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Abstract: Inspired by the biological nervous system, deep neural networks (DNNs) are able to achieve
remarkable performance in various tasks. However, they struggle to handle label noise, which can
poison the memorization effects of DNNs. Co-teaching-based methods are popular in learning with
noisy labels. These methods cross-train two DNNs based on the small-loss criterion and employ a
strategy using either “disagreement” or “consistency” to obtain the divergence of the two networks.
However, these methods are sample-inefficient for generalization in noisy scenarios. In this paper,
we propose CoDC, a novel Co-teaching-basedmethod for accurate learning with label noise via both
Disagreement and Consistency strategies. Specifically, CoDC maintains disagreement at the feature
level and consistency at the prediction level using a balanced loss function. Additionally, a weighted
cross-entropy loss is proposed based on information derived from the historical training process.
Moreover, the valuable knowledge involved in “large-loss” samples is further developed and utilized
by assigning pseudo-labels. Comprehensive experiments were conducted on both synthetic and
real-world noise and under various noise types. CoDC achieved 72.81% accuracy on the Clothing1M
dataset and 76.96% (Top1) accuracy on the WebVision1.0 dataset. These superior results demonstrate
the effectiveness and robustness of learning with noisy labels.

Keywords: biological nervous system; DNNs; label noise; disagreement; consistency

1. Introduction

Inspired by the biological nervous system, deep neural networks (DNNs) have been
successfully utilized in various tasks [1–6], particularly in computer vision [7–12]. This is
made possible by large-scale datasets with accurate labels, although collecting them can
be challenging and costly, especially in certain professional fields that require personnel
with relevant professional knowledge to label samples. As a result, researchers often seek
cost-effective solutions such as crowdsourcing [13], web-crawling [14], and search engine
queries [15] to build datasets. However, these methods can introduce noise to the labels,
which can seriously affect the generalization of DNNs during the training process [16].

Learning with noisy labels has become a popular research topic; finding ways to reduce
the impact of noisy labels on networks is key to solving the problem. Existing methods
include designing robust loss functions and sample selection techniques, which are often
combined to create a more effective model. Co-teaching [17], a recent approach, trains
two networks that each treat small-loss samples as clean and then uses them to update
each other’s parameters. By starting with different random parameters, the networks are
able to filter different types of errors, resulting in a more robust model. Other approaches,
such as Co-teaching+ [18] and CoDis [19], have introduced disagreement strategies for
sample selection and training, based on the view that the differences between the two
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networks are beneficial to their overall robustness. JoCoR, on the other hand, uses joint
training and co-regularization to select samples with more consistent predictions and trains
both networks simultaneously, arguing that disagreement strategies may not always select
truly clean samples. The MLC [20] provides a detailed analysis of the significance of
maintaining disagreement.

However, these methods constrain DNNs to one of a “disagreement” or “consistency”
perspective, meaning that valuable knowledge involved in “high-loss” samples is ignored.
Thus, we propose a new method called CoDC (Accurate Learning with Noisy Labels via
Disagreement and Consistency). Specifically, we train two networks with disagreement
loss at the feature level to prevent the two networks from becoming a self-training network.
At the prediction level, we apply consistency loss to ensure that the predicted results of the
network remain consistent. The joint application of disagreement loss and consistency loss
can constrain the networks and the sample selection, enabling them to maintain a balance
between disagreement and consistency and enhancing the generalization ability of the
resulting network.

Furthermore, cross-entropy loss functions have been shown to exhibit an overfitting
phenomenon [13] and DNNs have strong learning ability, making it inevitable that they
will fit part of the noise from labels during training. By analyzing the historical training
situation, we re-weight the cross-entropy loss to obtain the modified classification loss,
which reduces the overfitting phenomenon of the network. Instead of discarding noisy
samples directly, we use a peer network to guide learning, further improving the model’s
robustness. The main contributions of this work can be summarized as follows:

• A weighted cross-entropy loss is proposed to remit the overfitting phenomenon, and
the loss weights are learned directly from information derived from the historical
training process.

• We propose a novel method called CoDC to alleviate the negative effect of label noise.
CoDC maintains disagreement at the feature level and consistency at the prediction
level using a balance loss function, which can effectively improve the generalization
of networks.

2. Related Work

Robust loss. Robust loss functions have been widely explored in supervised learning
to address the issue of overfitting caused by noisy labels. Several loss functions have
been proposed to improve robustness against noisy labels, including Mean Absolute Error
(MAE) [13], Reverse Cross-Entropy (RCE) [21], Generalized Cross-Entropy (GCE) [22], Ac-
tive Passive Loss (APL) [23], Negative Learning+ (NL+), and Positive Learning+ (PL+) [24].
Ghosh et al. [13] demonstrated the effectiveness of symmetric loss in handling noisy labels
and introduced the MAE loss. Wang et al. [21] proposed RCE, which performs well in
multi-classification tasks but may result in underfitting. Zhang et al. [22] designed GCE by
combining MAE and CE, further enhancing robustness against noisy labels and mitigating
underfitting issues. Ma et al. [23] introduced the APL loss to improve the convergence
of the loss function. Kim et al. [24] proposed NL+ and PL+ to address the underfitting
problem of robust loss functions by analyzing the loss gradient.

Label correction. Label correction is a crucial technique for improving the performance
of deep learning models trained on noisy datasets. Label Smoothing [25], a commonly used
method, is known to act as a regularization technique that helps the model parameters
converge to a small norm solution [26]. Generating pseudo-labels for noisy samples is
another approach that can make full use of all samples’ information. The Meta Pseudo-
Labels [27] method treats suspected noise samples in training data as unlabeled data for
semi-supervised learning. PENCIL [28] uses given labels to learn from the network and
updates and corrects noisy labels through the prediction results of the network, thereby
improving the prediction ability of the model. However, the effectiveness of label correction
methods is highly dependent on the model’s accuracy. Erroneous labels may be generated
constantly, resulting in the accumulation of errors if the model’s accuracy is poor. Co-
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LDL [29] is a method that trains on high-loss samples using label distribution learning and
enhances the learned representations using a self-supervised module, which further boosts
model performance and the use of training data.

Small-loss samples. The existing methods mainly apply small-loss criteria for selec-
tion. They consider the small-loss samples as clean samples and the large-loss samples
as noisy samples, then adopt different strategies for learning. MentorNet [30] pretrains a
teacher network to select clean samples, which then guides the student network. However,
this method has the disadvantage of cumulative error caused by sample selection bias.
Co-teaching [17] trains two networks; each network selects small loss samples to send to the
peer network for learning. However, due to continuous peer-to-peer learning, the parame-
ters of the two networks will gradually become consistent. Therefore, Co-teaching+ [18]
only chooses the samples with divergent predictions between the two networks for learn-
ing. Similarly, CoDis [19] applies the regular variance term and selects samples with large
variance to send to the peer network for learning in order to avoid consistency between
the two networks. However, JoCoR [31] assumes that few of the samples with divergent
predictions are likely to be clean. It is recommended that the two networks be trained
jointly using samples with predictive consistency. As a result, the two networks will easily
converge to a consensus or even produce the same prediction error. Liu et al. [20] analyzed
the existence of appropriate “differences” between the two networks in Co-teaching, which
is beneficial to the improvement of model robustness. In contrast, our proposed approach
takes into account both the differences and consistency of the two networks.

In addition, DivideMix [32] fits the loss of all samples into a Gaussian mixture model
(GMM), based on the idea that the loss distribution of all samples will conform to two
Gaussian distributions. The clean samples belong to the component with a lower central
value, while the noisy samples belong to the component with a higher central value,
allowing the noisy and clean samples to be divided. LongReMix [33] selects clean samples
with high confidence through a two-stage selection method. Kong et al. [34] proposed
a penalty label and introduced new sample selection criteria to screen clean samples.
However, these methods essentially apply the small-loss sample selection principle.

3. Materials and Methods
3.1. Preliminary

In this paper, we consider a classification task with C classes. The dataset contains
noisy labels. D = {(xi, ỹi)}n

i=1, where n is the sample size, xi is the i-th sample, and ỹi ∈ [C]
is the label with noise. For ỹi, its true and unobservable label is represented by yi. As in
Co-teaching, two networks are trained, denoted as f1 = f (x, θ1) and f2 = f (x, θ2). The two
networks have the same architecture and are initialized by random initialization, meaning
that they have different network parameters. In this method, p1 =

[
p1

1, p2
1, . . . , pC

1
]

and
p2 =

[
p1

2, p2
2, . . . , pC

2
]

represent the respective prediction probabilities of the two networks
for the samples. The aim is to learn a robust classifier that can be trained on D to obtain
correct predictions.

3.2. Training with Disagreement and Consistency

In this section, we mainly introduce the training functions used in our method, includ-
ing the modified classification loss, balance loss, and peer network guiding learning.

Modified classification loss. During the initial training phase, Cross-Entropy (CE) is
utilized as the classification loss. Considering that the two networks possess distinct learn-
ing capabilities, the cross-entropies of both networks are summed to minimize the distance
between them in terms of predicting clean samples and their labels. This approach helps to
minimize erroneous information. The classification loss can be represented as follows.



Biomimetics 2024, 9, 92 4 of 15

Lc (xi, ỹi) = ℓCE1(xi, ỹi) + ℓCE2(xi, ỹi)

= −
N

∑
i=1

C

∑
m=1

ỹi log(pm
1 (xi))

−
N

∑
i=1

C

∑
m=1

ỹi log(pm
2 (xi))

(1)

In previous research, it has been discovered that CE can overfit noise label learning [13].
The small-loss sample selection strategy can result in incorrect selection of clean samples.
As the number of epochs increases, CE may cause the network to fit noise labels, which can
negatively impact the model’s generalization. To address this issue, we propose a modified
loss function that optimizes the weight of CE for each sample and reduces the fitting noise
by combining the historical law of sample loss. Specifically, when the model separates
clean and noisy samples, the classification loss of each sample should be maintained at
its original value and should not fluctuate greatly during the learning process. Due to the
overfitting problem, the loss of noisy samples with large losses may gradually decrease,
resulting in the classifier’s failure to correctly distinguish between clean and noisy samples.

Therefore, we have modified the classification loss to stabilize the sample loss after the
network separates clean and noisy samples. We define the set Ls =

{
Lct−1 ,Lct−2 , · · · ,Lct−s

}
to record the value of the classification loss of sample x in each epoch of training, where t
is the current number of training epochs and s is the length of the set. We define Lhistory
as follows.

Lhistory =

∣∣∣∣∣1
s

t−1

∑
i=t−s

Lci

∣∣∣∣∣ (2)

The difference between the loss of the current sample and the loss of the training
history, denoted by

∣∣∣Lct −Lhistory

∣∣∣, can indicate the model’s training stability. To ensure
stable training and prevent the model from overfitting on noisy samples, we utilized the
modified classification loss Lmcl to train the model. Minimizing Lmcl enhances the stability
of the training process.

Lmcl =
∣∣∣Lct −Lhistory

∣∣∣ (3)

Balance loss. Co-teaching [17] has been successful in the field of learning with noisy
labels. The approach involves training two networks simultaneously, with each network
feeding what it deems to be clean samples to its peer network for learning. Because the
initial random parameters of the two networks are different, they can filter different types
of errors, which improves the generalization ability of the networks. However, as the two
networks learn from each other their parameters gradually converge, resulting in decreased
ability to filter different errors [18,20].

To control the disagreement between the dual networks at the feature level and
encourage them to learn more feature knowledge, we introduce the disagreement loss Ldis.
The cosine similarity is used to calculate the output features of the two networks in order
to measure such feature differences. The equation is as follows:

Ldis = CosineSimilarity(z1(xi), z2(xi))

=
N

∑
i=1

K

∑
m=1

zm
1 (xi) · zm

2 (xi)

∥zm
1 (xi)∥ × ∥zm

2 (xi)∥
(4)

where z1 and z2 are the feature representations of the sample in network one and network
two, respectively, and K is the dimension of the feature. We apply Ldis in the final loss
function to control the difference between the two networks, encourage the networks to
learn more at the feature level, and inhibit the convergence of the two networks.
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In combination with the theory summarized above, we encourage the two networks to
maintain differentiation at the feature level, preventing the two networks from reaching a
consensus to ensure that more knowledge is learned. However, from the view of agreement
maximization principles [35], different networks will agree on the prediction of clean
samples. Thus, although the differentiation in features is encouraged, the two networks
should be consistent in the prediction of clean samples. We designed the consistency
loss Lcon to minimize the two networks’ predictions p1 and p2. Specifically, we apply the
Jensen–Shannon (JS) Divergence, which measures the difference between two probability
distributions, to capture the consistency of two networks’ predictions:

Lcon = DJS(p1∥p2)

=
1
2

DKL

(
p1∥

p1 + p2

2

)
+

1
2

DKL

(
p2∥

p1 + p2

2

) (5)

where

DKL

(
p1∥

p1 + p2

2

)
=

N

∑
i=1

C

∑
m=1

pm
1 (xi) log

2pm
1 (xi)

pm
1 (xi) + pm

2 (xi)

DKL

(
p2∥

p1 + p2

2

)
=

N

∑
i=1

C

∑
m=1

pm
2 (xi) log

2pm
2 (xi)

pm
1 (xi) + pm

2 (xi)
.

We weight the Ldis and Lcon to obtain Lbalance.

Lbalance = βLdis + γLcon (6)

The significance of Equation (6) is that we aim for the two networks to maintain
differences at the feature level while making the same predictions.

Peer network guided learning. Many previous works have simply discarded noisy
samples, resulting in insufficient training due to the decrease in training samples. Semi-
supervised learning strategies can be used to generate pseudo-labels to replace the given
labels for robust learning. However, the network’s generalization ability affects the quality
of the pseudo-labels. Moreover, the network tends to fall into self-cognitive errors as
the number of network iterations increases, causing the self-generated pseudo-labels to
accumulate errors. Therefore, we used a peer network to guide learning. The peer network
prediction p is used for pseudo-label learning, and the cross-entropy loss can be formulated
as follows:

ℓpl1 = ℓCE(p1(xi), ε(p2(xi), τ)),

ℓpl2 = ℓCE(p2(xi), ε(p1(xi), τ)),

where

ε(p, T) =
exp(p/T)

∑C
m=1 exp(pm(xi)/T)

. (7)

The sharpening function ε(p, T) is utilized to enhance the guidance capabilities of the
peer network, where T is the temperature parameter. To align with Jo-SRC [36], we set
τ = 0.1. However, there may be label errors due to the network’s limited generalization
ability. To prevent the network from fitting to these errors, a small weight λ is applied;
in our experiments, λ was typically set to 0.5. Additionally, we employed weak data
augmentation techniques such as random cropping and random symmetry flipping to
further enhance the guidance capabilities of the peer network. Peer-to-peer guided learning
is described as follows.

Lpl = λ
(
ℓpl1 + ℓpl2

)
(8)
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Training loss. Finally, the training loss is constructed as follows.

L = αLmcl + Lbalance + Lpl (9)

Unlike Co-teaching, Equation (9) is used to train the two networks simultaneously.
Small-loss samples are more likely to be clean samples; therefore, we are more inclined

to select these as clean samples for learning. As mentioned above, we aim to add more
samples that exhibit different features in the two networks while maintaining consistent
prediction results for learning. Such samples are also considered cleaner. Therefore, we
define the loss of sample selection in the training process as follows.

Lselect = αLmcl + Lbalance (10)

As in Equation (6), the Lbalance is used to ensure a balance between feature differences
and prediction consistency, with α controlling the weight of the modified classification loss.

Equation (10) is used to select clean samples for learning, while the remaining samples
are considered to be noise samples. The noise samples are learned using the peer network
guided learning method to enhance the network’s robustness.

Considering the ability of deep networks to learn clean samples first, we warmed up
the network at the beginning of training using all samples and employed the cross-entropy
loss as the training loss. After the warm-up period, we selected the top 1 − τ small-loss
samples as clean samples and considered the rest to be noise samples, where τ represents
the noise rate in the dataset. Specifically, our approach is as follows:

D̃n = arg minD′
n :|D′

n |≥(1−τ)|Dn |Lselect
(

D′
n
)
. (11)

Our sample selection method is depicted in Figure 1. The pseudocode is presented in
Algorithm 1.

Algorithm 1 CoDC algorithm
Input: two networks with weights θ1 and θ2, learning rate η, noise rate τ, epoch Twarmup
and Tmax, iteration tmax;

1: for T = 1 → Tmax do
2: Shuffle training dataset D;
3: if T < Twarmup then
4: training by Cross-Entropy;
5: else
6: for t = 1 → tmax do
7: Fetch mini-batch Dn from D;
8: Obtain D̃n by Lselect;
9: Update (θ1, θ2) = (θ1, θ2)− ηL(D̃n);

10: end for
11: end if
12: end for
Output: θ1 and θ2
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Figure 1. Sample selection of CoDC. For each sample, the classification loss, disagreement loss, and
consistency loss are calculated and the small-loss samples are taken as the clean sample. In general,
the essence of this method is to maintain a balance of disagreement and consistency between the two
networks to achieve the best performance.

4. Results
4.1. Datasets and Implementation Details

Datasets and noise types. We used four benchmark datasets with noise (F-MNIST [37]
(http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/, accessed on 12 November
2023), SVHN [38] (http://ufldl.stanford.edu/housenumbers/, accessed on 12 November
2023), CIFAR-10 [39] (https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz, accessed
on 12 November 2023), and CIFAR100 [39] (https://www.cs.toronto.edu/~kriz/cifar-100-p
ython.tar.gz, accessed on 12 November 2023)) and two real-world datasets (Clothing1M [40]
(https://opendatalab.com/OpenDataLab/Clothing1M, accessed on 12 November 2023)
and WebVision1.0 [41] (https://data.vision.ee.ethz.ch/cvl/webvision/dataset2017.html,
accessed on 12 November 2023)) to evaluate our method. F-MNIST (Fashion-MNIST)
contains ten classes of grayscale images, each sized 28 × 28, with 60,000 training images
and 10,000 test images. SVHN is derived from Google Street View House Number, including
ten classes of color images, each sized 32 × 32, with 73,257 training images and 26,032 test
images. Both the CIFAR-10 and CIFAR-100 datasets contain 60,000 training images and
10,000 test images, each sized 32 × 32. CIFAR-10 comprises ten classes, while CIFAR-100
comprises 100 classes.

Clothing1M is made up of one million training images collected from online shopping
sites and contains fourteen classes with labels generated using surrounding text. WebVi-
sion1.0 is a large dataset with real-world noise labels. It has taken over 2.4 million images
from the internet, including 1000 classes contained in ImageNet ILSVRC2012 [42]. In order
to facilitate comparison with other methods, we followed the previous work and obtained
the first 50 classes of images from Google images for both training and testing.

For SVHN datasets, the number of samples in each class is unbalanced. Specifically,
the number of samples in each class is 13,861, 10,585, 8497, 7458, 6882, 5727, 5595, 5045, 4659,
and 4948 respectively. For F-MNIST, CIFAR-10, CIFAR-100, Clothing1M, and WebVision1.0
datasets, the distribution of samples in each class is uniform.

Clothing1M and WebVision1.0 are real-world datasets that contain noisy labels. All of
the benchmark datasets are clean; thus, we set up the label transition matrix [25] and man-
ually added noise to test the validity of the method. Our experiment mainly followed [43],
and we conducted experiments with a variety of noise types: symmetric noise, pairflip
noise, tridiagonal noise, and asymmetric noise. Noise rates of 20% and 40% were tested
for each type of noise. It is necessary to ensure that the number of clean samples is greater

http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/
http://ufldl.stanford.edu/housenumbers/
https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz
https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz
https://opendatalab.com/OpenDataLab/Clothing1M
https://data.vision.ee.ethz.ch/cvl/webvision/dataset2017.html
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than the number of noisy samples; otherwise, it will be impossible to distinguish the real
class of samples [23]. The construction of each noise type was as follows:

(1) Symmetric noise: the clean labels in each class are uniformly flipped to labels of other
wrong classes.

(2) Asymmetric noise: considers the visual similarity in the flipping process, which is
closer to real-world noise; for example, the labels of cats and dogs will be reversed,
and the labels of planes and birds will be reversed. Asymmetric noise is an unbalanced
type of noise.

(3) Pairflip noise: this is realized by flipping clean labels in each class to adjacent classes.
(4) Tridiagonal noise: realized by two consecutive pairflips of two classes in opposite

directions.

The label transition matrix is shown in Figure 2, taking six categories and a 40% noise
rate as an example.

In addition, we conducted experiments on noisy long-tailed datasets [19]. We first
built a long-tailed distribution dataset. Specifically, we reduced the number of samples
in different classes such that the dataset formed a long-tailed distribution with class im-
balance [44]. In this paper, we use two ways of simulating the long-tailed distribution:
exponential simulation (exp) and linear simulation (line), as shown in Figure 3. Taking
SVHN as an example, the two different simulation appraoches are named SVHN-EXP and
SVHN-line, respectively. We further added asymmetric noise to the long-tailed dataset and
tested four different noise intensities.

Figure 2. Label transition matrix.
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Figure 3. Construction of two long-tailed distributed datasets.

Models and parameters. Following previous works [31], we used a nine-layer CNN
for F-MNIST, SVHN, CIFAR-10, and CIFAR-100. We used a SGD optimizer with momentum
set at 0.9, an initial learning rate of 0.02, and a weight decay of 0.0005. The learning rate
was reduced by a factor of 10 at the 100th and 150th epochs. The batch size was set to 128,
and the total number of training epochs was 200.

In the real-world datasets, for the Clothing1M dataset the training used ResNet-18 [45]
pretrained on ImageNet. For WebVision, the training used inception-resnet v2 [46]. We
trained the network for 100 epochs using a SGD optimizer with an initial learning rate of
0.002. The learning rate was reduced by a factor of 10 at the 30th and 60th epochs. The batch
size was set to 64; the other settings were the same as those for the benchmark datasets.

We implemented all the methods with default parameters using PyTorch 1.13.1 and
conducted all the experiments on a NVIDIA RTX3090 GPU.

4.2. Comparison with SOTA Methods

We compared our method with the Standard CE baseline and more recent SOTA
methods, including:

(1) Standard: trains a single network and uses only standard cross-entropy loss.
(2) Co-teaching [17]: trains two networks simultaneously; the two networks guide each

other during learning.
(3) Co-teaching-plus [18]: trains two networks simultaneously while considering the

small loss samples of the two networks’ diverging samples.
(4) JoCoR [31]: trains two networks simultaneously and applies the co-regularization

method to maximize the consistency between the two networks.
(5) Co-learning [47]: a simple and effective method for learning with noisy labels; it

combines supervised and self-supervised learning to regularize the network and
improve generalization performance.

(6) Co-LDL [29]: an end-to-end framework proposed to train high-loss samples using label
distribution learning and enhance the learned representations by a self-supervised
module, further boosting model performance and the use of training data.

(7) CoDis [19]: trains two networks simultaneously and applies the covariance regular-
ization method to maintain the divergence between the two networks.

(8) Bare [48]: proposes an adaptive sample selection strategy to provide robustness against
label noise.

Results on benchmark datasets. Table 1 shows the experimental results under four
benchmark datasets with four noise types and two noise rates. The test accuracy consists of
the mean and standard deviation (%) calculated from the last ten epochs of training. Based
on the experimental results, we can conclude that our method is superior to state-of-the-art
methods on the benchmark datasets. For example, on the CIFAR-10 dataset with symmetric
noise and a 40% noise rate, our method scores 1.26% higher than Co-LDL and 10.75%
higher than JoCoR. For pairflip noise with a 40% noise rate, our method scores 4.43% higher
than Co-LDL and 21.17% higher than JoCoR. Because JoCoR only considers the consistency
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of the two networks, it is extremely easy for errors to accumulate with asymmetric and
pairflip noise, which ultimately affects the generalization of the networks. This experiment
proves the superiority of our method on the benchmark datasets.

Results on noisy long-tailed datasets. We tested the model on noisy long-tailed
datasets with four noise rates. It can be seen that our method achieves the best performance
in most cases. Although the accuracy is not higher than all advanced methods, our method
remains competitive. Table 2 shows the results on the noisy long-tailed datasets. Figure 4
shows the test accuracy comparison for the number of epochs.

Table 1. Mean and standard deviations of test accuracy (%) on four benchmark datasets with four
noise types and two noise rates (20%, 40%) for each noise type. The test accuracy is calculated using
the last ten epochs. The best mean results are in bold.

Noise Type Sym Asym Pair Trid

Setting 20% 40% 20% 40% 20% 40% 20% 40%

Standard 87.46 ± 0.09 72.46 ± 0.68 89.34 ± 0.15 77.73 ± 0.19 84.23 ± 0.23 61.46 ± 0.32 85.86 ± 0.4 66.44 ± 0.28
Co-teaching 91.20 ± 0.03 88.06 ± 0.06 91.29 ± 0.16 86.32 ± 0.09 89.97 ± 0.09 84.99 ± 0.11 90.54 ± 0.05 86.29 ± 0.09
Co-teaching-plus 92.85 ± 0.03 91.42 ± 0.03 93.42 ± 0.02 89.38 ± 0.17 92.90 ± 0.03 88.38 ± 0.16 92.75 ± 0.08 90.40 ± 0.04
JoCoR 94.11 ± 0.02 93.24 ± 0.01 94.24 ± 0.02 91.18 ± 0.16 93.90 ± 0.01 91.37 ± 0.21 94.03 ± 0.01 92.93 ± 0.01

F-MNIST Co-learning 90.03 ± 0.29 90.03 ± 0.21 90.88 ± 0.22 88.67 ± 0.48 91.08 ± 0.18 87.59 ± 0.35 90.98 ± 0.16 90.27 ± 0.24
Co-LDL 94.68 ± 0.10 93.97 ± 0.14 95.02 ± 0.13 93.71 ± 0.57 94.84 ± 0.08 93.66 ± 0.11 94.88 ± 0.11 94.26 ± 0.09
CoDis 90.97 ± 0.05 87.92 ± 0.10 91.55 ± 0.08 85.77 ± 0.35 90.23 ± 0.04 83.92 ± 0.08 90.33 ± 0.02 86.10 ± 0.09
Bare 93.59 ± 0.16 92.79 ± 0.13 93.79 ± 0.12 93.47 ± 0.10 93.60 ± 0.14 92.75 ± 0.13 93.64 ± 0.11 93.02 ± 0.14
CoDC 94.87 ± 0.06 94.05 ± 0.08 94.66 ± 0.08 93.63 ± 0.04 94.64 ± 0.09 93.67 ± 0.09 94.89 ± 0.06 94.09 ± 0.08

Standard 87.21 ± 0.10 70.97 ± 0.34 89.55 ± 0.05 77.79 ± 0.21 84.84 ± 0.10 61.39 ± 0.35 86.37 ± 0.2 67.25 ± 0.44
Co-teaching 91.98 ± 0.04 89.21 ± 0.23 91.91 ± 0.35 88.00 ± 0.43 91.24 ± 0.27 85.94 ± 0.06 92.03 ± 0.04 87.94 ± 0.04
Co-teaching-plus 94.71 ± 0.01 92.86 ± 0.03 94.37 ± 0.03 88.14 ± 0.06 94.15 ± 0.02 88.68 ± 0.14 94.74 ± 0.01 91.88 ± 0.06
JoCoR 96.41 ± 0.02 95.70 ± 0.01 96.17 ± 0.02 93.89 ± 0.37 96.29 ± 0.01 93.88 ± 0.26 96.54 ± 0.01 95.29 ± 0.09

SVHN Co-learning 93.18 ± 0.10 92.08 ± 0.11 92.74 ± 0.18 88.07 ± 0.43 93.39 ± 0.11 89.07 ± 0.16 93.48 ± 0.07 92.21 ± 0.08
Co-LDL 96.66 ± 0.05 95.51 ± 0.33 96.20 ± 0.07 91.80 ± 0.30 96.29 ± 0.07 91.56 ± 0.23 96.42 ± 0.07 95.03 ± 0.06
CoDis 91.67 ± 0.04 89.19 ± 0.08 92.10 ± 0.06 87.27 ± 0.18 91.25 ± 0.07 85.09 ± 0.11 91.83 ± 0.03 88.34 ± 0.01
Bare 96.20 ± 0.06 94.92 ± 0.10 95.83 ± 0.12 92.44 ± 0.25 95.84 ± 0.18 91.66 ± 0.30 95.98 ± 0.07 94.46 ± 0.13
CoDC 96.64 ± 0.03 95.89 ± 0.03 96.26 ± 0.06 94.60 ± 0.08 96.26 ± 0.04 95.13 ± 0.04 96.48 ± 0.04 95.18 ± 0.05

Standard 75.74 ± 0.33 58.64 ± 0.81 82.32 ± 0.14 72.19 ± 0.32 76.38 ± 0.35 55.03 ± 0.27 76.26 ± 0.26 58.72 ± 0.26
Co-teaching 82.24 ± 0.18 77.16 ± 0.10 80.76 ± 0.11 72.85 ± 0.11 82.55 ± 0.10 75.74 ± 0.14 82.50 ± 0.12 76.28 ± 0.12
Co-teaching-plus 81.96 ± 0.12 71.49 ± 0.33 79.68 ± 0.13 70.96 ± 0.69 79.71 ± 0.14 58.39 ± 0.76 81.15 ± 0.05 64.79 ± 0.47
JoCoR 85.23 ± 0.09 79.77 ± 0.18 85.62 ± 0.21 73.50 ± 1.25 81.75 ± 0.26 68.29 ± 0.30 82.78 ± 0.11 73.53 ± 0.28

CIFAR-10 Co-learning 88.82 ± 0.23 85.99 ± 0.22 88.58 ± 0.28 82.66 ± 0.44 89.13 ± 0.11 79.68 ± 0.27 89.47 ± 0.19 86.40 ± 0.23
Co-LDL 91.57 ± 0.15 88.89 ± 0.26 90.89 ± 0.22 84.21 ± 0.26 91.10 ± 0.17 85.03 ± 0.15 91.12 ± 0.22 87.62 ± 0.19
CoDis 82.36 ± 0.24 77.04 ± 0.09 84.58 ± 0.05 75.30 ± 0.32 82.53 ± 0.23 70.86 ± 0.22 82.69 ± 0.07 74.59 ± 0.05
Bare 85.30 ± 0.61 78.90 ± 0.70 86.44 ± 0.39 81.20 ± 0.46 84.98 ± 0.57 74.53 ± 0.28 85.53 ± 0.45 77.40 ± 0.59
CoDC 92.35 ± 0.07 90.15 ± 0.13 91.53 ± 0.10 84.25 ± 0.12 92.03 ± 0.05 89.46 ± 0.15 92.59 ± 0.15 89.70 ± 0.18

Standard 46.10 ± 0.53 33.20 ± 0.58 46.11 ± 0.53 33.20 ± 0.58 46.01 ± 0.33 33.16 ± 0.32 46.30 ± 0.21 33.29 ± 0.31
Co-teaching 50.87 ± 0.31 43.38 ± 0.35 48.88 ± 0.29 35.92 ± 0.34 49.57 ± 0.35 35.11 ± 0.45 50.14 ± 0.31 39.77 ± 0.38
Co-teaching-plus 51.72 ± 0.33 44.31 ± 0.67 51.48 ± 0.28 34.20 ± 0.64 50.71 ± 0.77 34.29 ± 0.27 51.54 ± 0.29 41.36 ± 0.29
JoCoR 51.61 ± 0.37 42.78 ± 0.26 51.21 ± 0.09 42.68 ± 0.23 51.46 ± 0.32 42.01 ± 0.21 51.58 ± 0.06 42.77 ± 0.34

CIFAR-100 Co-learning 62.43 ± 0.31 57.18 ± 0.35 63.04 ± 0.36 49.69 ± 0.31 62.53 ± 0.31 49.29 ± 0.41 63.26 ± 0.35 59.57 ± 0.43
Co-LDL 66.60 ± 0.24 61.51 ± 0.34 66.85 ± 0.25 59.98 ± 0.50 66.59 ± 0.29 58.87 ± 0.35 66.53 ± 0.26 60.87 ± 0.30
CoDis 50.65 ± 0.35 43.44 ± 0.27 50.14 ± 0.38 35.43 ± 0.38 50.80 ± 0.41 35.15 ± 0.29 51.50 ± 0.40 41.43 ± 0.45
Bare 63.32 ± 0.32 55.33 ± 0.62 61.62 ± 0.26 40.88 ± 1.17 61.22 ± 0.51 40.92 ± 1.40 62.88 ± 0.28 48.82 ± 0.51
CoDC 72.42 ± 0.22 68.76 ± 0.16 70.94 ± 0.11 57.37 ± 0.33 70.78 ± 0.27 56.14 ± 0.19 70.78 ± 0.17 61.67 ± 0.16

For the results shown in Figure 4, each experiment was repeated three times; the curve
represents the average accuracy of the three experiments, while the shaded part represents
the error bar for the standard deviation. From the curve, it can be seen that our method
has excellent performance under both high and low noise rates. The small area of the
shaded part indicates that our method has good statistical significance and is less affected
by random factors.

Results on real-world datasets. Tables 3 and 4 show the results on the real-world
datasets Clothing1M and WebVision. In addition, we evaluated the generalization ability
of these methods on ImageNet ILSVRC12. Our method achieves the best performance on
real-world datasets among the compared methods.
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Table 2. Mean and standard deviations of test accuracy (%) on four noisy long-tailed datasets with
four different noise rates (20%, 30%, 40%, 45%). The test accuracy is calculated using the last ten
epochs. The best mean results are in bold.

Noise Type Asym.20% Asym.30% Asym.40% Asym.45%

Standard 85.77 ± 0.17 80.99 ± 0.45 74.90 ± 0.25 70.90 ± 0.37
Co-teaching 89.41 ± 0.13 86.83 ± 0.16 84.21 ± 0.12 82.27 ± 0.21
Co-teaching-plus 90.00 ± 0.17 88.60 ± 0.20 82.36 ± 0.26 76.19 ± 0.57
JoCoR 91.00 ± 0.10 88.12 ± 0.12 84.10 ± 0.17 78.41 ± 0.29

F-MNIST-exp Co-learning 86.70 ± 0.25 86.95 ± 0.29 86.78 ± 0.41 83.02 ± 0.66
Co-LDL 92.16 ± 0.11 91.40 ± 0.16 91.28 ± 0.21 89.31 ± 0.20
CoDis 89.11 ± 0.17 87.11 ± 0.16 83.84 ± 0.26 80.88 ± 0.13
Bare 91.43 ± 0.15 90.89 ± 0.18 88.45 ± 1.31 86.41 ± 1.15
CoDC 92.45 ± 0.08 92.24 ± 0.10 91.37 ± 0.06 90.20 ± 0.11

Standard 86.94 ± 0.22 81.38 ± 0.33 75.26 ± 0.39 71.68 ± 0.32
Co-teaching 89.79 ± 0.10 87.89 ± 0.15 85.24 ± 0.26 83.43 ± 0.14
Co-teaching-plus 90.61 ± 0.14 87.79 ± 0.20 82.83 ± 0.35 77.28 ± 0.58
JoCoR 91.12 ± 0.15 89.02 ± 0.17 85.29 ± 0.26 84.01 ± 0.26

F-MNIST-line Co-learning 87.84 ± 0.23 86.22 ± 0.41 85.66 ± 0.43 83.09 ± 1.04
Co-LDL 92.73 ± 0.21 91.47 ± 0.24 89.98 ± 0.38 88.39 ± 0.47
CoDis 90.13 ± 0.10 87.79 ± 0.16 84.77 ± 0.26 81.46 ± 0.13
Bare 92.11 ± 0.13 91.79 ± 0.09 90.55 ± 0.28 89.92 ± 0.61
CoDC 93.04 ± 0.09 92.72 ± 0.06 91.39 ± 0.15 90.59 ± 0.05

Standard 89.02 ± 0.21 83.54 ± 0.21 76.37 ± 0.40 73.09 ± 0.27
Co-teaching 93.08 ± 0.16 91.22 ± 0.24 88.49 ± 0.14 85.21 ± 0.28
Co-teaching-plus 93.10 ± 0.13 89.57 ± 0.19 83.58 ± 0.43 73.28 ± 0.69
JoCoR 95.01 ± 0.08 94.62 ± 0.08 92.65 ± 0.11 89.95 ± 0.07

SVHN-exp Co-learning 91.67 ± 0.18 90.60 ± 0.23 86.52 ± 0.40 81.97 ± 0.58
Co-LDL 95.33 ± 0.27 93.77 ± 0.35 89.58 ± 0.61 82.08 ± 1.56
CoDis 92.80 ± 0.17 91.09 ± 0.19 86.89 ± 0.11 81.25 ± 0.13
Bare 95.42 ± 0.14 92.51 ± 0.23 89.48 ± 0.33 83.31 ± 0.65
CoDC 95.68 ± 0.04 95.28 ± 0.07 93.97 ± 0.05 93.47 ± 0.10

Standard 88.90 ± 0.15 83.33 ± 0.20 76.92 ± 0.29 72.57 ± 0.24
Co-teaching 92.92 ± 0.10 91.17 ± 0.10 88.33 ± 0.25 85.77 ± 0.26
Co-teaching-plus 92.73 ± 0.13 89.41 ± 0.20 82.28 ± 0.37 73.94 ± 0.47
JoCoR 95.34 ± 0.04 94.88 ± 0.07 93.56 ± 0.06 91.00 ± 0.07

SVHN-line Co-learning 91.90 ± 0.09 90.70 ± 0.16 88.08 ± 0.25 81.80 ± 0.46
Co-LDL 95.28 ± 0.12 93.40 ± 0.19 88.79 ± 0.25 83.66 ± 0.40
CoDis 92.94 ± 0.17 90.78 ± 0.19 86.71 ± 0.11 80.93 ± 0.13
Bare 95.40 ± 0.11 93.38 ± 0.22 89.62 ± 0.16 86.35 ± 0.72
CoDC 95.96 ± 0.06 95.77 ± 0.06 95.01 ± 0.06 93.56 ± 0.06

Table 3. Test accuracy (%) on Clothing1M. The best results are in bold.

Method Acc

Standard 67.22
Co-teaching 69.21
Co-teaching-plus 59.32
JoCoR 70.30
Co-learning 68.72
Co-LDL 71.10
CoDis 71.60
Bare 70.32
CoDC 72.81
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Table 4. Top-1 and Top-5 test accuracy (%) on the WebVision1.0 and ILSVRC12 datasets. The best
results are in bold.

Method

Dataset WebVision ILSVRC12

top1 top5 top1 top5

Co-teaching 63.58 85.20 61.48 84.70

Co-teaching-plus 68.56 86.64 65.60 86.60

JoCoR 61.84 83.72 59.16 84.16

Co-LDL 69.74 84.26 68.63 84.61

CoDis 70.52 87.88 66.88 87.20

Bare 69.60 88.84 66.48 88.76

CoDC 76.96 91.56 73.44 92.08

Figure 4. Test accuracy comparison for the number of epochs on the four long-tailed noisy datasets.
Each experiment was repeated three times. The error bar for the standard deviation in each figure
has been shaded.

4.3. Ablation Study

We conducted ablation experiments on the CIFAR-100 dataset under symmetric noise
at a 40% noise rate to emphasize our design featuring the modified classification loss,
balance loss, and peer network guiding learning. The accuracy when the networks lack a
sample selection support strategy is only 33.20%, which is due to the influence of the noisy
label environment. When the sample selection strategy is added, the accuracy increase
to 64.74%. The modified classification loss, which can alleviate overfitting caused by CE,
improves the accuracy by 1.17%. When the balance loss is added, the accuracy improves by
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2.47%, which confirms our assumption that maintaining a balance between disagreement
and consistency in the two networks can improve their learning performance. Finally, the
addition of peer network guided learning further improves the accuracy of the networks.
The experimental results are shown in Table 5.

Table 5. Ablation study on CIFAR-100 under symmetric noise at a 40% noise rate.

Modules AccLselect Lmlc Lbalance Lpl

33.20
! 64.74
! ! 65.91
! ! ! 68.38
! ! ! ! 68.76

4.4. Comparison of Running Time

We compared the running time on the CIFAR-10 dataset under symmetric noise at
a 40% noise rate. All the methods were trained for 200 epochs in the same experimental
environment. The results are shown in Table 6. Our method outperforms all the compared
methods, with less time consumption than Co-LDL and Bare and similar time consumption
to Co-teaching and Co-teaching-plus.

Table 6. Comparison of running time between the proposed method and four co-teaching-based methods.

Method Acc (%) Time (h)

Co-teaching 77.16 1.34
Co-teaching-plus 71.49 1.62
Co-LDL 88.89 1.87
Bare 78.90 4.02
CoDC 90.15 1.76

5. Conclusions

The existing co-teaching methods train two networks simultaneously; however, as
iteration progresses, the parameters of the two networks gradually converge and they
degenerate into a self-training network. To address this problem, we propose using the
disagreement loss and consistency loss to balance the relationship between the two net-
works. Our ablation experiments confirm that balancing the relationship between the two
networks can improve the generalization ability of the resulting model. In addition, to
alleviate the over-fitting phenomenon when using cross-entropy, we propose a modified
classification loss based on analyzing the change in the historical classification loss. Finally,
we use a peer network to guide the learning of noisy samples to ensure that all samples
are utilized for training. A large number of experiments demonstrate the effectiveness of
the proposed method, providing a new research direction for co-teaching. In our future
work, we intend to further explore the relationship between the two networks based on the
idea of co-teaching in order to enhance their performance when learning with noisy labels;
for example, more reasonable methods could be employed to balance the disagreement
and consistency between the two networks, and more accurate pseudo-label correction
strategies could be utilized.
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