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Abstract: Bio-inspired models based on the lobula giant movement detector (LGMD) in the locust’s
visual brain have received extensive attention and application for collision perception in various
scenarios. These models offer advantages such as low power consumption and high computational
efficiency in visual processing. However, current LGMD-based computational models, typically
organized as four-layered neural networks, often encounter challenges related to noisy signals, par-
ticularly in complex dynamic environments. Biological studies have unveiled the intrinsic stochastic
nature of synaptic transmission, which can aid neural computation in mitigating noise. In alignment
with these biological findings, this paper introduces a probabilistic LGMD (Prob-LGMD) model that
incorporates a probability into the synaptic connections between multiple layers, thereby capturing
the uncertainty in signal transmission, interaction, and integration among neurons. Comparative
testing of the proposed Prob-LGMD model and two conventional LGMD models was conducted
using a range of visual stimuli, including indoor structured scenes and complex outdoor scenes, all
subject to artificial noise. Additionally, the model’s performance was compared to standard engineer-
ing noise-filtering methods. The results clearly demonstrate that the proposed model outperforms all
comparative methods, exhibiting a significant improvement in noise tolerance. This study showcases
a straightforward yet effective approach to enhance collision perception in noisy environments.

Keywords: collision perception; bio-inspired; probabilistic neural network; noise resistance; LGMD

1. Introduction

Collision detection and avoidance represent substantial challenges in the domain of
autonomous navigation for robots, vehicles, and unmanned aerial vehicles (UAVs) [1].
Currently employed sensor approaches, such as radar [2], infrared [3], laser [4], and
their combinations, have gained extensive usage in mobile machines. Nevertheless, these
methods exhibit limitations concerning their reliability, system complexity, and energy
efficiency. Furthermore, physical sensors, especially those pertaining to visual modalities,
frequently face difficulties in complex dynamic environments, primarily due to the presence
of noisy signals.

While computer vision techniques driven by deep learning have demonstrated a
promising performance [5], these methods exhibit heavy reliance on large-scale datasets for
training, demanding significant computational resources, and struggling to generalize to
new scenarios. Additionally, they are often limited in their capability to handle real-time
visual processing such as embedded vision systems. To address the need for data-free and
energy-efficient motion perception methodologies, researchers have increasingly turned
their attention to biological visual systems. They harness bio-inspired modeling and
biomimetic approaches to construct dynamic vision systems [1,6–8], as well as advanced
sensor strategies [9]. Notably, within the locust’s visual pathways, a pair of motion-sensitive
detectors, LGMD1 and LGMD2, specialized in looming perception, have been identified,
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each exhibiting specific selectivity [10–13]. These biological and computational studies have
showcased the considerable potential of bio-inspired visual systems for collision perception,
offering energy efficiency and reliability for real-world applications. However, it is essential
to highlight that due to their computational simplicity, LGMD-based models often face
challenges in collision perception within noisy visual scenarios, leading to unexpectedly
high false positives. In contrast, biological visual systems have evolved over hundreds of
millions of years, rendering them highly robust in coping with noise.

In biological systems, neuronal spike generation is inherently stochastic [14]. This
process is influenced not solely by signal transmission but also by factors such as ion
channel states [15], protein synthesis [16], degradation, and specific physical connection
characteristics [17]. Therefore, to align with biological principles, it is crucial to consider
the uncertainty in neural signal transmission within neural network models. Incorporating
probability into neural networks provides a suitable approach to capture this inherent
feature of neural signal processing. In this context, several noteworthy studies have
already demonstrated the advantages of integrating probability into third-generation neural
networks, specifically spiking neural networks, enabling applications in classification,
pattern recognition, and various other fields [18–20].

In contrast, existing biologically inspired motion perception neural networks are
deterministic systems that produce identical responses to identical visual input stimuli,
contradicting established biological theories. In biological systems, specifically, neuronal
spike emissions are stochastic, leading to variable responses in organisms exposed to the
same stimuli [21–23]. Building upon the innovative concepts of probabilistic spiking neural
networks, we recognize that noise in motion signals inherently possesses randomness. In
addressing the noise-related challenges in current modeling endeavors, we endeavor to
integrate a probabilistic model into a classic LGMD neural network model and assess its
effectiveness in mitigating noise.

In this study, we present the probabilistic LGMD (Prob-LGMD) model, which in-
troduces probabilistic signal transmission, interaction, and integration into the classical
LGMD-based multi-layered neural network. Our primary objective is to investigate its
effectiveness in detecting colliding objects within various noisy scenarios, including com-
plex ground-vehicle and air-vehicle scenes. These scenes are also augmented with artificial
noise. The proposed probabilistic model preserves the foundational framework of the
previous four-layered neural network model, encompassing photoreceptor cells, excitatory
cells, inhibitory cells, summation cells, and an LGMD cell. However, it injects uncertainty
into signal transmission between layers, interactions between excitatory and inhibitory
cells to establish collision selectivity regarding the expansion of moving objects, and the
integration of signals from the entire dendritic area into the LGMD output neuron. More
specifically, we introduce random variables to determine the connection weights between
layers. These variables independently follow a Bernoulli distribution with the same proba-
bilistic parameter. Through systematic experiments, our proposed Prob-LGMD effectively
and robustly extracts collision information from complex, noisy scenarios, consistently
outperforming comparative methods.

Section 2 provides a brief review of related works. Section 3 presents the proposed
model, including its formulation and parameter settings. Section 4 outlines the experimen-
tal setup and the metrics used for evaluation. Section 5 details the experiments conducted
and analyzes the results. Section 6 offers the concluding remarks for this study. The
abbreviations employed throughout this paper are summarized in Table 1.
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Table 1. Abbreviations in this paper.

Abbreviation Full Name

LGMD lobula giant movement detector
Prob-LGMD probabilistic LGMD
pSNN probabilistic spiking neural network
pSNM probabilisitc spiking neural model
LPLC2 lobula plate/lobula columnar type II neuron
MLG1 monostratified lobula giant type I neuron
LPTC lobula plate tangential cell
P,E,I,S photoreceptor, excitation, inhibition, summation
DR distinct ratio
PNR pepper noise ratio
GNV Gaussian noise variance

2. Related Work

Within this section, we will discuss the most relevant research, including (1) proba-
bilistic spiking neural models (pSNM); and (2) bio-inspired neural models for collision
perception, which encompasses LPLC2, LGMD1, LGMD2, and MLG1 neural networks.

2.1. Probabilistic Spiking Neural Models

Spiking neural networks (SNNs) represent the third generation of artificial neural
networks and hold great promise in addressing complex real-world challenges in both
pattern recognition and motion perception [24–26]. A variety of spiking neuron models and
SNNs have been developed, including the Hodgkin–Huxley models [27], spike response
models [28], integrate-and-fire models [29], Izhikevich models [30], and others [31]. How-
ever, it is worth noting that the majority of SNN models are deterministic and have limited
efficacy in addressing complex engineering problems, despite their utility in modeling
biological neurons. Consequently, there is a need for novel SNN models that are capable of
capturing the non-deterministic characteristics of brain signal processing. Such models are
essential for effectively replacing existing ones in large-scale simulations [32].

Indeed, neurons are influenced not only by input signals but also by various factors
such as gene and protein expression, physical properties, the synaptic probabilities of
receiving spikes, neurotransmitters, and probabilities of ion channel openings, among
others, at any given time [33]. Given the inherently stochastic nature of spike processes
in biological neurons, it is fitting to seek new inspiration to enhance the current neural
network models and explore the potential of probability-based SNNs for broader applica-
tions. In pursuit of this objective, Kasabov et al. introduced a groundbreaking probabilistic
spiking neural model (pSNM) [34]. This model stores information in connection weights
and probability parameters associated with spike generation and propagation. Building
upon the pSNM framework, they developed an integrated SNN computational neuroge-
netics model by integrating gene interaction parameters with neuronal spiking activity,
resulting in an integrated-pSNN [35]. This innovative approach has the potential for the
computational modeling of cognitive functions and neurodegenerative diseases. These re-
markable contributions served as inspiration for us to incorporate probabilistic models into
the computational modeling of motion perception neural networks. By simply integrating
the probabilistic model with a classic collision perception neural network [36], we observed
its effectiveness in mitigating the impact of noise.

2.2. Bio-inspired Collision Perception Models

Over millions of years of evolution, many animals have developed a critical ability
to evade rapidly approaching predators or threats by leveraging their efficient and robust
visual systems [37–39]. These visual systems empower them to perceive looming objects
with precision and timeliness. Among the visual motion detectors identified in inverte-



Biomimetics 2024, 9, 136 4 of 20

brates, the lobula giant movement detectors (LGMDs) [10,40], the lobula plate tangential
cells (LPTCs) [41], and the small target motion detectors (STMDs) [42] have been the subject
of extensive research and modeling in recent decades.

In the context of the locust’s visual system, two distinct LGMD neurons have been
identified within the neural pathway responsible for processing natural visual cues. These
neurons primarily respond to objects in motion that are moving in depth, signaling potential
collisions. The LGMD1 neuron, initially identified as a motion detector nearly half a century
ago, has been gradually recognized for its remarkable ability to exhibit the highest frequency
of spike firing during collision events, while displaying only weak and brief activation in
response to other categories of movements. Over time, numerous computational models
have been developed to replicate the functionality of LGMD1 for collision perception [1,36],
with a typical neural network model illustrated in Figure 1a. In proximity to LGMD1,
the LGMD2 neuron shares many selective features for approaching objects but exhibits
a distinctive preference for darker objects approaching the visual field. The numerical
modeling of its unique selectivity was introduced by Fu et al., as reviewed in [6]. This
modeling approach involved the incorporation of parallel ON/OFF channels into the
classic, multi-layered LGMD neural network model, as depicted in Figure 1b. In this model,
the ON channels generate inhibitions and temporally delayed excitations, while the OFF
channels produce direct excitation and temporally delayed inhibition, as illustrated in
Figure 1b. These channels converge and combine their outputs in a nonlinear fashion.

In the visual systems of the crab Neohelice, researchers have discovered mono-stratified
lobula giant type 1 (MLG1) neurons that demonstrate sensitivity to looming stimuli [43,44].
These neurons possess finely tuned capabilities for encoding spatial location information,
distinguishing them from LGMD neurons. The MLG1 neuronal ensemble not only enables
the perception of the location of a looming stimulus but also plays a crucial role in continu-
ously influencing the direction of the crab’s escape movements. Furthermore, in the optic
lobe of Drosophila, lobula plate/lobula columnar type II (LPLC2) neurons were identified,
exhibiting highly selective responses to expanding objects originating from the center of
the visual field [45].

(a) (b)

Figure 1. Schematic illustrations of typical LGMD neural network models are shown. The notations
P, I, E, S, G, and FFI represent the photoreceptor, inhibition, excitation, summation, grouping layers,
and the feed-forward inhibition pathway, respectively. The LGMD-based neural network models
evolved from single-channel to dual-channel visual processing: (a) adapted from [36]; and (b) adapted
from [13].

While bio-inspired neural networks implementing looming perception neural circuits
have made substantial contributions to address the collision perception challenges across
various engineering applications, most models tend to be susceptible to false detections
or even failure in the presence of noise. Therefore, enhancing the performance of exist-
ing models against noise represents a valuable area for exploration. Drawing inspiration
from the probabilistic approach of the pSNM, we endeavored to introduce uncertainty
into the collision perception model, which is based on the classical LGMD neural net-



Biomimetics 2024, 9, 136 5 of 20

work model [36], as depicted in Figure 1a. To the best of our knowledge, this is the first
model to incorporate indeterminacy into motion perception neural models, aligning more
closely with biological theories. Through comparative experiments, we discovered that
the proposed model exhibits significant improvements in noisy and realistic scenarios. In
contrast to approaches involving the addition of complex components or extra layers to
neural networks, this research demonstrates a simplified method for enhancing collision
perception against noise. This approach may serve as inspiration for further modeling
studies in the field of motion perception.

3. Model Description

In this section, we present a comprehensive description of the proposed neural network
model, referred to as Prob-LGMD. The visual neural network consists of four layers, which
include the photoreceptor layer (P), the excitatory layer (E), the inhibitory layer (I), the
summation layer (S), and an LGMD cell serving as the output layer. It is important to
note that this model is designed to process visual signals derived from video sequences as
its input.

Distinguishing itself from previous modeling approaches, our methodology intro-
duces random variables into the connections between various layers: the P layer and the E
layer, the P layer and the I layer, the E layer and the S layer, the I layer and the S layer, and
the S layer and the LGMD cell. These random variables share a common probabilistic pa-
rameter, denoted as “prob”, as illustrated in Figure 2. Consequently, the model incorporates
uncertainty in signal transmission, interaction, and integration.

E

TD

I

S

S

prob prob

probprob

probPNN

P

PNN

TD

E

I

S

prob 

Photoreceptor

Partial Neural Network

Time Delay
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Summation
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S Grouped Summation

Post Synaptic 

Neuron

LGMD 
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P P
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L(t)-L(t-1)
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Figure 2. Illustrations of the proposed Prob-LGMD model: sub-figure (a) depicts the anatomical
LGMD neuron and its dendritic structure; sub-figure (b) shows the basic network structure of Prob-
LGMD. Note that we incorporate the probability parameters into the multi-layered neural network
representing the non-deterministic nature of signal transmission, interaction, and integration. The
model retrieves differential images from videos for visual processing. To account for the poten-
tial occurrence of negative values in the frame difference, we present the images using absolute
gray-scale values.
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3.1. Temporal Processing

The difference in luminance of images captured by the photoreceptor cells of the
retina is depicted in Figure 2. We denote the output of the photoreceptor cells as P(x, y, t).
Consequently, the output of a cell in the P layer can be defined as:

P(x, y, t) =
np

∑
i=1

piP(x, y, t − i) +
(

L(x, y, t)− L(x, y, t − 1)
)

(1)

where P(x, y, t) represents the change in luminance for pixel (x, y) at frame t, and P(x, y, t − i)
represents the change in luminance for the same pixel at frame t − i. The indices x and y
refer to the positions within the matrix. L(x, y, t) and L(x, y, t − 1) denote the luminance at
the current frame t and the previous frame t − 1, respectively. The parameter np specifies
the maximum number of frames for which the persistence of the luminance change is
considered. The persistence coefficient pi, belonging to the interval (0, 1), is computed as
pi = (1 + eui)−1, where u ∈ (−∞,+∞) and i indicates the number of frames preceding the
current frame t.

3.2. E-I Layer with Probability of Signal Transmission

The output of cells in the P layer serves as input to the excitatory and inhibitory cells in
the subsequent layer. In our proposed model, a random variable is introduced to determine
whether the excitations from the P layer cells are transmitted to the corresponding cells in
the second layer, known as the E layer. Specifically, the excitation E(x, y) of an E cell adopts
the value of the corresponding P cell with a certain probability, or takes the value of 0. The
output of an E layer cell can be defined as follows:

E(x, y, t) = P(x, y, t)XP,E(x, y) (2)

XP,E(x, y) ∼ Bernoulli(prob) (3)

The excitation E(x, y, t), corresponding to pixel (x, y) at time t, is determined by the
random variable XP,E(x, y), which follows a Bernoulli distribution with a probability of
prob for taking the value 1 and a probability of 1 − prob for taking the value 0. Here,
prob ∈ (0, 1] represents the probability that the signal from the P layer is transmitted to the
corresponding pixel (x, y) in the E layer. It is important to note that the random variables
described below share the same interpretation.

After one-frame delay, the inhibitions from cells in the P layer are transmitted to their
neighboring retinal counterparts in the I layer with equal probability. The output of an I
layer cell can be defined as

I(x, y, t) =
1

∑
i=−1

1

∑
j=−1

P(x + i, y + j, t − 1)ω I(i, j)XP,I(i, j) (4)

where I(x, y, t) is the inhibition corresponding to pixel (x, y) at current time t; ω I is the
local inhibition weight given by

ω I =

 0.125 0.25 0.125
0.25 0 0.25

0.125 0.25 0.125

 (5)

3.3. S Layer with Probability of Signal Interaction

A crucial element of LGMD-based models involves spatial-temporal interaction, specif-
ically the competition between excitation and inhibition, which shapes the specific selec-
tivity to looming objects. The excitation of the E cell and the inhibition of the I cell are
randomly transmitted to the S layer with a certain probability. The outputs from the E and
I layers are summed at the S layer cell, which can be defined as follows:

S(x, y, t) = E(x, y, t)XE,S(x, y)− I(x, y, t)XI,S(x, y)WI (6)
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where WI is the inhibition weighting.
To filter out isolated excitations caused by background details, we apply a transmission

coefficient and a scaling factor to the output of the S layer. The transmission coefficient is
determined based on the surrounding activations of the S layer cell and can be calculated
using a convolution kernel. The computation can be expressed as follows:

Ce(x, y, t) =
1

∑
i=−1

1

∑
j=−1

S(x + i, y + j, t)We(i, j) (7)

where We represents the influence of neighboring cells, and this operation can be simplified
as a convolution mask:

We =
1
9

 1 1 1
1 1 1
1 1 1

 (8)

And, the scale ω is computed at each frame with the following formula:

ω = max(|[Ce]t|)C−1
ω + 0.01 (9)

where [Ce]t represents the passing coefficient matrix, and Cω is a constant.
Then, the signal in the S layer is calculated as the following multiplication:

S̃(x, y, t) = S(x, y, t)Ce(x, y, t)ω−1 (10)

Finally, we filter out the decayed excitation.

S̃(x, y, t) =

{
S̃(x, y, t) , if S̃(x, y, t) ≥ Ts

0 , otherwise
(11)

where Ts is a positive threshold.

3.4. LGMD Cell with Probability of Signal Integration

At frame t, the membrane potential Kt of LGMD cell is defined as

Kt =
C

∑
x=1

R

∑
y=1

S̃(x, y, t)XS,LGMD(x, y) (12)

where C and R are the spatial dimensions of the input stimuli.
The output of the network transforms the membrane potential with a typical sigmoid

function as

κt = (1 + e−
Kt

ncell )−1 (13)

where ncell is the total number of the cells in the P layer. It is important to note that
the membrane potential κt per se represents the output of our proposed network in this
modeling study. We did not involve any spiking mechanism but compare the membrane
potential of different related methods in our experiments.

3.5. Setting the Network Parameters

It is important to note that the random variables mentioned above, as per Equations (2),
(4), (6) and (12), are all mutually independent and share the same probabilistic parameter
prob. All the parameters of the Prob-LGMD model, including the newly added probabilistic
parameter, are listed in Table 2, and were adapted from [36]. It is worth noting that the
Prob-LGMD model currently operates without any learning methods and processes visual
signals in a feed-forward manner.
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Table 2. Network parameters.

Parameter Description Value

np Persistent luminance change duration 0∼2
WI Inhibition weight 0.3
Ts Threshold in S-layer processing 30
Cω coefficient in S-layer processing 4
prob Probability parameter 0∼1
{C, R} Spatial dimension of input stimuli adaptable

4. Experimental Design and Performance Metrics

To evaluate the effectiveness of the proposed model in noisy conditions, we conducted
comparative experiments involving objects approaching the visual field in various scenarios.
The ground- and air-vehicle scenes themselves are inherently complex, characterized by
natural optic flows in real physical scenes. Additionally, we introduced binary and Gaussian
noise to the input visual stimuli to pose a challenge to the tested models. Our objective is
to assess whether a practical collision perception visual system can effectively respond to
approaching targets in noisy environments. It is important to highlight that the selection
of the parameter prob will be explained in the following subsection. Furthermore, in
consideration of the non-deterministic nature of the Prob-LGMD model, we performed
20 replicate experiments and calculated both the mean and variance of the model outcomes
to demonstrate its robustness.

4.1. Evaluation Criteria

In essence, we anticipate that an effective collision perception visual system should
exhibit its strongest response when a collision is imminent, while remaining relatively quiet
during other moments. The selection of the probabilistic parameter directly influences
the performance of Prob-LGMD models in collision perception across various scenarios.
Therefore, determining the appropriate probabilistic parameter, essentially selecting an
optimal one, becomes a critically important task. Our ultimate objective is to ensure that
the proposed model performs admirably in both noise-introduced physical scenarios and
real vehicle scenarios. To assess the model’s performance under different probabilistic
parameters (prob in Table 2), we introduce an indicator called the “distinct ratio” (DR),
which is mathematically defined as follows:

DR = κmax −
∑T

i κ(i)− κmax

T − 1
(14)

where κmax is the maximum value of the output membrane potential of the collision
moment. κ(i) is the membrane potential at frame i. T is the total time length of the input
image sequences.

We establish that the moment at which the maximum membrane potential value
occurs represents the collision signal, with all other frames denoting noisy signals. As
a result, a higher detection ratio (DR) value signifies improved model performance in
distinguishing non-collision motion signals from collision signals. In essence, the DR serves
as a pivotal criterion for selecting the optimal probabilistic parameter for the proposed
Prob-LGMD model.

4.2. Setting the Experiments

The experiments can be broadly categorized into two types. Firstly, we conducted
tests in indoor, structured scenarios where we introduced two forms of artificial noise into
the input stimuli. These stimuli consisted of approaching black and white targets within a
real physical scene. Figures 3a–c and 4a–c display the intermediate stages of the looming
process. These frames correspond to selected moments from the original video and have
been altered with salt-and-pepper noise as well as Gaussian noise, respectively.
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Figure 3. Sub-figures (a–c) show snapshots of the approaching black-ball in real physical scenes,
as input stimuli with artificial salt-and-pepper noise, and Gaussian noise, respectively. ‘PNR’ and
‘GNV’ are abbreviations for pepper noise ratio and Gaussian noise variance, respectively. Sub-figures
(d–f) represent the responses of the proposed model given different probability parameters, and
comparative LGMD models against the input stimuli of (a–c), respectively. The gray-shaded area
shows the variance of the Prob-LGMD model’s response across repeated trials, and the vertical dashed
line indicates the ground-truth collision time in each scenario. The proposed method outperforms
the comparative state-of-the-art LGMD models.
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Figure 4. Sub-figures (a–c) show snapshots of the approaching white-ball in real physical scenes,
as input stimuli with artificial salt-and-pepper noise, and Gaussian noise, respectively. Sub-figures
(d–f) represent the responses of the proposed model given different probability parameters, and
comparative LGMD models against the input stimuli of (a–c), respectively. Notations are consistent
with Figure 3.

Secondly, in outdoor, unstructured scenarios, we present results related to ground/air-
vehicle collision events. These intricate scenarios consistently pose challenges to LGMD-
based computational models, including both the classical LGMD1 model [36] and the more
recent LGMD2 model [13]. To compare the performance of the proposed Prob-LGMD model
with these two typical models in predicting imminent collisions within noisy scenarios, we
conducted experiments using a few ground-vehicle crash datasets. These datasets consist
of partial frames extracted from the original video, the video with added salt-and-pepper
noise, and the video with added Gaussian noise, respectively. Samples of collision courses
are depicted in Figure 5a–c, in Figure 6a–c, in Figure 7a–c, and in Figure 8a–c. For the
air-vehicle scenario, we employed a quadcopter to approach a black balloon, and the input
stimuli were recorded by the onboard camera. After collecting the data, we introduced
salt-and-pepper and Gaussian noise to raise the challenge, as exemplified in Figure 9a–c.
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Figure 5. Results of the proposed method and two LGMD models against vehicle crash videos as
input stimuli: this set of figures represents three datasets: the original data without noise, the data
with salt-and-pepper noise, and the data with Gaussian noise. It can be observed that the leading
vehicle collides with other vehicles from the left front and continues to approach the camera until a
collision occurs. The Prob-LGMD model performs most robustly to perceive the crash: the membrane
potential dramatically peaks only before the colliding moment.
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Figure 6. Results of the proposed method and two LGMD models against vehicle near-crossing
videos as input stimuli: sub-figures (a–c) display snapshots of the original video, the video with
salt-and-pepper noise, and the video with Gaussian noise, respectively. The Prob-LGMD model also
performs well under different noisy circumstances.
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Figure 7. This set of visual stimuli illustrates the process of a car turning from the front side of the
camera and colliding with it. Unlike previous stimuli, it gradually approaches from the right side,
eventually filling the camera’s whole field of view.
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Figure 8. This set of visual stimuli shows a gradually approaching balloon directly to the frontal view
of vehicle dashboard.
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Figure 9. Sub-figures (a–c) show snapshots of a UAV approaching a black balloon, with artificial
salt-and-pepper noise and Gaussian noise added as input stimuli, respectively. In this scene, the
Prob-LGMD model also performs well.

5. Results and Analysis

In this section, we present the experimental results along with their analysis. We
conducted a comprehensive series of experiments to compare the performance of the
proposed model with the classic LGMD1 model [36] and the state-of-the-art LGMD2
model [13] across various scenarios, ranging from straightforward to intricate visual scenes.
The primary objective is to illustrate how the proposed probabilistic model effectively
addresses the issue of false positives in collision perception caused by noisy signals. The
main results can be categorized into four parts:

1. Results in simple indoor scenarios;
2. Results in complex outdoor scenarios;
3. Results in the selection of probabilistic parameters;
4. Results of further investigations.

5.1. Results under Testing of Structured Indoor Scenes

Figures 3 and 4 depict the model responses of the proposed Prob-LGMD as well
as the comparative LGMD1 and LGMD2 models when presented with the same visual
input stimuli in indoor scenes. In the experiment where the black ball approaches without
artificial noise, it is evident that all three models effectively perceive the proximity of the
target. Specifically, their responses peak significantly just before the black ball fills the
camera’s field of view, indicating no significant differences in their performance. However,
when noise is introduced into the original stimuli, all three models become more sensitive
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before the actual collision occurs. In the case of stimuli with added salt-and-pepper noise,
the LGMD1 model can detect collisions but shows an overall increase in response values. At
higher noise densities, the LGMD1 model fails to detect the proximity of the target, as its
activities remain at very high levels. The typical threshold mechanism struggles to differentiate
collision detection. On the other hand, the LGMD2 model demonstrates better noise resistance
and can still perceive collisions to some extent, although not as effectively as the Prob-LGMD
model. When subjected to stimuli with added Gaussian noise, the LGMD1 model exhibits
false detections, while the LGMD2 model is suppressed due to strong local, lateral inhibition
caused by noise owing to its adaptive inhibition mechanism [13]. In conclusion, the Prob-
LGMD model maintains its capability to detect collisions even in the presence of noise, making
it a robust choice for collision perception in noisy environments.

In the experiment where the white ball approaches without artificial noise, the visual
contrast is reversed. In this scenario, all three models perform similarly to the previous
situation, showing no significant differences in their performance. However, when artificial
noise is introduced, all three models become more sensitive. These results are consistent
with the analysis mentioned earlier.

5.2. Results under Testing of Complex Vehicle Scenes

Figure 5–8 illustrate the responses of the three model groups under different datasets,
each also affected by the two aforementioned types of noise. These scenarios inherently
possess more complexity and dynamism. The results clearly indicate that these models
face substantial challenges, as their responses exhibit significant fluctuations. In the ab-
sence of artificial noise, both the proposed Prob-LGMD model and the LGMD2 model
effectively perceive collisions, while the LGMD1 model proves to be more sensitive to
motion stimuli. Without artificial noise, the LGMD1 model displays an overall excessive
response, resulting in false detections. In contrast, the LGMD2 model demonstrates some
resilience to noise when compared to the LGMD1 model and can reach its peak response
before the collision frame in certain datasets. The Prob-LGMD model, relative to the two
comparative models, reliably detects collisions and exhibits considerably lower responses
for non-collision frames. Accordingly, the proposed model successfully leverages noise
resistance for enhanced collision perception.

More specifically, with the addition of salt-and-pepper noise, both the LGMD1 and
LGMD2 models fail to detect collisions, while the Prob-LGMD model continues to success-
fully identify collisions. However, when Gaussian noise is introduced, the LGMD1 model
exhibits excessively high responses, whereas the LGMD2 model responds prematurely and
experiences suppression due to the temporal dynamic inhibition mechanism triggered by
the artificial noise, as explained in [13]. Furthermore, the gray shadow accompanying the
responses of the proposed model in all the resulting figures illustrates the variance of the
outputs over 20 repeated experiments. The results from the ground-vehicle scenario tests
confirm the robustness of the proposed probabilistic model in combating noise.

We also conducted a comparison of model performance in air-vehicle scenarios.
Figure 9 illustrates the superior performance of the Prob-LGMD model in the presence of
noise. Specifically, in the absence of artificial noise, all three models effectively respond
to collisions, detecting the gradually approaching balloon in the vicinity of the vehicle.
However, upon the addition of artificial noise, only the Prob-LGMD model maintains stable
collision perception performance. The LGMD1 model becomes overly sensitive, while the
LGMD2 model loses its perception capability.

5.3. Selection of Probabilistic Parameters

In our previous preliminary work [46], we confirmed that the proposed “distinct ratio”
indicator follows a convex curve concerning the model’s probabilistic parameter. The peak
of this curve signifies the optimal effectiveness of the Prob-LGMD model. Consequently,
the focus of this paper is to establish the range of probabilistic parameter values using
a larger dataset. Figure 10a illustrates the variation of the DR across twelve datasets of
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noisy vehicle scenes, while Figure 10b displays the variations across ten datasets of noisy
physical scenes. The blue line represents the mean DR for each dataset, while the gray
shaded area reflects the DR’s fluctuation within each dataset. The graphs indicate that the
Prob-LGMD model performs optimally when the probability parameter is approximately
0.5. In contrast, both the LGMD1 and LGMD2 models maintain a constant DR since they
lack a probabilistic parameter. However, the LGMD2 model exhibits a higher DR than
LGMD1, indicating its superior noise resistance.
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Figure 10. Statistical results of a distinct ratio calculated by Equation (14): sub-figures (a,b) display the
DR of the proposed Prob-LGMD and two comparative models in vehicle-crash and ball-approaching
physical scenes, respectively. The vehicle crash datasets include twelve video sequences. The physical
datasets comprise ten approaching processes. The grey shadow represents the variance of the
proposed model under different probability parameters, while the solid blue line represents the
average DR. The experiments help us select an optimal probability parameter around the highest DR
for optimizing the performance of our proposed model.

Moreover, we quantified the experimental results of the Prob-LGMD model using
various datasets, and the findings are summarized in Table 3. This table contains the
DR-values of the proposed model across 51 visual stimuli, each tested with different
probabilistic parameters. The initial five datasets present the model’s performance when
analyzing the approach of a black ball in the original video, as well as in videos with added
salt-and-pepper or Gaussian noise. The subsequent twelve datasets showcase the model’s
results in real car scenarios subjected to various noise conditions. Each value in the table
represents the mean and standard deviation of the model’s performance across different
probability parameters in repeated experiments. The values are rounded to two decimal
places, with the optimal values highlighted in reddish-colored font.

Table 3. Quantification of distinct ratio of Prob-LGMD model under different datasets.

Dataset Original PNR = 0.01 GNV = 0.007
p = 0.5 p = 0.6 p = 0.7 p = 0.5 p = 0.6 p = 0.7 p = 0.5 p = 0.6 p = 0.7

No.1 0.34 ± 0.01 0.44 ± 0.01 0.48 ± 0.00 0.28 ± 0.01 0.34 ± 0.01 0.31 0.15 ± 0.01 0.16 ± 0.01 0.17 ± 0.01
No.2 0.31 ± 0.02 0.42 ± 0.01 0.47 ± 0.00 0.16 ± 0.02 0.20 ± 0.01 0.18 ± 0.00 0.28 ± 0.01 0.33 ± 0.01 0.31 ± 0.00
No.3 0.32 ± 0.01 0.43 ± 0.02 0.48 ± 0.00 0.26 ± 0.02 0.32 ± 0.00 0.31 ± 0.00 0.15 ± 0.02 0.19 ± 0.01 0.18 ± 0.00
No.4 0.31 ± 0.02 0.43 ± 0.01 0.47 ± 0.00 0.13 ± 0.02 0.18 ± 0.01 0.16 ± 0.01 0.26 ± 0.01 0.32 ± 0.01 0.31 ± 0.00
No.5 0.31 ± 0.01 0.41 ± 0.01 0.47 ± 0.00 0.26 ± 0.01 0.33 ± 0.01 0.32 ± 0.00 0.13 ± 0.02 0.17 ± 0.01 0.16 ± 0.01
No.6 0.26 ± 0.03 0.36 ± 0.01 0.40 ± 0.00 0.19 ± 0.03 0.25 ± 0.01 0.23 ± 0.00 0.16 ± 0.02 0.20 ± 0.02 0.19 ± 0.01
No.7 0.46 ± 0.01 0.48 ± 0.00 0.46 ± 0.00 0.37 ± 0.00 0.34 ± 0.00 0.28 ± 0.00 0.33 ± 0.01 0.30 ± 0.00 0.24 ± 0.00
No.8 0.38 ± 0.02 0.44 ± 0.00 0.44 ± 0.00 0.31 ± 0.02 0.33 ± 0.00 0.30 ± 0.00 0.28 ± 0.02 0.30 ± 0.00 0.27 ± 0.00
No.9 0.24 ± 0.01 0.34 ± 0.02 0.38 ± 0.01 0.20 ± 0.02 0.24 ± 0.01 0.23 ± 0.01 0.17 ± 0.02 0.22 ± 0.02 0.23 ± 0.01
No.10 0.45 ± 0.01 0.44 ± 0.00 0.41 ± 0.00 0.38 ± 0.01 0.34 ± 0.00 0.29 ± 0.00 0.35 ± 0.01 0.31 ± 0.00 0.25 ± 0.00
No.11 0.38 ± 0.01 0.37 ± 0.00 0.30 ± 0.00 0.33 ± 0.01 0.29 ± 0.00 0.22 ± 0.00 0.35 ± 0.01 0.33 ± 0.00 0.26 ± 0.00
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Table 3. Cont.

Dataset Original PNR = 0.01 GNV = 0.007
p = 0.5 p = 0.6 p = 0.7 p = 0.5 p = 0.6 p = 0.7 p = 0.5 p = 0.6 p = 0.7

No.12 0.21 ± 0.02 0.28 ± 0.02 0.27 ± 0.00 0.29 ± 0.01 0.39 ± 0.01 0.41 ± 0.00 0.25 ± 0.02 0.29 ± 0.01 0.28 ± 0.00
No.13 0.39 ± 0.00 0.34 ± 0.00 0.28 ± 0.01 0.47 ± 0.00 0.44 ± 0.00 0.41 ± 0.00 0.40 ± 0.00 0.34 ± 0.00 0.28 ± 0.00
No.14 0.28 ± 0.01 0.26 ± 0.00 0.19 ± 0.00 0.37 ± 0.02 0.38 ± 0.00 0.33 ± 0.00 0.33 ± 0.01 0.30 ± 0.00 0.23 ± 0.00
No.15 0.16 ± 0.01 0.19 ± 0.01 0.21 ± 0.01 0.23 ± 0.02 0.35 ± 0.01 0.42 ± 0.01 0.18 ± 0.02 0.24 ± 0.02 0.26 ± 0.01
No.16 0.25 ± 0.02 0.27 ± 0.01 0.23 ± 0.00 0.32 ± 0.01 0.38 ± 0.01 0.37 ± 0.00 0.27 ± 0.02 0.30 ± 0.01 0.27 ± 0.00
No.17 0.24 ± 0.02 0.31 ± 0.01 0.31 ± 0.00 0.29 ± 0.02 0.38 ± 0.02 0.40 ± 0.00 0.24 ± 0.02 0.26 ± 0.01 0.24 ± 0.00

5.4. Further Investigations
5.4.1. Comparison with Engineering Techniques

In engineering, one common approach for mitigating noise involves employing signal
filters to remove noisy data points. To assess the performance of the proposed Prob-LGMD
model in comparison to traditional engineering techniques, specifically Gaussian and
median filters for noise reduction, we preprocess the input videos and then input them
into the conventional LGMD1 model. We subsequently compare the results between the
Prob-LGMD model and the LGMD1 model after pre-processing with these filters.

Figures 11–16 depict the outcomes under noisy conditions, encompassing the direct
input of stimuli to the LGMD1 model, the Prob-LGMD model, and the input to the LGMD1
model post preprocessing with Gaussian and median filters. It becomes evident that
collision perception can be achieved by preprocessing the input to the LGMD1 model with
suitable filters. However, even in cases where these engineering methods are effective, the
proposed probabilistic model consistently outperforms them in complex, noisy scenarios
featuring various types of artificial noise. Consequently, these results further validate
the efficacy and robustness of the proposed approach for noise reduction and enhanced
collision perception in intricate dynamic scenarios.
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Figure 11. Sub-figures (a,b) display two sets of stimuli with different types of noise. Sub-figures
(c,d) demonstrate the responses of the proposed Prob-LGMD, the comparative LGMD1, as well as
the LGMD1 with a pre-filtering module under these two sets of stimuli. ‘Comparative method-1’
represents the approach of pre-filtering salt-and-pepper noise using median filtering, while ‘Compar-
ative method-2’ represents the method of pre-filtering Gaussian noise using Gaussian filtering. These
typical filters can improve the performance of the previous LGMD1 model to some extent whilst the
proposed method still outperforms.
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Figure 12. Responses of the proposed and the comparative methods under artificial salt-and-pepper
and Gaussian noise in the colliding scenario: notations are consistent with Figure 11.
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Figure 13. Responses of the proposed and the comparative methods under artificial salt-and-pepper
and Gaussian noise in the colliding scenario.

5.4.2. Noise Injection between Network Layers

Additionally, our previous preliminary work has already showcased the Prob-LGMD
model’s proficiency in effectively detecting collisions within simple scenes featuring ar-
tificially introduced noise [46]. This paper extends the evaluation of model performance
to complex scenarios involving physical scenes and car collisions, comparing it with the
LGMD2 model. Furthermore, we introduced artificial noise into the datasets prior to
feeding them into various models.
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To characterize the inherent noise within neural information transmission, we injected
noise into the intermediate four-layer structure of both the classical LGMD1 model and the
Prob-LGMD model, allowing us to assess how these models responded to noise added layer
by layer. Figures 17 and 18 illustrate that, following the introduction of noise at each layer, the
LGMD1 model exhibited an overall increase in response, resulting in premature responses.
Conversely, the Prob-LGMD model maintained its ability to discern collision courses and
withstand noise introduced at intermediate layers. Furthermore, we conducted experiments
to add noise separately during signal transmission, signal interaction, and signal integration,
and the Prob-LGMD model consistently exhibited robust collision perception.
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Figure 14. Sub-figures (a,b) show snapshots of the colliding scenario after adding noise, while
sub-figures (c,d) correspond to the responses of the proposed model and comparative methods.
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Figure 15. Sub-figures (a,b) show snapshots of the colliding scenario after adding noise, while
sub-figures (c,d) correspond to the responses of the proposed model and comparative methods.
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Figure 16. Sub-figures (a,b) show snapshots of the colliding scenario after adding noise, while
sub-figures (c,d) correspond to the responses of the proposed model and comparative methods.
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Figure 17. Investigation into introducing salt-and-pepper noise and Gaussian noise within the four-
layered structure of the proposed neural network model: sub-figures (a,b) depict the responses of two
models, the proposed Prob-LGMD and the comparative LGMD1, respectively. The input stimulus
used accords with that in Figure 5a.
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Figure 18. Investigation into introducing salt-and-pepper noise and Gaussian noise within the four-
layered structure of the proposed neural network model: sub-figures (a,b) depict the responses of two
models, the proposed Prob-LGMD and the comparative LGMD1, respectively. The input stimulus
used accords with that in Figure 7a.
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5.5. Further Discussion

Furthermore, we identified a limitation of the proposed method during our experi-
ments. We observed that the model’s noise resistance capabilities are moderate when the
figure–ground contrast is relatively low. This highlights the need for further enhancements
in the proposed model, particularly in terms of addressing visual contrast. Additionally,
it is essential for the probabilistic model to take into account the spatial and temporal
distribution of probabilistic parameters, with these probabilities evolving over time.

The dynamic vision systems inspired by insect motion vision have found successful
applications in micro-robot and vehicle vision, enabling real-world motion perception [1].
These models can be effectively integrated with the proposed probabilistic model to mit-
igate the impact of noisy signals. Moreover, autonomous navigation can benefit from
neuroscience research into insect navigational strategies, particularly those known for their
energy efficiency. Recently, a bio-inspired collision perception model was combined with
an insect-inspired navigation model that emulates a vector-based homing behavior [47].
This alignment with the probabilistic model concept has significant potential to enhance
the development of home vectors for foraging tasks with collision avoidance, especially in
complex and dynamic environments.

6. Conclusions

This study has introduced a simple yet effective method to enhance collision per-
ception’s robustness in the presence of noise. The main findings of our research can be
summarized as follows:

• The comparative LGMD2 model demonstrates effective collision detection perfor-
mance in physical and complex vehicle collision scenarios, even providing early
collision warnings. However, in the presence of noise, both the LGMD2 and LGMD1
models struggle to recognize potential collisions, while the proposed Prob-LGMD
model consistently exhibits a stable collision performance and resistance to noise.

• When compared to traditional engineering denoising methods such as Gaussian and
median filtering, the Prob-LGMD model demonstrates superior noise resistance.

• By introducing noise into intermediate neural network layers to simulate the noise
inherent in neural signal transmission and interaction, the proposed probabilistic
model successfully overcomes this challenge and maintains robustness against noise.

• Based on biological insights, it is imperative to transition from deterministic motion
perception models to probabilistic models. There is a wealth of modeling work in the
field of dynamic vision systems that could benefit from the incorporation of similar
stochastic processes.

These findings contribute to the advancement of collision perception systems, particu-
larly in complex and noisy environments, and open up new possibilities for probabilistic
modeling in the domain of dynamic vision systems.
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