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Abstract: The design of graded and multifunctional lattice cores is driven by the increasing demand
for high-performance components in lightweight engineering. This trend benefits from significant
achievements in additive manufacturing, where the lattice core and the face sheets are fabricated
simultaneously in a single print job. This work systematically compares the mechanical performance
of sandwich panels comprising various graded lattice cores subjected to concentrated loads. In
addition to graded lattice cores, uniform lattices and conventional honeycomb cores are analyzed.
To obtain an optimized graded lattice core, a fully stressed design method is applied. Stresses and
displacements are determined using a linear elastic analytical model that allows grading the core
properties in a layerwise manner through the core thickness. The analysis indicates the superior
performance of graded lattice cores compared to homogeneous lattice cores. However, conventional
honeycombs outperform graded lattice cores in terms of load-to-weight ratio and stiffness-to-weight
ratio. This study provides valuable insights for the design of lattice core sandwich panels and the
advantages of several design approaches.

Keywords: sandwich panels; 3D lattice core; honeycomb core; fully stressed design; graded core;
design for additive manufacturing

1. Introduction

In the modern landscape of engineering, sandwich panels have become indispensable
in a wide range of disciplines, offering an outstanding combination of strength, lightweight,
and energy efficiency [1–3]. Typically, these composite structures consist of two thin outer
face sheets bonded to an inner lightweight core. Since the core may represent up to more
than half of the sandwich weight and the most substantial volume of the structure, an opti-
mal low-density composition is required to achieve an efficient design and save costs [4].
Furthermore, the core is a critical component of these sandwich panels, as it significantly
determines their mechanical performance, stiffness, and overall structural integrity [5,6].
Therefore, many studies have investigated novel core designs to improve the efficiency
of sandwich panels regarding their strength-to-weight ratio. One of the common ap-
proaches to improve the efficiency of the sandwich core is to customize the core properties
to the applied load by using graded materials. Compared to conventional homogeneous
cores, Jin et al. [7] show that graded honeycomb cores may enhance the dynamic behavior
of sandwich panels under blast loading. Furthermore, graded honeycomb cores were inves-
tigated by Yu et al. [8]. By varying the cell size and wall thickness of the honeycomb core,
the strength and stiffness of the sandwich structure were improved. Analysis of sandwich
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panels with graded foam cores performed by Conde et al. [9] reveals that the graded core
may reduce the structural mass. Besides improving the mechanical performance, graded
cores may be used multifunctionally to enhance thermal and acoustic isolation in aerospace
applications, as shown by Hohe et al. [10]. Thus, tailoring the core’s properties to save
weight and improve the structural performance has never been more relevant, especially in
industries where trimming each kilogram of weight leads to significant cost savings and
enhanced operational performance [11,12].

An additional approach to improve sandwich panels is using novel materials and struc-
tures as one of the keys to weight reduction. For the skin layers, fiber-reinforced composites
have replaced the metallic face sheets in numerous applications [13,14]. The performance
of sandwich panels depends as well on the topology and material of the core [15]. Several
alternative structures may replace honeycomb cores, but these are not used due to a lack
of knowledge about the design and mechanical behavior [16,17]. One of the promising
structures is additively manufactured lattice materials [18,19]. The integration of addi-
tive manufacturing techniques opens new avenues for enhancing both innovation and
efficiency in sandwich structures by empowering engineers with the ability to fabricate
complex sandwich panels in a single manufacturing step while maintaining precise control
over material distribution [20–22]. Due to the flexibility in core design through additive
manufacturing, Li et al. [23] modified conventional body-centered lattice cores to enhance
the structural vibration resistance. Grading the lattice core through the thickness may
improve the specific structural stiffness of sandwich panels, as reported by Li et al. [24].
Furthermore, the multifunctional use of the open cell lattice cores as heat exchangers en-
ables an additional lightweight potential of these structures [25,26]. However, lattice cores
have a tendency to fail in sandwich panels subjected to concentrated loads due to highly
localized stresses in the load application area [27,28]. To reduce the stress concentration
and provide a more lightweight core design, the lattice core can be graded through the
thickness. Zhang et al. [29] and Boschetto et al. [30] already used additively manufactured
graded lattice cores to avoid stress concentrations and enhance the dynamic behavior in
satellite housings. Costly and time-consuming finite element analyses are used for the de-
sign of such lattice cores, as lattice cores are poorly studied by analytical approaches [31,32].
Therefore, this work introduces an analytical model to determine the lattice core struts’
stresses. The analytical model in this study could simplify and accelerate the design of
graded lattice sandwich panels in engineering applications. Moreover, this paper presents
a comprehensive analysis of the mechanical performance of sandwich panels subjected to a
3-point bending load with different core configurations: homogeneous lattice and graded
lattice. In the graded core, the strut diameter varies in a layerwise manner through the
core thickness. Such a stepwise grading approach was used by Song et al. [33] to reduce
the computational effort in the modeling. Furthermore, layerwise graded strut-based lat-
tices were investigated by Bai et al. [34] to increase the energy absorption capacity. In this
study, the strut diameter of each core layer is determined by using a fully stressed design
method (FSD). The number of degrees of freedom within the FSD will be varied so that
several graded core designs are compared. As a reference structure for comparison, hon-
eycomb cores are investigated since they have proved extensive application in various
industries [35,36]. The comparison between the honeycomb and lattice core is essential to
understand the advantages and limitations of each design. By evaluating their mechanical
performance under a 3-point bending load, this research aims to provide valuable insights
into selecting core structures that are well suited for industrial applications. In addition, it
seeks to identify potential areas of improvement in honeycomb and graded lattice cores,
pushing the boundaries of structural efficiency and versatility within the framework of
sandwich panel technology.

2. Theory and Modeling Approach

This section presents the core materials considered in this work and their properties.
Furthermore, an energy-based analytical model is derived to determine the struts’ stresses
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in sandwich panels subjected to a 3-point bending load. Finally, the workflow of the fully
stressed design within this study is detailed.

2.1. Core Materials

Considering the load in a 3-point bending scenario, the core is responsible for trans-
ferring the shear stresses and the transverse normal stresses resulting from the localized
load. Thus, the selected core material should meet these requirements to withstand the
resulting stresses in the core. This study focuses on 3D strut-based lattice structures and
regular honeycombs. Souza et al. [37] provided an analytical model based on beam theory
to analyze the mechanical performance of numerous strut-based lattice topologies. Based
on this model, face-centered lattice cells with vertical struts (F2CCZ) show the highest
shear and transverse strength compared to other strut-based lattice materials. Furthermore,
this model will be used to obtain the effective properties of the lattice material. Figure 1a
illustrates the cubic lattice unit cell of the F2CCZ representative volume element. The cell of
size a consists of nine struts: four 45◦ inclined struts in the xz-plane, four 45◦ inclined struts
in the yz-plane, and one vertical strut. A uniform diameter d is present in all struts. An ex-
perimental study performed by Sereshk et al. [38] proved that the mechanical response of
the lattice depends merely on the unit cell’s aspect ratio a/d. Thus, the effective stiffness of
the lattice changes when the cell size a remains constant and the strut diameter d varies.
Figure 1b shows the regular hexagonal honeycomb cell (HEX). The unit cell’s height and
length are assumed to be identical and described by the quantity l. According to Gibson
and Ashby [39], the in-plane and out-of-plane stiffness of the regular honeycomb can be
given as

E(HEX)
xx
Es

=
E(HEX)

yy

Es
= 2.3

(
t
l

)3
,

E(HEX)
zz
Es

= 1.15
(

t
l

)
,

G(HEX)
xz
Gs

= 0.57
(

t
l

)
, (1)

and the Poisson’s ratio can be determined by

ν
(HEX)
xy =

cos2(π/6)
sin2(π/6) + sin(π/6)

, and ν
(HEX)
zx = ν

(HEX)
zy = νs, (2)

where Es and νs are the elastic modulus and Poisson’s ratio of the core solid material,
respectively.

(a) F2CCZ unit cell

π
6

l

l

t

y

x

(b) Hexagonal honeycomb cell (HEX)

Figure 1. Topology and geometry of the core structures.

2.2. Sandwich Model

In the present study, we examine a sandwich structure exposed to a transverse single
point load applied to the midpoint of the upper surface of the top face sheet while being
simply supported at the ends of the bottom face sheet. This configuration mirrors the
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arrangement of a three-point bending test. The number of the lattice unit cells along the
sandwich length, through the core thickness and sandwich width, is represented by Nx,
Nz, and Ny, respectively. Thus, the length of the sandwich model lm, the thickness of the
core h(c), and the width of the sandwich b can be determined by lm = Nx a, h(c) = Nz a,
and b = Ny a, as shown in Figure 2.

Figure 2. 3D sandwich model with lattice core.

In this study, the sandwich thickness is assumed to be negligible in comparison
to the sandwich width. Therefore, the 3D sandwich model is reduced to a 2D model,
considering only the xz-plane, as illustrated in Figure 3. The modeling approach used in
this work is based on the analytical model presented by Georges et al. [40] for the analysis
of homogeneous lattice core sandwich panels. The sandwich is decomposed into two face
sheets and a core in the analytical model. A Cartesian coordinate system is positioned
at the center of each layer. While the face sheets are isotropic with the elastic modulus
E( f ) and Poisson’s ratio ν( f ), a homogenized orthotropic material represents the lattice
and honeycomb core using their effective elastic properties. The three sandwich layers are
assumed to be ideally bonded. The face sheet and the core exhibit the thickness h( f ) and
h(c), respectively.

z

x

E
(c,1)
xx , E

(c,1)
zz , E

(c,1)
yy , G

(c,1)
xz j = 1

E
(c,2)
xx , E

(c,2)
zz , E

(c,2)
yy , G

(c,2)
xz j = 2

E
(c,k)
xx , E

(c,k)
zz , E

(c,k)
yy , G

(c,k)
xz j = k

h(f)

h(f)

h(c)h

z2

x2

z1

x1E(f), ν(f) n = 1

E(f), ν(f) n = 2

l

...

.

Figure 3. 2D sandwich model with homogenized core decomposed into k mathematical layers.

Considering a 3-point bending load case, the thin face sheets predominantly transmit
the bending stresses. Additionally, shear stresses are anticipated in the skin layers. There-
fore, the face sheets show a behavior similar to shear deformable strips. Thus, the horizontal
and vertical displacement of the layer mid-axis u(n)

0 , w(n)
0 and the section rotational angle
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ψ(n) describe the face sheet deformation. The bottom and top face sheets are indicated by
n = 1 and n = 2, respectively. The face sheet displacement representations are given as

u(n)(x, zn) = u(n)
0 (x) + znψ(n)(x), and (3)

w(n)(x, zn) = w(n)
0 (x), (4)

which correspond to the displacement field of first-order shear deformation theory (FSDT) [41].
The strains are determined through the derivatives of the deformation functions

ε
(n)
xx =

∂u(n)
0

∂x
+ zn

∂ψ(n)

∂x
, (5)

ε
(n)
zz =

∂w(n)

∂zn
= 0, and (6)

γ
(n)
xz =

∂w(n)
0

∂x
+ ψ(n). (7)

Following the assumption of a plane-strain state and isotropic face sheets, the stresses
within the face sheet layers can be expressed as follows

σ
(n)
xx =

E( f )

1 − ν( f )2 ε
(n)
xx , and (8)

τ
(n)
xz = G( f )γ

(n)
xz . (9)

The core will be partitioned into k mathematical layers to facilitate grading through
the core thickness (Figure 3). Each mathematical layer may include several uniform strut di-
ameter lattice layers. As a result, the number of lattice layers may deviate from the number
of mathematical core layers, depending on the grading approach. Thus, the total number
of lattice physical layers Nz is not necessarily identical to that of the mathematical layers k.
This modeling enables grading the core with low computational effort. The mathematical
layer is assigned an effective stiffness E(c,j) corresponding to the aspect ratio (a/d) of the
representative volume element (RVE). The quantity j signifies the number of the core’s
mathematical layer through the thickness, and c indicates the core of the sandwich model.
For the homogeneous core, the core will be represented by a single mathematical layer.

Unlike the deformation of the face sheet, the intricate behavior of the core deformation
necessitates higher-order approaches to ascertain the through-thickness stresses resulting
from the local load and the grading. Hence, new degrees of freedom, namely the vertical
and horizontal displacements at the interfaces of the mathematical layers, (U(c,q), W(c,q))
are introduced, with q being the number of the interface in the sandwich core (Figure 4).
The core comprises p = k + 1 interfaces, with q = 1 and q = p representing the interfaces
between the core and the bottom and top face sheets, respectively. Induced by the stiff-
ness mismatch and concentrated loads, localized deformations with high gradients are
anticipated in load and support areas within the core. Hence, higher-order approaches are
needed to capture these deformations in an appropriate manner. Consequently, for each
core mathematical layer, a linear interpolation term, a quadratic term (û(c,j), ŵ(c,j)), and a
cubic term (ũ(c,j), w̃(c,j)) are introduced. Assuming a constant mathematical layer thickness,
the mathematical layer displacement representations are chosen as

u(c,j)(x, z) = f̃ (c,j)
u (x, z)

k(U(c,j+1)(x)− U(c,j)(x))
h(c)

+ F̂(c,j)(z)û(c,j)(x) + F̀(c,j)(z)ũ(c,j)(x), and (10)

w(c,j)(x, z) = f̃ (c,j)
w (x, z)

k(W(c,j+1)(x)− W(c,j)(x))
h(c)

+ F̂(c,j)(z)ŵ(c,j)(x) + F̀(c,j)(z)w̃(c,j)(x). (11)

The distribution functions f̃ (c,j)
u (x, z), f̃ (c,j)

w (x, z), F̂(c,j)(z), and F̃(c,j)(z) have to respect
the displacement continuity conditions at the layer interfaces, ensuring the prevention of
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displacement discontinuities. Therefore, the functions F̂(c,j)(z) and F̃(c,j)(z) vanish at the
interfaces. The expressions for these functions are provided as follows

f̃ (c,j)
u (x, z) = z +

h(c)

k(U(c,j+1)(x)− U(c,j)(x))

[
(k − 2j + 2)U(c,j+1)(x)− (k − 2j)U(c,j)(x)

]
, (12)

f̃ (c,j)
w (x, z) = z +

h(c)

k(W(c,j+1)(x)− W(c,j)(x))

[
(k − 2j + 2)W(c,j+1)(x)− (k − 2j)W(c,j)(x)

]
, (13)

F̂(c,j)(z) = −(k − 2j + 2)(k − 2j)− 4(k − 2j + 1)k
h(c)

z − 4k2

h(c)2 z2, and (14)

F̃(c,j)(z) = F̂(c,j)(z) z . (15)

Decomposing the core into more than 10 layers eliminates the need for third-order
terms since the relatively high number of linear and quadratic terms combined with the
degrees of freedom at the interfaces can capture the high-order deformations. Therefore,
these approaches are not applied when the number of mathematical layers exceeds ten.
In contrast, to ensure precise results in the single layer modeling of the homogeneous core,
fourth-order terms (F̀(c,j)(z) ù(c,j)(x), F̀(c,j)(z) ẁ(c,j)(x)) are added to the representations in
Equations (10) and (11), where

F̀(c,j)(z) = F̃(c,j)(z) z . (16)

Figure 4 shows an example of the core modeling if the core is divided into three
mathematical layers. In this case, each mathematical layer has four independent degrees of
freedom. In addition, the core has four independent degrees of freedom at the interfaces
(U(c,2), W(c,2), U(c,3), W(c,3)). The degrees of freedom (U(c,1), W(c,1), U(c,4), W(c,4)) depend
on the face sheets’ deformation and are not independent

u(1)
0 (x) +

h( f )

2
ψ(1)(x) = U(c,1), (17)

w(1)
0 (x) = W(c,1), (18)

u(2)
0 (x)− h( f )

2
ψ(2)(x) = U(c,4), (19)

w(2)
0 (x) = W(c,4). (20)

As each face sheet has three independent degrees of freedom, the total number of
degrees of freedom in this case is DOF = 22. Separating the core into four and six
mathematical layers would increase the degrees of freedom to DOF = 28 and DOF = 40,
respectively.

U (c,1), W (c,1) j = 1
û(c,1), ŵ(c,1)

ũ(c,1), w̃(c,1)

U (c,2), W (c,2) j = 2
û(c,2), ŵ(c,2)

ũ(c,2), w̃(c,2)

U (c,3), W (c,3) j = 3
û(c,3), ŵ(c,3)

ũ(c,3), w̃(c,3)

U (c,4), W (c,4)

︸
︷︷

︸

mathematical
layer

interface

lin. term F̂ (c) F̃ (c)

Figure 4. Exemplary core modeling by introducing 3 mathematical layers and higher-order displace-
ment representations.
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The derivatives of the displacement functions yield the core strain and are expressed
as follows:

ε
(c,j)
xx =

∂u(c,j)

∂x
, (21)

ε
(c,j)
zz =

∂w(c,j)

∂z
, and (22)

γ
(c,j)
xz =

∂u(c,j)

∂z
+

∂w(c,j)

∂x
. (23)

According to the model’s division into mathematical layers, each mathematical layer
may display its own stiffness. Following the assumption of a linear elastic material behavior
and a plane-strain state, the core stresses can be derived from the following relationships




σ
(c,j)
xx

σ
(c,j)
zz

τ
(c,j)
xz




=




E(c,j)
xx (1−ν

(c,j)
zy ν

(c,j)
yz )

α − E(c,j)
xx (ν

(c,j)
zx +ν

(c)
yx ν

(c,j)
zy )

α 0

− E(c,j)
xx (ν

(c,j)
zx +ν

(c)
yx ν

(c,j)
zy )

α

E(c,j)
zz (1−ν

(c,j)
xy ν

(c,j)
yx )

α 0

0 0 G(c,j)
xz







ε
(c,j)
xx

ε
(c,j)
zz

γ
(c,j)
xz




, (24)

where

α = 1 − ν
(c,j)
xy (ν

(c,j)
yx + ν

(c,j)
yz ν

(c,j)
zx )− ν

(c,j)
yz ν

(c,j)
zy − ν

(c,j)
xz (ν

(c,j)
zx + ν

(c,j)
yx ν

(c,j)
zy ). (25)

When considering a 3-point bending problem illustrated in Figure 5, the inner potential
energy of the sandwich layers is given as follows

Π(n)
i =

1
2

∫ lm/2

−lm/2

∫ h( f )/2

−h( f )/2

(
σ
(n)
xx ε

(n)
xx + τ

(n)
xz γ

(n)
xz

)
dz dx, and (26)

Π(c)
i =

1
2

k

∑
j=1

∫ lm/2

−lm/2

∫ h(c)(2j−k)/2k

h(c)(2j−k−2)/2k

(
σ
(c,j)
zz ε

(c,j)
zz + τ

(c,j)
xz γ

(c,j)
xz + σ

(c,j)
xx ε

(c,j)
xx

)
dz dx. (27)

z

x

F
b

E
(c,1)
xx , E

(c,1)
zz , E

(c,1)
yy , etc.

E
(c,2)
xx , E
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zz , E

(c,2)
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E
(c,k)
xx , E

(c,k)
zz , E

(c,k)
yy , etc.

h(f)

h(f)

h(c)

E(f), ν(f)

E(f), ν(f)

l
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Figure 5. Sandwich model under 3-point bending load.

According to Figure 5, the following geometric boundary conditions apply

w(1)
0 (x = − l

2
) = w(1)

0 (x =
l
2
) = u(1)

0 (x =
l
2
) = 0. (28)
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The summation of the layers’ inner energies yields the sandwich’s total inner energy

Πi = Π(1)
i + Π(2)

i + Π(c)
i . (29)

With the external potential energy Πe resulting from the applied load

Πe =
−F
b

w(2)
0 (x = 0), (30)

the total potential energy is obtained from

Π = Πe + Πi. (31)

Applying the principle of minimum potential energy with the condition δΠ = 0 results
in a linear second-order coupled differential equation system

A Ψ̈ + B Ψ̇ + C Ψ = 0, (32)

where Ψ includes all deformation functions of the sandwich and Ψ̇ and Ψ̈ are the first
and second derivative of Ψ with respect to the x−coordinate. The unknown deformation
functions are obtained by converting the second-order equation system to a first-order
differential equation system

Φ̇ = E Φ, (33)

where

Φ =
[
Ψ Ψ̇

]T , E = −D1
−1D2, (34)

D1 =




B A

I 0


, and D2 =




C 0

0 −I


, (35)

where the matrix I is a unit matrix. The actual solution for all component functions of the
vector Φ results from the eigenvectors vQ and eigenvalues λQ of the matrix E as

Φ =
2DOF

∑
Q=1

KQvQ eλQx . (36)

Although the core is homogenized, the displacements at the lattice node coordinates
u(m), w(m) are obtained by Equation (36), where m is the node’s number in the unit cell,
as illustrated in Figure 6b. These displacements are required to determine the lattice struts’
stresses. First, the change in length in each of the struts ∆l(s) can be calculated by

∆l(1) = (u(2) − u(1)) cos(π/4) + (w(2) − w(1)) sin(π/4),

∆l(2) = (u(3) − u(2)) cos(3π/4) + (w(3) − w(2)) sin(3π/4),

∆l(3) = (u(4) − u(3)) cos(5π/4) + (w(4) − w(3)) sin(5π/4), (37)

∆l(4) = (u(1) − u(4)) cos(−π/4) + (w(1) − w(4)) sin(−π/4),

∆l(5) = (w(3) − w(1)),

∆l(6) = (w(5) − w(1)) sin(π/4), ∆l(7) = (w(3) − w(5)) sin(π/4),

∆l(8) = (w(6) − w(3)) sin(−π/4), and ∆l(9) = (w(1) − w(6)) sin(−π/4).
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z

x

y

(a) Unit cell within the core

w(1)
u(1)

w(2)

u(2)

w(3)
u(3)

w(4)

u(4)

1

23

4

5

9

8

6

7

w(6)
u(6)

w(5)

u(5)

(b) Selected unit cell with node displacements

Figure 6. Scheme to determine the struts’ stresses using the node displacements at the lattice nodes.

Assuming that the lattice joints transfer only forces, the stress in the s-th lattice strut
results from the change in the length of the s-th lattice strut, the strut’s length l(s), and the
elastic modulus E(s) as

σ(s) = E(s) ∆l(s)

l(s)
. (38)

2.3. Fully Stressed Design

Fully stressed design (FSD) is a size optimization method that belongs to the so-called
heuristic methods. Its criterion is based on reducing the thickness of the lattice struts so that
the struts are fully stressed under the given loading conditions. This means that material is
removed from those members of the lattice that are not fully loaded, unless a minimum
thickness limits them. As a heuristic method, it cannot always guarantee the optimum
solution, but it provides a sufficient approximation in many cases. Hence, it is practical
and effective. Furthermore, FSD is typically one of the most straightforward but efficient
ways to optimize these truss structures [42]. The computational cost is less than the cost
of using more complex optimization methods to ensure an optimal solution [43]. Figure 7
shows the FSD scheme used in this study, which can be summarized in the following steps:

1. The core is divided into k mathematical layers. The strut diameter of each mathemati-
cal layer d(j) represents a design variable.

2. The struts’ stresses are determined first in the homogeneous lattice core (iteration
i = 1). The maximum stress found in the homogeneous core is set to the allowable
stress limit σallow = σ

(L−H)
max .

3. The strut diameter of the j-th mathematical layer for the next iteration i + 1 is calcu-
lated in the following manner

d(j)
i+1 = d(j)

i

√√√√σ
(j)
max,i

σallow
, (39)

where σ
(j)
max,i denotes the maximum struts’ stress within the j-th mathematical layer.

4. Geometric restrictions are applied to provide a symmetric strut diameter variation
through the core thickness.

5. The analysis will be stopped when the following condition σallow ≥ σ
(j)
max,i+1 ≥

0.99σallow is statisfied.
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Stress analysis for 

the graded core

Fully-stressed 

design
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Design variables:

New iteration

no

yes

Symmetry

restrictions

Figure 7. Flowchart representing the steps to determine the fully stressed design of the lattice core.

2.4. Failure Load

The following stress analysis is performed within the assumptions of linear elasticity,
and the core is considered as failed when the yield strength of the material Rp is reached.
To evaluate the strength of the lattice core, the von Mises criterion is used. Thus, the failure
load is determined by

F(L)
fail,p = F

Rp

σ
(L)
max

, (40)

where σ
(L)
max is the maximum stress in the lattice core while applying the load F. As the

lattice struts are subjected to compressive loads, the critical buckling load should not be
exceeded. The failure load due to buckling can be given as

Ffail,buckling = F
σ
(L)
buckling

σ
(L)
max

, (41)

where the critical buckling stress σ
(L)
buckling is obtained using the conservative assumption of

simply supported ends of the lattice struts [44,45]. The critical buckling strength results as

σ
(L)
buckling =

π2Es

16

(
d
a

)2
. (42)

In contrast to the lattice core, effective stresses are determined for the honeycomb
core, as the honeycomb is replaced by an orthotropic homogeneous material using the
effective stiffness of the honeycomb core. Following [39], the effective yield strength of
regular honeycombs can be determined by

σ
(HEX)
p = 1.15

(
t
l

)
Rp. (43)
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The failure load results in

F(HEX)
fail,p = F

σ
(HEX)
p

σ
(HEX)
max

. (44)

Since the compressive stresses induced by the localized load are the dominant stress
component, the honeycomb walls may buckle before the yield strength is reached [39].
The critical buckling load for regular honeycombs can be given as

σ
(HEX)
buckling = 5.26

(
t
l

)3
Es. (45)

3. Results and Discussion

In this study, the analysis of sandwich panels with fully stressed designed F2CCZ
core is conducted. The load case is 3-point bending, where the top face sheet is subjected
to a concentrated load at the center of the upper surface, and the sandwich is simply
supported at the lower edges. The core of the sandwich panel is made of 12 lattice physical
layers (Nz = 12), and the strut diameter of the cells varies symmetrically and layerwise
through the core thickness. In total, four fully stressed designed cores are investigated,
as shown in Figure 8. In the first core design (Figure 8a), the core is separated into three
mathematical layers that consist of four lattice layers, respectively. The strut diameter
within the mathematical layer remains constant. Due to the symmetric distribution of
the strut diameter through the core thickness, the three strut diameters are reduced to
two design variables. This core design with the graded lattice core separated into three
mathematical layers is abbreviated as L-G3 in the following. In the second core design
(Figure 8b), four mathematical layers are introduced to the core so that three lattice layers
build one mathematical layer (L-G4). Although four strut diameters are available in this
design, the number of design variables remains at two due to the symmetry restriction.
In the third core design (Figure 8c), the number of the core mathematical layers increases to
six (L-G6). In contrast to the first and the second designs, three available design variables
exist. In the fourth design (Figure 8d), each mathematical layer represents a lattice physical
layer. Due to the symmetry restriction, the number of design variants increases to 6,
even though 12 strut diameters are available in this design. To highlight the benefits of
grading the core, a sandwich structure with an F2CCZ core and uniform strut diameter
(L-H) and a sandwich structure with a regular hexagonal honeycomb core (HEX) are
considered in this study. The maximum stress in the homogeneous F2CCZ core is used as
the stress limit for the fully stressed design method. The aspect ratio of the homogeneous
F2CCZ core is a/d = 10. The honeycomb cell wall thickness t and length l are selected
so that the homogeneous F2CCZ core and the honeycomb core exhibit the same relative
density. The geometric dimensions of the investigated sandwich panel are based on the
sandwich structures manufactured and tested by Kotzem et al. [27], Hao et al. [46]. Thus,
the core thickness is set to h(c) = 36 mm, and the core thickness to face sheet thickness is
h(c)/h( f ) = 12. The length-to-thickness ratio is lm/h(c) = 8. The materials of the lattice
struts and the face sheets are assumed to be made of an aluminium alloy with the elastic
modulus Es = 70 GPa, the Poisson’s ratio νs = 0.35, and the yield strength Rp = 250 MPa.
The honeycomb core is made of the same material as the lattice core.

To verify the results determined by the analytical model, finite element analysis (FEA)
is performed for the sandwich with the homogeneous lattice core, the honeycomb core,
and the final version of each fully stressed graded core design. The FEA conducted in
ABAQUS CAE Software uses 3D solid elements to model the face sheets and Timoshenko
beam elements for the lattice struts. The struts are bonded with the face sheets using tie
constraints. The mesh size is h( f )/5. The core consists of one unit cell in the y-direction
(Ny = 1). To match the plane-strain state assumption, the displacements in y-direction
are suppressed in the finite element model [47]. The load is applied as a line load on the
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upper face sheet. An exemplary finite element model is shown in Figure 9. In the FE model
of the sandwich with the honeycomb core, the core is modeled as a contiuum core since
the effective properties represent the honeycomb structure. Thus, a 2D FE-model using
plane-strain continuum elements with the corresponding boundary conditions is created,
as shown in Figure 10. The load in the 2D model is applied as a concentrated load.

j = 1

j = 2

j = 3

(a) Graded lattice core with 3 mathematical layers (L-G3)

j = 1

j = 2

j = 3

j = 4

(b) Graded lattice core with 4 mathematical layers (L-G4)

j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

(c) Graded lattice core with 6 mathematical layers (L-G6)

j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

j = 7

j = 8

j = 9

j = 10

j = 11

j = 12

(d) Graded lattice core with 12 mathematical layers (L-G12)

Figure 8. Sandwich panels with graded lattice cores using different grading aprroaches.

F
b

Figure 9. Exemplary illustration of the load application and boundary conditions in the 3D FE model
of the lattice core sandwich.

In Figure 11, the strut diameters of the core physical layers for all fully stressed lattice
core designs are illustrated. All cores have nearly the same strut diameter in the top
and bottom layers. However, each design has a different distribution depending on the
grading approach selected and the number of design variables. Since the core structure is
statically indeterminate, several iterations are required to determine the final design. In this
study, approx. 4 iterations were required to reach the fully stressed design. Due to the
core grading, the mass of the sandwich was reduced depending on the grading approach
between 22% and 46% compared to the sandwich with the uniform core.
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Figure 10. Load application and boundary conditions in the 2D FE model of the sandwich with the
homogenized honeycomb core.
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Figure 11. Strut diameters of the 12 core physical layers in the graded lattice cores determined
by the fully stressed design and the uniform lattice core. (L-H): lattice core with unifrom strut
diameter, (L-G3): graded lattice core with 3 mathematical layers, (L-G4): graded lattice core with 4
mathematical layers, (L-G6): graded lattice core with 6 mathematical layers, (L-G12): graded lattice
core with 12 mathematical layers.

Figure 12 shows the normalized struts’ stresses (σ̄(s) = σ(s)/F) at the load application
point through the core thickness of the graded and homogeneous cores. Due to the concen-
trated load, the vertical struts at the center of the sandwich are the highest-loaded struts
of the lattice core. While the stress variation in L-G3, L-G4, and L-G6 exhibits a zig-zag
shape, the stress shows a homogeneous shape through the upper core half of the L-G12
design and decreases to a minimum value at the bottom edge of the core. This variation of
the stress in L-G12 is due to the layerwise change of the strut diameter through the core
thickness, as each layer represents a core physical layer. In contrast, the mathematical layers
in L-G3, L-G4, and L-G6 involve numerous lattice physical layers. The stress distribution
in the homogeneous core is given for comparison in all diagrams in Figure 12. It can be
seen that the struts’ stresses in the graded cores do not exceed the maximum stress of the
homogeneous core, which is the condition of the fully stressed design.
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Figure 12. Absolute stress in vertical struts of the lattice core through the core thickness at the center
of the sandwich (x = 0) for several graded cores and homogeneous cores. (a) Homogeneous lattice
core (L-H) and graded lattice core with 3 mathematical layers (L-G3), (b) homogeneous lattice core
(L-H) and graded lattice core with 4 mathematical layers (L-G4), (c) homogeneous lattice core (L-H)
and graded lattice core with 6 mathematical layers (L-G6), (d) homogeneous lattice core (L-H) and
graded lattice core with 12 mathematical layers (L-G12).

For the performance comparison, the von Mises strength criterion and Euler buckling
criterion are used to evaluate the strength and stability of the lattice cores. The failure
load Ffail is divided by the core’s relative density to evaluate the sandwich structure’s
load-to-weight ratio. Figure 13a illustrates the comparison of the specific failure load for
the different core materials. By varying the strut diameter, the failure load of the graded
cores increases up to 46% compared to the homogeneous lattice core. The load-to-weight
ratio increases mainly as the number of design variables defined in the fully loaded design
increases. Thus, the L-G12 design provides the highest increase in specific load capacity,
and the L-G3 design provides the lowest increase, which is only approx. 22% compared
to the homogeneous lattice core (L-H). However, the honeycomb core outperforms all
lattice cores. The load-to-weight ratio of the honeycomb core is up to 28% higher than
that of the lattice core with the highest specific failure load (L-G12). Thus, it has been
demonstrated that grading the core may significantly improve the mechanical performance
of the sandwich panel. In addition to the load-to-weight ratio, the stiffness-to-weight
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ratio is used to assess the specific stiffness of the sandwich panel. The slope of the force–
displacement curve K is used to determine the stiffness-to-weight ratio. The displacement is
evaluated at the middle of the bottom face sheet. Again, the sandwich with the honeycomb
core shows an at least 19% higher specific stiffness than the lattice core designs, as shown
in Figure 13b. Although the deflection of the sandwich increases due to the core grading,
the specific stiffness increases since the core weight decreases. The increase in the specific
stiffness due to the core grading is up to 7% compared to the homogeneous lattice core.
As the graded design was stress driven, the increase in the specific failure load is higher
than the increase in the specific stiffness. The outcomes of comparing honeycomb core
and the uniform lattice core match with the experimental results for sandwich panels with
lattice and honeycomb cores presented by Monteiro et al. [48].
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Figure 13. Specific mechanical performance of sandwich panels with different core materials. (HEX):
honeycomb core, (L-H): lattice core with unifrom strut diameter, (L-G3): graded lattice core with 3
mathematical layers, (L-G4): graded lattice core with 4 mathematical layers, (L-G6): graded lattice
core with 6 mathematical layers, (L-G12): graded lattice core with 12 mathematical layers.

It is worth noting that the stiffness of the sandwich depends on its length-to-thickness
ratio. Neglecting the core indentation and assuming a high axial stiffness of the face
sheets compared to the core stiffness, the total deflection of the sandwich consists of two
components [49]. The first component wbending is induced by the resulting bending moment,
and it depends mainly on the stiffness of the face sheets (wbending = Fl3/(48E( f ) Iyy) with
Iyy the face sheets’ second moment of inertia with respect to the center of gravity of the
sandwich). The second component wshear results from the shear load and decreases with
increasing shear stiffness (wshear = Fl/(4G(c)

xz A) with A the effective shear area of the
sandwich). It can be recognized that in thinner sandwich panels, the bending component
wbending will be the dominant term in the total deflection, and a decrease in the core’s
shear stiffness will not significantly increase the total deflection of the sandwich. If the
length is tripled, the bending component would increase by a factor of 27, while the shear
component would merely triple. Therefore, the stiffness of the sandwich is affected by
the sandwich’s length. However, the strength of the core is independent of the length,
as we observed in previous studies [50]. To verify the results determined by the derived
model, the deviation from the results obtained by the finite element model is determined.
Figure 14 shows the deviation of the calculated stresses and deflections from the FEA
solution. Since the analytical model uses a displacement-based approach, the deflections
are rather accurately determined by the derived model, particularly for the homogeneous
lattice and honeycomb core. Compared to the deflection results, the prediction of the
struts’ stresses is less precise, but it remains reasonable. The deviation for calculating the
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honeycomb core’s critical stress is merely 2.67%. While the FEA requires approx. five
minutes to calculate the struts’ stresses, the model presented provides the results in less
than one minute for the uniform core.

0 5 10 15

Absolute stress deviation from FEA in %

1

2

3

4

5

6

7

8

9

10

11

12

C
or

e
la

ye
r

n
u

m
b

er
g

L-H

L-G3

L-G4

L-G6

L-G12

(a) Struts’ stress deviation from FEA

0.0 0.5 1.0 1.5 2.0

Absolute displacement deviation from FEA in %

HEX

L-H

L-G3

L-G4

L-G6

L-G12

C
or

e
m

at
er

ia
l

(b) Displacement deviation from FEA

Figure 14. Deviation of the results determined by the analytical model from the finite element analyis.

4. Summary and Conclusions

Thanks to advances in additive manufacturing, the fabrication of graded lattices is
enabled. These novel structures can be used as cores in sandwich panels to improve their
mechanical performance. This study compared the performance of sandwich panels with
several core materials. Using fully stressed design, four lattice core designs with variable strut
diameters through the core thickness were analyzed and compared to uniform lattice cores and
honeycomb cores. An analytical model was derived to determine the stresses and deflections
in the sandwich panels. Compared to the finite element method, the analytical approach
presented in this study provides an efficient method to obtain stresses and displacements in
graded and homogeneous sandwich cores. The performance comparison between the core
materials demonstrated that grading the core may enhance the load-to-weight ratio up to 46%
compared to homogeneous lattice core. Furthermore, the specific stiffness was improved by
up to 7%. While the graded lattice cores show higher specific strength and stiffness than the
homogeneous lattice core, the sandwich with the conventional honeycomb core outperforms
the graded lattice core sandwiches in terms of specific strength and stiffness. Although the
lattice core sandwich panels show lower performance, the lattice cores are very relevant
for applications requiring high impact resistance, energy absorption, or multifunctional use
of sandwich structures [51–55]. The derived model can be used to determine stresses and
deformations in those cases. The outcomes are expected to provide guidance for core structure
choices in the future, helping engineers and researchers in decision making when developing
advanced structures and lightweight components.
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