow behaviour is not especially robust
and is sometimes pushed off-track by sensor noise or wheel slip, even when driven by
a clean motor signal. The effect of the motor noise introduced by the partial selection of
cylinder-seek is therefore to increase the variability in the robot trajectory, making it more
difficult to maintain sensor contact with the nearby wall. In this situation, any loss of the
wall percept, due to distorted movement, will lead to a rapid reduction in wall-follow
salience and a switch to the cylinder-seek behaviour.

Increased switching frequency with high simulated dopamine. If distortion makes
some behaviours more vulnerable to interruption, then we might also expect increased
levels of behaviour switching. To investigate this possibility, Figure 12B illustrates one
specific measure of switch frequency, the total number of bouts occurring during the first
avoidance sequence and first foraging sequence of each trial. This measure was preferred
to counting bouts (or switches) within a fixed time interval as it allows us to exploit a useful
baseline—integrated behaviour (according to our earlier operational definitions) requires a
minimum of seven bouts across these two sequences.

Since this measure can only be applied to trials containing a completed foraging
sequence, this analysis only considered λ values in the range 0.15–0.43, and the graph plots
the average and standard error of the number of bouts observed for the five successful trials
at each simulated dopamine level. These data reveal that the performance of the robot is
slightly above baseline (seven bouts) across most of the range of simulated dopamine values.
However, the number of bouts increases substantially for very high λ levels (λ = 0.40, 0.43;
M = 21.3 bouts, SD = 4.73). Moreover, as shown in Figure 12B, when comparing with
winner-takes-all selection at these levels (M = 9.2 bouts, SD = 1.99), it is evident that the
latter requires significantly fewer bouts (independent samples t-test: t(2.22) = 4.33, p = 0.041;
equal variances not assumed). We therefore conclude that the increased switching seen
with the standard model is largely due to the distortion of motor output created by losing
competitors. Figure 11E shows an example run with λ = 0.40 that illustrates the increased
frequency of bout switching (between wall-seek and wall-follow in t = 0–50 s) that can
occur due to distortion with high simulated dopamine.

These analyses of the effects of increased λ on timing and frequency of behavioural
switching demonstrate that distortion in the robot model does not inevitably lead to a
mixed motor output—attempting to do two things at once. Instead, its effect can be to
make certain behavioural states more vulnerable to interruption which can then lead to an
increased frequency of behaviour switching.

5. Discussion

Robotics can play an important role in neuroscience through its ability to create com-
putational models of the nervous system that are embodied, that is, they control physical
devices (robots) that exists in the world. Robotic models are also situated, that is, they
must engage in real time and in closed sense–action loops, with the environments in which
they are placed [65,66]. Robots, like animals, can display integrated behaviour, where they
generate sequences of actions that are coherent with both their internal motivations and
the unfolding dynamics of the world [45,67]. Conversely, their behaviour can become dis-
integrated when action sequences fall out-of-step with the affordances of the environment,
and they fail to achieve their goals [36]. The study of robotic models therefore offers oppor-
tunities for comparisons with animal and human behaviour that differ from those that are
available from the non-embodied models more typically studied in computational neuro-
science. For instance, we can study them objectively, as behaving systems, without having
to interpret their inputs and outputs [68]. We can also examine the consequences for this
observable behaviour of specific interventions that simulate changes to the nervous system
studied in relevant animals models, or that might arise in human neurological disorders.



Biomimetics 2024, 9, 139 23 of 34

5.1. Effects of Simulated Dopamine Modulation on Robot Behaviour

In the current study, we explored the capability of an embedded basal ganglia model to
generate patterns of integrated behaviour when operating across a range of simulated tonic
dopamine levels (λ). The robot performed the intended avoidance and foraging behaviours
successfully for a range of intermediate λ values (0.2–0.28); values below this range caused
some slowness of movement, in line with previous predictions from non-embodied models,
with movement speeds falling below 75% of its intended vigour at around half of this range
(λ = 0.12), and with prolonged periods of no movement for very low λ values (0.06 or less).
Some runs with low λ also resulted in the premature deselection of behaviour. High values
of λ (0.3 or greater) led to some distortion of motor output as the result of the partial (or
full) selection of multiple competing action sub-systems.

We found that simulated dopamine modulation of action selection outside the in-
termediate range did not invariantly lead to behavioural disintegration, since its effects
varied with the precise circumstances of the robot. Specifically, low-λ systems functioned
well (selecting cleanly) with high-salience signals but poorly with weak-salience inputs.
Conversely, high-λ systems generated cleaner selections at low-salience levels. While
expectations from non-embodied modelling (hypotheses 1–4 above) were borne out in
the robot implementation, the performance of the robot, across the full range of λ values,
was better than might have been predicted from prior analyses of the selection properties
of the model basal ganglia. This result can be explained by the finding that the robot,
through its behaviour, “self-structures” its own input [69], sampling only a limited area of
the state space of salience competitions, and predominantly parts of the space that have
better-than-average outcomes (in terms of effective selection).

Hysteresis in the non-embodied model translates into persistence in behavioural
expression in the robot. Persistence varied in an interesting way with λ, in a manner only
partially explained by the behaviour of the embedded basal ganglia model. Persistence was
maximal at intermediate λ levels, with reduced persistence at both lower and higher levels
that could be traced to the functioning of the basal ganglia–thalamo-cortical loop. For high
λ, reduced persistence was also partly the result of motor distortion, making the current
behaviour of the robot more vulnerable to interruption. This is an outcome that was not
predictable from the disembodied model. Very high levels of λ also produced an increase
in behaviour switching within extended sequences of goal-directed activity. Again, this
result is not entirely predicted by the disembodied model, which forecast a greater degree
of distortion (mixed behaviour) at high λ values as a result of the partial or full selection of
multiple competitors.

5.2. The Role of Dopamine in Basal Ganglia Dysfunction in Animals and Humans

Dysfunction of dopaminergic regulation of the basal ganglia is implicated in a range
of neurological disorders [35]. In Parkinson’s disease (PD), for instance, tonic dopamine
depletion in the striatum is one of the primary drivers of symptoms, including those
relating to impaired movement and difficulty in initiating movement [70]. In computational
neuroscience models, the progressively debilitating effects of PD have been modelled as
attenuation of tonic dopamine in the striatum [71,72]. ADHD, which is characterised
by hyperactivity, impulsiveness, impaired attention, and executive dysfunction, has also
been linked to dopamine dysregulation, and particularly, to increased levels of dopamine
transporter that remove dopamine from the synapse [35]. This outcome has been modelled
as resulting in a less pronounced (compared to PD) reduction in striatal dopamine [73]. In
schizophrenia, on the other hand, an up-regulation of dopamine is thought to underlie
symptoms related to disorganisation, including expression of bizarre or inappropriate
behaviour [35,74]. This has been modelled as involving an increase in striatal dopamine [75].
Tourette’s syndrome, which causes sufferers to make involuntary movements or sounds,
has also been characterised as a consequence of elevated striatal dopamine [75,76]. Other
motor dysfunctions such as chorea and dystonia have been hypothesised to involve a failure
to inhibit unwanted movements in which dopamine dysregulation could be implicated [7].
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Obsessive compulsive disorder (OCD) is thought to involve hyperactivity in parts of the
orbito-frontal cortex, and treatments involving dopamine antagonists have been found to
augment the benefits of therapies involving serotonin reuptake inhibitors [77].

A large number of animal models have been developed to investigate the neurolog-
ical bases for these disorders, many of which have explored genetic, developmental, or
drug- or lesion-induced alterations to the dopamine system [77–82]. Animal studies have
also directly explored the role of dopamine in regulating action selection and motivated
behaviour [83–86]. In the remainder of this discussion, we briefly compare the results of
the robot model with findings from animal studies and from studies of human neurological
disorders thought to involve lowered or heightened levels of tonic striatal dopamine.

5.3. Dopamine-Depleting Interventions and Neurological Conditions Associated with Reduced
Striatal Dopamine

Behaviour execution. In animals, activational aspects of motivation, such as response
rate, vigour, and persistence, are impaired at doses of DA antagonist that leave intact
directional or goal-directed aspects of responding (for review see [9,12,16,85]). In patients
with PD, major symptoms include slowness in movement (bradykinesia), reduced size
of movement (hypokinesia), and absence of movement (akinesia) [87]. Consistent with
these findings, in the robot model, slowed movement was a visible consequence as λ was
lowered below the intermediate range. This often led to more prolonged bouts of behaviour
as action sequences took longer to perform. As λ was further reduced, movements were
only partially executed or even fully suppressed, despite high levels of motivation.

Salience. In animal models, behaviour evoked by events that have high biological
salience are comparatively resistant to dysfunctional dopamine neurotransmission. Thus,
complex learned responses to mild stimuli are more prone to disturbance than unlearned
responses evoked by intense unconditioned stimuli [12]. Similarly, behaviour directed
by external sensory stimuli is less affected than internally motivated behaviour [15,21].
Consummatory behaviours (e.g., eating; drinking) are less disrupted than preparatory
behaviours (acts that lead to, or make possible, consummatory behaviours) [10,16,20,88,89].
For example, while lesions of the mesolimbic dopamine projection abolish food hoarding
in rats, actual feeding and drinking remain relatively unaffected [89]. High levels of arousal
evoked by painful or highly arousing stimuli (such as being plunged into an icy bath) can
lead to the restoration of normal behavioural responses (such as swimming) in animals
with akinesia caused by lesions that affect the dopamine system [24,90]. Patients with PD
often show problems in initiating movement; however, salient visual stimuli such as stripes
painted on the floor can facilitate the initiation of walking and reduce the incidence of
freezing of gait [91]. Patients with PD can also show “paradoxical kinesia” (close-to-normal
movement) in times of acute stress, for example when escaping from fire [92]. Salience
competitions appear to have a more marked deleterious effect on patients with PD than
on controls. For instance, a stimulus such as a doorway can have an inhibitory effect on
movement, causing some patients to freeze. Irrelevant stimuli have also been found to
increase reaction times in a manual response task [91]. More broadly, patients with PD can
also have difficulty expressing two motor programs simultaneously [87,93].

Our robot model casts interesting light on some of these findings. For instance, we
found that, with low λ, behavioural selections made between highly salient competitors
were less vulnerable to partial selection, or no selection, than those made on the basis
of low-salience competitions (Figure 6). High levels of motivation also led to a general
increase in salience for competing behaviours and consequently clean(er) selection. We
also found that selection in the low-λ robot was impaired by the increased salience of a
competitor, and, in some situations, this led to freezing where competitors were evenly
matched (e.g., Supplementary Video, part 4). More generally, at low λ levels, selection of
the winning channel was more impacted by the presence of activity in competing channels
than under similar circumstances but with λ in the intermediate range.
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Lack of persistence. Rats with reduced dopamine show difficulty in maintaining
motivated behaviour over time. For instance, Gaddy and Neill [17] showed that dopamine-
deprived animals had impaired performance of behaviours requiring sustained effort,
whilst Salamone [10] found an increased frequency of unfinished feeding bouts (partially
eaten food pellets) and failure to carry food pellets to normal feeding loci. Patients with
PD often make incomplete movements and can exhibit sudden freezing; they also show
rapid fatigue and can have difficulty in maintaining a behaviour over time. For example,
in the case of handwriting, for many patients, their letters become smaller and smaller
(micrographia) before writing ceases altogether [94]. In the robot model, we found that
low λ makes the currently selected behaviour more vulnerable to early deselection or
interruption, largely as the result of decreased thalamo-cortical feedback failing to maintain
the selected behaviour. A similar challenge could underlie the premature deselection of
behaviours seen in PD (see [87]) and the increased distractibility, and lack of persistence,
associated with ADHD. As illustrated in Figure 7B, hysteresis in the basal ganglia falls
off quite quickly as λ is reduced, including for values in the intermediate range when
salience is at a moderate level. This is consistent with the observation that individuals with
ADHD show problems with behavioural persistence but without the motor symptoms
(bradykinesia, etc.) associated with more profound deficiencies in striatal dopamine.

Behavioural timing. Studies with animals provide inconsistent evidence regarding
switching frequency and time to initiate behaviours, with outcomes varying with exper-
imental set-up [10]. In the robot model, we found that time to switch depends on the
salience of the behaviour and on that of its competitors. This may help explain some incon-
sistent findings in humans and animals. For example, in PD, there is evidence that while
some visual saccades are slowed, others are made more rapidly (hyper-reflexively) than in
controls. Through meta-analysis, we previously demonstrated that latency to saccade was
dependent on the size (eccentricity) of the saccade, with smaller saccades more likely to
be hyper-reflexive [95]. We suggest that this outcome arises because the current fixation
behaviour is more vulnerable to early interruption due to reduced hysteresis in the relevant
basal ganglia loop.

5.4. Dopamine-Increasing Interventions, and Neurological Conditions Involving Increased
Striatal Dopamine

Response frequency and duration. Animals treated with dopamine agonists show
increased response frequencies alongside decreased response durations with increases in
dose [96–98]. Seen in the context of our robot study, this is consistent with our finding of
reduced time to switch and the increase in distractibility and number of bouts with high
levels of λ (see Figures 10E and 11).

Suppressing unwanted actions. A common feature of neurological disorders in-
volving increased striatal dopamine is difficulty in suppressing unwanted actions and
thoughts. These can include the more stereotyped forms of unwanted action or speech
seen in Tourette’s syndrome, as well as the short twitch-like movements seen in chorea and
thought to resemble fragments of normal behaviours, and perhaps some of the intrusive
thoughts and bizarre actions associated with schizophrenia. In the non-embodied basal
ganglia model, elevated λ levels resulted in simultaneous selection of multiple channels, an
outcome that has some resemblance to dystonia. However, the robot model generated a
somewhat different result including patterns of rapid switching between channels, indicat-
ing that interruption of ongoing behaviour is made more likely by the motor interference
generated by a partially selected competing channel. The more promiscuous forms of selec-
tion enabled by higher dopamine levels mean that patterns of behaviour, whose salience
activity is “bubbling below the surface”, may find an opportunity for expression due to a
momentary loss of attention or concentration.

Stereotypy and hyperactivity. At higher doses of DA agonist, animals typically ex-
press a narrower range of behaviours and can become fixated on certain action patterns that
have become known as stereotypies. These may be oral (e.g., licking, biting, and gnawing)
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but that can also include forms of repetitive movement, including running [99], that are
matched to environmental affordances. For example, Kelley et al. [98], summarising results
with a hole board task, commented that “with the higher doses [of amphetamine], locomo-
tor routes become shorter and animals focalize uniquely on the holes (but still maintaining
some locomotion and shifting from hole to hole) [. . .] residual components of the original
behavior remain, but their pattern is greatly altered” (p. 73). Dopamine transporter (DAT)
knockout mice, which have levels of striatal dopamine elevated by 70%, show hyperactivity
and reduced habituation when placed in a novel environment [100]. DAT knockout rats,
on the other hand, are less sensitive to reward than wildtype animals, and show rigidity of
action choice, alongside hyperactivity and compulsive stereotypies [101].

Dopamine agonist-induced stereotypy in animals has been seen as a model for
schizophrenia—though schizophrenics typically do not exhibit motor stereotypies,
their symptoms often do involve compulsive and repetitive patterns of behaviour and
thought [97]. Repetitive sequences of actions, including constrained exploration pat-
terns within an open environment, have been observed in rats treated with the DA
agonist quinpirole and have been compared to the rituals seen in people with obsessive
compulsive disorder [99].

Qualitatively, the behaviour of the robot model in the highest-λ trials (e.g., Figure 10F)
bears some resemblance to patterns of behaviour in hyper-dopaminergic animals—the
actions of the robot sample a narrow range of the potential actions and resemble some
elements of complete action patterns but are fragmentary, poorly organised, and fail to
achieve goals (see, e.g., Supplementary Video, part 6). The underlying cause of the be-
havioural disintegration is selection (full or partial) of multiple channels, leading to the
early interruption of ongoing behaviour or to mixing and distortion of motor acts. In ani-
mals, removal of basal ganglia inhibition from the motor system will lead to complex effects
as selection of behaviour is governed by multiple brain systems. These include attentional
mechanisms, which we might consider as forms of ‘early’ selection, and brainstem and
motor mechanisms that may provide forms of ‘late’ selection [102].

5.5. Limitations and Related Work

The current model can be improved along a considerable number of lines. First, whilst
the Gurney et al. model of basal ganglia employed here has been shown to have enduring
appeal (see [103]), there are multiple ways in which it has been improved and extended
that could be integrated into a future robot embodiment. For example, a richer model
of D1/D2 receptor behaviour (see [104]) could impact the behaviour of a robotic model,
as has been investigated for a simulated robot by Bahuguna et al. [105]. Though it is
noteworthy that these models, whilst capturing more neurobiological constraints, support
the proposition underlying the simpler model deployed here that dopamine, respectively,
facilitates/attenuates the cortical input to D1/D2 striatal input neurons. There is also
scope to develop the wider architecture. For instance, whilst the current model builds on
our understanding of dorsal basal ganglia pathways, the ventral basal ganglia domain
shows important similarities and differences, and, significantly, plays a critical role in the
regulation of dopamine neurons [106].

Our robotic modelling demonstrates the importance of understanding how selection
circuitry interacts with wider sensorimotor systems in the brain. Elsewhere, we have
explored this in the context of cortical and sub-cortical loops involved in the selection
of eye movements in a robotic active vision model [107], and in the control of whisker-
guided behaviour in robots with moving vibrissae [108]. Other interesting work in this
direction includes models of basal ganglia interactions with locomotor pattern generator
systems such as those underlying fish swimming [109]. For a more complete brain-inspired
architecture that includes a basal ganglia model of action selection, see [110].

The current model highlights the importance of understanding how drive systems in
the brain interact with action selection mechanisms. In place of the proxy models of drives
used here, future models could usefully investigate drive models based on a more realistic
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model of energy management (e.g., [111]). Another interesting direction to explore is the
interaction of the basal ganglia with other brain substrates involved in motivation and
action selection. For example, in [112], we developed a layered model of the hypothalamus
that models the interplay of hunger and satiety in a simulated foraging task; this model
also operates to regulate the activity of simulate dopamine neurons in the ventral tegmental
area. Variability in the tonic dopamine signal could be an interesting target for modelling
as it is known to be impacted by task engagement, motivation and arousal systems, stress,
and reward [113–115], and has been shown here to have a significant interaction with
salience in supporting effective selection. Finally, action selection is also impacted by other
neuromodulators besides dopamine [116], as has been explored in a robotic model by
Krichmar [117].

6. Conclusions

Neuroscience is faced with the challenge of interpreting the outcomes of animal
studies in the context of limited evidence. For instance, in seeking to understand the
role of the basal ganglia in action selection, in any given study, whilst we have some
access to information about what behaviour is being selected, we generally have very little
insight into what competing behaviours are being considered but are not being selected
(though see [118] for a study demonstrating such effects on behaviour). Many of our
measures of behavioural outcome are also entirely ambiguous with regard to mechanism.
For example, perseveration of behaviour (inappropriate repetition) could be as the result of
increased salience, increased positive feedback, or the failure of competing behaviours to
interrupt. Whilst these alternatives could be disentangled through careful experimentation,
the transparency of the robot architecture and the benefits of a synthetic approach (see
also [119]) allow us to precisely follow the operation of the underlying control systems and
their role in generating observed behaviour [65,68]. Studying robot models can therefore
inspire us to think about target brain systems in a new light. For instance, the current
robot model reminds us that the activity of non-selected competitors can have a critical
influence on how selection competitions are resolved and how the resulting behaviours
are expressed.

In our model system, as in animals including humans, we see an inverted U-shape
relationship between successful performance of integrated behaviour and the level of tonic
(simulated) dopamine. The robot with low simulated dopamine shows slowed movement
or no movement, reminiscent of the bradykinesia and akinesia seen in Parkinson’s disease.
With excessively high levels of simulated dopamine, the robot displays hyperactivity and
rapid switching between behaviours, symptoms that show some resemblance to hyper-
dopaminergic outcomes in animals and humans. Perseveration is observed in psychiatric
conditions and animal models associated with both reduced and elevated levels of striatal
dopamine. Similarly, in our robot model, we saw perseveration with both low and high
levels of simulated dopamine, sometimes associated with a behavioural trap. In the latter
case, this typically involved the robot failing to complete an ongoing behaviour, leading to
repeated cycles of behaviour initiation.

Whilst there is much in this model that is oversimplified, we hope that it demonstrates
the potential to apply robotics as a means to test models developed in computational
psychiatry. Particularly, the differences between embodied and disembodied simulations
investigated here demonstrate that robotics can make observable some of the consequences
of computational models that are not apparent when those models are tested in isolation.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/biomimetics9030139/s1: Supplementary Methods, Data
for Graphs and Tables, and Model Code. The Supplementary Video can be viewed or downloaded
from https://zenodo.org/records/10439728 (accessed on 28 December 2023).
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Appendix A Detailed Commentary on Robot Behaviour in Figure 11

Low simulated dopamine, Figure 11A–C.
In Figure 11A, with λ = 0.06 (run 4), the robot starts towards the wall at an extremely

slow pace but comes to a standstill a few centimetres short. Some time later, the robot
begins (again very slowly) to explore the arena for cylinders. This behavioural pattern can
be understood as resulting from the altered competitive relationship between the avoidance
and foraging systems in the embedded basal ganglia model. Initially, the salience for wall-
seek is high; however, owing to the low level of simulated dopamine, it is only partially
selected relative to its competitors. While the robot moves slowly towards the wall, the
salience for cylinder-seek (driven by increasing ‘hunger’) begins to increase while that for
wall-seek falls away (caused by the programmed reduction in ‘fear’ over time). At the
point where the two saliences are close to parity the basal ganglia selection competition is
resolved in favour of a stand-off (there is no selection of either action). Movement resumes
later when the salience of cylinder-seek has increased further and is sufficient for it to be
partially selected.

In Figure 11B, with λ = 0.09 (run 5), the robot completes the avoidance sequence (wall-
seek followed by wall-follow), albeit moving slowly; also notice that it is briefly distracted
by detecting a cylinder en route (showing that the robot is more distractable than normal).
During the subsequent foraging sequence the robot detects the cylinder but the cylinder-
pickup bout is affected by slowed movement and the arm is not lowered sufficiently to
allow the cylinder to be grasped (fgc).

Figure 11C shows an example failure for a run with λ = 0.12 (run 3). The breakdown
in behavioural integration occurs at a point (around t = 80), during the execution of the
cylinder-pickup bout, where the cylinder has been grasped but the arm has not yet been
raised to the vertical position (fra in Figure 10C). Here, the detection of the cylinder in
the gripper, combined with the reduced efficiency of the cylinder-pickup selection, brings
about a reduction in salience, and loss of positive feedback, which causes that action to
be prematurely deselected. After a momentary period of inactivity, and since the robot
now holds a cylinder, wall-seek becomes salient and is selected. Unfortunately, the robot
now detects its own, still lowered, gripper-arm as a nearby surface and engages in its
normal response to this form of sensory input, during a wall-seek bout, which is to rotate
anti-clockwise (turning out from the ‘wall’). Behaviourally, we observe that the robot
engages in a slow anti-clockwise rotation and, since the gripper rotates with the robot and
stays down, this leads to a continuous ‘circling’ behaviour. This outcome can be considered
to be a form of behavioural trap resulting from circumstances where the robot’s actions
serve to maintain sensory inputs that drive a repetitive motor response.
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High simulated dopamine, Figure 11D–F.
Figure 11D,E show two trials with λ = 0.31 (runs 1 and 5), comparing successful

(Figure 11D) and disintegrated (Figure 11E) outcomes.
In the successful run shown in Figure 11D, there are a number of brief episodes of

distortion of the selected action (note that the sixth plot from the top shows the distortion
level); however, only one of these results in an outcome that is immediately apparent to
an observer. This is the distortion of the latter part of a cylinder-pickup bout, through
the partial selection of the wall-seek sub-system (this occurs at approximately t = 52
in Figure 11D). The effect of this distortion is, in fact, relatively benign. As described
for the low-λ condition discussed above, a close salience competition arises once the
cylinder is grasped by the gripper resulting in lowered salience for cylinder-pickup and
increased salience for the next element of the foraging sequence, wall-seek. However,
whereas this situation results in the reduced efficiency of cylinder-pickup, followed by
premature deselection in some low-λ trials; with increased λ, efficiency is not compromised.
Instead, cylinder -pickup remains fully selected until the action pattern has completed
(raising the arm to the upright position), but wall-seek also begins to control the robot
(or more specifically, the wheel motors) before the pickup move is finished. Once again
(as in the low-λ trial), the partially raised gripper arm is detected as a nearby surface to
which the wall-seek sub-system responds with an anti-clockwise turn. However, since
the arm continues to be lifted out of the way by the still-active cylinder-pickup behaviour,
there is no behavioural trap. Instead, a smooth transition is observed from the combined
turning/lifting movement of the distorted behaviour to the more usual straight-ahead
movement generated by wall-seek. In other words, in this instance, significant distortion
occurs but does not jeopardise the integrated nature of the full behavioural sequence.
Distortion also occurs during the cylinder-deposit behaviour, at around t = 75, this time
through the failure to fully deselect the preceding behaviour wall-follow. However, once
again, the consequences of the distortion—wheel movements that serve to keep the robot
close to the wall—do not interfere with successful completion of the cylinder-deposit bout,
and the integrity of the foraging sequence is maintained.

A different outcome occurs in the trial in Figure 11E. Here, after a relatively prolonged
bout of search, cylinder-pickup is activated via the detection of a cylinder. However, the
selection competition is not cleanly resolved, and the cylinder-seek sub-system is partially
selected during repeated bouts of cylinder-pickup. The consequences of this distortion
are not benign. Instead, the robot is driven forwards, towards the cylinder, at a point
where it needs to move backwards to make room for the lowered gripper arm. As a result,
the gripper jaw is not correctly aligned to grasp the cylinder. The usual outcome in this
situation is that the cylinder falls from the gripper jaw or is grasped by a thin edge such
that its presence is not registered by the optical sensor. In either case, the cylinder-pickup
bout is not completed successfully and the robot re-engages the cylinder-seek routine. The
appearance of the robot through this episode is of frantic activity—it repeatedly tries to
collect a cylinder, but excessive wheel movement means the manoeuvre is never successfully
completed. Note that, this time, there is a form of behavioural trap—the failure to succeed
in the initial cylinder-pickup bout leads to a repeating sequence of alternations between
cylinder-seek and cylinder-pickup. Since the goal state of the foraging sequence is never
achieved (depositing a cylinder in a ‘nest’ area), the motivation driving these behaviours
saturates at a maximum, and the high levels of salience that initiated the distorted output
are maintained. Whilst the benign form of distortion (produced by wall-seek) was observed
in nearly all trials with dopamine levels of 0.31 ≤ λ ≤ 0.37, the more damaging form
(produced by cylinder-seek) was observed in the two fail trials at λ = 0.31, 0.34 and with
increased frequency for trials with λ ≥ 0.40.
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Figure 11F shows an example run with λ = 0.40 (run 5) that illustrates the increased
frequency of bout switching that can occur due to distortion with high simulated dopamine.
In this run, the robot has difficulty following the contour of a wall for any extended period,
with both the avoidance sequence and the latter part of the foraging sequence including
multiple alternating bouts of wall-seek and wall-follow.
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